package electrod

  1. Overview
  2. Docs
Formal analysis for the Electrod formal pivot language

Install

Dune Dependency

Authors

Maintainers

Sources

electrod-0.4.1.tbz
sha256=b0bce9cc7126672feda5a02d5ef0c1131ba54db57654f80c0768c2f8d043cef9
sha512=92cc22f81522435e190039324767b6f69fa0b7d9dbfc3fb5561919823136fe492244dae993caf98633828e0090b67f306eec6270b86a1b2ff8630642130a3081

doc/src/electrod.libelectrod/Gen_goal.ml.html

Source file Gen_goal.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
(*******************************************************************************
 * electrod - a model finder for relational first-order linear temporal logic
 * 
 * Copyright (C) 2016-2019 ONERA
 * Authors: Julien Brunel (ONERA), David Chemouil (ONERA)
 * 
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 * 
 * SPDX-License-Identifier: MPL-2.0
 * License-Filename: LICENSE.md
 ******************************************************************************)

(* ['v] is the type of variables introduced in quantifiers, ['i] is the type of
   any identifier (a variable like in the former case or a relation name). The 
   optional Boolean  is the optional expected value : false = "unsat", true = 
   "sat"
   *)
type ('v, 'i) t = Run of (('v, 'i) block * (bool option[@opaque])) [@@unboxed]

(** Formulas and expressions *)

and ('v, 'i) fml =
  { prim_fml : ('v, 'i) prim_fml
  ; fml_loc : (Location.t[@opaque])
  }

and ('v, 'i) prim_fml =
  | True
  | False
  | Qual of rqualify * ('v, 'i) exp
  | RComp of ('v, 'i) exp * comp_op * ('v, 'i) exp
  | IComp of ('v, 'i) iexp * icomp_op * ('v, 'i) iexp
  | LUn of lunop * ('v, 'i) fml
  | LBin of ('v, 'i) fml * lbinop * ('v, 'i) fml
  | Quant of quant * ('v, 'i) sim_binding list * ('v, 'i) block
      (** binding list must be nonempty *)
  | Let of ('v, 'i) binding list * ('v, 'i) block  (** nonempty *)
  | FIte of ('v, 'i) fml * ('v, 'i) fml * ('v, 'i) fml
  | Block of ('v, 'i) block

(* simple binding *)
and ('v, 'i) binding = 'v * ('v, 'i) exp

(* simultaneous bindings to the same range *)
and ('v, 'i) sim_binding = disj * 'v list * ('v, 'i) exp

(* nonempty *)
and disj = (bool[@opaque])

and ('v, 'i) block = ('v, 'i) fml list
(** nonempty *)

and quant =
  | All
  | Some_
  | No
  | One
  | Lone

and lbinop =
  | And
  | Or
  | Imp
  | Iff
  | U
  | R
  (* releases *)
  | S

(* since *)
and lunop =
  | F
  | G
  | Not
  | O
  (* once *)
  | X
  | H
  | P

(* previous *)
and comp_op =
  | In
  | NotIn
  | REq
  | RNEq

and icomp_op =
  | IEq
  | INEq
  | Lt
  | Lte
  | Gt
  | Gte

and ('v, 'i) exp =
  { prim_exp : ('v, 'i) prim_exp
  ; exp_loc : (Location.t[@opaque])
  ; arity : (int option[@opaque]) (* None for none or Some n where n > 0 *)
  }

and ('v, 'i) prim_exp =
  | None_
  | Univ
  | Iden
  | Ident of 'i
  | RUn of runop * ('v, 'i) exp
  | RBin of ('v, 'i) exp * rbinop * ('v, 'i) exp
  | RIte of ('v, 'i) fml * ('v, 'i) exp * ('v, 'i) exp
  | BoxJoin of ('v, 'i) exp * ('v, 'i) exp list  (** <> []  *)
  | Compr of ('v, 'i) sim_binding list * ('v, 'i) block
  | Prime of ('v, 'i) exp

and rqualify =
  | ROne
  | RLone
  | RSome
  | RNo

and runop =
  | Transpose
  | TClos
  | RTClos

and rbinop =
  | Union
  | Inter
  | Over
  | LProj
  | RProj
  | Prod
  | Diff
  | Join

and ('v, 'i) iexp =
  { prim_iexp : ('v, 'i) prim_iexp
  ; iexp_loc : (Location.t[@opaque])
  }

and ('v, 'i) prim_iexp =
  | Num of (int[@opaque])
  | Card of ('v, 'i) exp
  | IUn of iunop * ('v, 'i) iexp
  | IBin of ('v, 'i) iexp * ibinop * ('v, 'i) iexp

and iunop = Neg

and ibinop =
  | Add
  | Sub
[@@deriving
  visitors { variety = "map" }
  , visitors { variety = "fold"; ancestors = [ "VisitorsRuntime.map" ] }]

let true_ = True

let false_ = False

let qual qual exp = Qual (qual, exp)

let rcomp exp1 rcomp exp2 = RComp (exp1, rcomp, exp2)

let icomp exp1 rcomp exp2 = IComp (exp1, rcomp, exp2)

let lbinary fml1 binop fml2 =
  match (fml1.prim_fml, binop, fml2.prim_fml) with
  (* And *)
  | (False | Block [ { prim_fml = False; _ } ]), And, _
  | _, And, (False | Block [ { prim_fml = False; _ } ]) ->
      false_
  | (True | Block [ { prim_fml = True; _ } ]), And, _ ->
      fml2.prim_fml
  | _, And, (True | Block [ { prim_fml = True; _ } ]) ->
      fml1.prim_fml
  (* Or *)
  | (False | Block [ { prim_fml = False; _ } ]), Or, _ ->
      fml2.prim_fml
  | _, Or, (False | Block [ { prim_fml = False; _ } ]) ->
      fml1.prim_fml
  | (True | Block [ { prim_fml = True; _ } ]), Or, _
  | _, Or, (True | Block [ { prim_fml = True; _ } ]) ->
      True
  (* Implies *)
  | (False | Block [ { prim_fml = False; _ } ]), Imp, _
  | _, Imp, (True | Block [ { prim_fml = True; _ } ]) ->
      true_
  | (True | Block [ { prim_fml = True; _ } ]), Imp, _ ->
      fml2.prim_fml
  | _ ->
      LBin (fml1, binop, fml2)


let quant quant decls block =
  assert (decls <> [] && block <> []);
  Quant (quant, decls, block)


let lunary lunop fml = LUn (lunop, fml)

let block block = Block block

let fite f t e = FIte (f, t, e)

let let_ decls block = Let (decls, block)

let all = All

let some = Some_

let no_ = No

let lone = Lone

let one = One

let and_ = And

let or_ = Or

let impl = Imp

let iff = Iff

let until = U

let releases = R

let since = S

let not_ = Not

let sometime = F

let always = G

let once = O

let next = X

let historically = H

let previous = P

let num n = Num n

let none = None_

let univ = Univ

let iden = Iden

let ident x = Ident x

let runary runop exp = RUn (runop, exp)

let rbinary exp1 rbinop exp2 = RBin (exp1, rbinop, exp2)

let rite cdt then_ else_ = RIte (cdt, then_, else_)

let boxjoin caller callee = BoxJoin (caller, callee)

let compr decls block =
  assert (decls <> [] && block <> []);
  Compr (decls, block)


let prime exp = Prime exp

let in_ = In

let not_in = NotIn

let req = REq

let rneq = RNEq

let ieq = IEq

let ineq = INEq

let lt = Lt

let lte = Lte

let gt = Gt

let gte = Gte

let rone = ROne

let rsome = RSome

let rlone = RLone

let rno = RNo

let transpose = Transpose

let tclos = TClos

let rtclos = RTClos

let union = Union

let inter = Inter

let over = Over

let lproj = LProj

let rproj = RProj

let prod = Prod

let diff = Diff

let join = Join

let card exp = Card exp

let iunary op exp = IUn (op, exp)

let ibinary exp1 op exp2 = IBin (exp1, op, exp2)

let neg = Neg

let add = Add

let sub = Sub

let fml fml_loc prim_fml = { prim_fml; fml_loc }

let exp arity exp_loc prim_exp = { prim_exp; exp_loc; arity }

let iexp iexp_loc prim_iexp = { prim_iexp; iexp_loc }

let run fs exp = Run (fs, exp)

let get_expected (goal : ('v, 'i) t) =
  match goal with Run (_, expect) -> expect


(******************************************************************************
 *  Pretty-printing
 ****************************************************************************************)

let kwd_styled pf = Fmtc.(styled `Bold) pf

let rec pp pp_v pp_i out (Run (fml, _)) =
  let open Fmtc in
  (kwd_styled pf) out "run@ ";
  pf out "  %a" (box @@ list @@ pp_fml pp_v pp_i) fml


and pp_fml pp_v pp_i out fml = pp_prim_fml pp_v pp_i out fml.prim_fml

and pp_prim_fml pp_v pp_i out =
  let open Fmtc in
  function
  | True ->
      (kwd_styled pf) out "true"
  | False ->
      (kwd_styled pf) out "false"
  | Qual (q, exp) ->
      pf out "@[<2>(%a@ %a)@]" pp_rqualify q (pp_exp pp_v pp_i) exp
  | RComp (e1, op, e2) ->
      pf
        out
        "@[<2>(%a@ %a@ %a)@]"
        (pp_exp pp_v pp_i)
        e1
        pp_comp_op
        op
        (pp_exp pp_v pp_i)
        e2
  | IComp (e1, op, e2) ->
      pf
        out
        "@[<2>(%a@ %a@ %a)@]"
        (pp_iexp pp_v pp_i)
        e1
        pp_icomp_op
        op
        (pp_iexp pp_v pp_i)
        e2
  | LUn (op, fml) ->
      pf out "@[<2>(%a@ %a)@]" pp_lunop op (pp_fml pp_v pp_i) fml
  | LBin (f1, op, f2) ->
      pf
        out
        "@[<2>(%a@ %a@ %a)@]"
        (pp_fml pp_v pp_i)
        f1
        pp_lbinop
        op
        (pp_fml pp_v pp_i)
        f2
  | Quant (q, decls, blk) ->
      pf
        out
        "@[<2>(%a %a@ %a)@]"
        pp_quant
        q
        (list ~sep:(sp **> comma) @@ pp_sim_binding pp_v pp_i)
        decls
        (pp_block pp_v pp_i)
        blk
  | Let (bindings, blk) ->
      pf
        out
        "%a %a@ %a"
        (kwd_styled string)
        "let"
        (list ~sep:(sp **> comma) @@ pp_binding ~sep:equal pp_v pp_i)
        bindings
        (pp_block pp_v pp_i)
        blk
  | FIte (c, t, e) ->
      (* pf out "@[<hv2>(%a@ @[implies %a@]@ @[else %a@])@]" *)
      pf
        out
        "@[<hv>(%a) %a@;<1 2>@[(%a@])@;%a@;<1 2>@[(%a@])@]"
        (pp_fml pp_v pp_i)
        c
        (kwd_styled string)
        "implies"
        (pp_fml pp_v pp_i)
        t
        (kwd_styled string)
        "else"
        (pp_fml pp_v pp_i)
        e
  | Block fmls ->
      pp_block pp_v pp_i out fmls


and pp_block pp_v pp_i out fmls =
  let open Fmtc in
  pf
    out
    "@[<b 0>{@[<hv>%a@]@,}@]"
    (list ~sep:(sp **> semi) @@ pp_fml pp_v pp_i)
    fmls


and pp_rqualify out x =
  Fmtc.(kwd_styled pf) out
  @@
  match x with ROne -> "one" | RLone -> "lone" | RSome -> "some" | RNo -> "no"


and pp_comp_op out =
  let open Fmtc in
  function
  | In ->
      (kwd_styled pf) out "in"
  | NotIn ->
      (kwd_styled pf) out "not in"
  | REq ->
      pf out "="
  | RNEq ->
      pf out "!="


and pp_icomp_op out =
  let open Fmtc in
  function
  | Lt ->
      pf out "<"
  | IEq ->
      pf out "="
  | INEq ->
      pf out "!="
  | Lte ->
      pf out "<="
  | Gt ->
      pf out ">"
  | Gte ->
      pf out ">="


and pp_lunop out x =
  Fmtc.(kwd_styled pf) out
  @@
  match x with
  | Not ->
      "not"
  | F ->
      "eventually"
  | G ->
      "always"
  | O ->
      "once"
  | X ->
      "next"
  | H ->
      "historically"
  | P ->
      "previous"


and pp_lbinop out x =
  Fmtc.(kwd_styled pf) out
  @@
  match x with
  | And ->
      "and"
  | Or ->
      "or"
  | Imp ->
      "implies"
  | Iff ->
      "iff"
  | U ->
      "until"
  | R ->
      "releases"
  | S ->
      "since"


and pp_quant out x =
  Fmtc.(kwd_styled pf) out
  @@
  match x with
  | Lone ->
      "lone"
  | One ->
      "one"
  | All ->
      "all"
  | Some_ ->
      "some"
  | No ->
      "no"


and pp_binding ~sep pp_v pp_i out (v, e) =
  let open Fmtc in
  pf out "%a@ %a@ %a" pp_v v sep () (pp_exp pp_v pp_i) e


and pp_sim_binding pp_v pp_i out (disj, vars, exp) =
  let open Fmtc in
  pf
    out
    "%a%a :@ %a"
    (if disj then kwd_styled string else nop)
    "disj "
    (list ~sep:(sp **> comma) pp_v)
    vars
    (pp_exp pp_v pp_i)
    exp


and pp_exp ?(show_arity = false) pp_v pp_i out exp =
  pp_prim_exp pp_v pp_i out exp.prim_exp;
  if show_arity then Fmtc.(pf out "«%a»" (option int) exp.arity)


and pp_prim_exp pp_v pp_i out =
  let open Fmtc in
  function
  | None_ ->
      (styled Name.style pf) out "none"
  | Univ ->
      (styled Name.style pf) out "univ"
  | Iden ->
      (styled Name.style pf) out "iden"
  | Ident id ->
      pf out "%a" pp_i id
  | RUn (op, e) ->
      pf out "@[<2>(%a%a)@]" pp_runop op (pp_exp pp_v pp_i) e
  | RBin (e1, Join, e2) ->
      (* special one for join *)
      pf out "@[<2>(%a.%a)@]" (pp_exp pp_v pp_i) e1 (pp_exp pp_v pp_i) e2
  | RBin (e1, op, e2) ->
      pf
        out
        "@[<2>(%a@ %a@ %a)@]"
        (pp_exp pp_v pp_i)
        e1
        pp_rbinop
        op
        (pp_exp pp_v pp_i)
        e2
  | RIte (c, t, e) ->
      pf
        out
        "@[<hv>%a %a@;<1 2>@[%a@]@;%a@;<1 2>@[%a@]@]"
        (pp_fml pp_v pp_i)
        c
        (kwd_styled string)
        "implies"
        (pp_exp pp_v pp_i)
        t
        (kwd_styled string)
        "else"
        (pp_exp pp_v pp_i)
        e
  | BoxJoin (exp, args) ->
      pf
        out
        "@[<2>(%a%a)@]"
        (pp_exp pp_v pp_i)
        exp
        (brackets @@ list ~sep:(sp **> comma) @@ pp_exp pp_v pp_i)
        args
  | Compr (sim_bindings, blk) ->
      pf
        out
        "%a"
        ( braces_
        @@ pair
             ~sep:sp
             (list ~sep:(sp **> comma) @@ pp_sim_binding pp_v pp_i)
             (pp_block pp_v pp_i) )
        (sim_bindings, blk)
  | Prime e ->
      pf out "%a'" (pp_exp pp_v pp_i) e


and pp_runop out =
  let open Fmtc in
  function
  | Transpose -> pf out "~" | TClos -> pf out "^" | RTClos -> pf out "*"


and pp_rbinop out =
  let open Fmtc in
  function
  | Union ->
      pf out "+"
  | Inter ->
      pf out "&"
  | Over ->
      pf out "++"
  | LProj ->
      pf out "<:"
  | RProj ->
      pf out ":>"
  | Prod ->
      pf out "->"
  | Diff ->
      pf out "-"
  | Join ->
      pf out "-"


and pp_iexp pp_v pp_i out iexp =
  let open Fmtc in
  pf out "%a" (pp_prim_iexp pp_v pp_i) iexp.prim_iexp


and pp_prim_iexp pp_v pp_i out =
  let open Fmtc in
  function
  | Num n ->
      pf out "%d" n
  | Card exp ->
      pf out "@[<2>(#%a)@]" (pp_exp pp_v pp_i) exp
  | IUn (op, iexp) ->
      pf out "@[<2>(%a%a)@]" pp_iunop op (pp_iexp pp_v pp_i) iexp
  | IBin (e1, op, e2) ->
      pf
        out
        "@[<2>(%a@ %a@ %a)@]"
        (pp_iexp pp_v pp_i)
        e1
        pp_ibinop
        op
        (pp_iexp pp_v pp_i)
        e2


and pp_iunop out =
  let open Fmtc in
  function Neg -> pf out "-"


and pp_ibinop out =
  let open Fmtc in
  function Add -> pf out "+" | Sub -> pf out "-"
OCaml

Innovation. Community. Security.