Source file dune_lang.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
open! Stdune
module Atom = Atom
module Template = Template
module Syntax = Syntax
type syntax = Syntax.t = Jbuild | Dune
type t =
| Atom of Atom.t
| Quoted_string of string
| List of t list
| Template of Template.t
let atom_or_quoted_string s =
if Atom.is_valid_dune s then
Atom (Atom.of_string s)
else
Quoted_string s
let atom s = Atom (Atom.of_string s)
let unsafe_atom_of_string s = atom s
let rec to_string t ~syntax =
match t with
| Atom a -> Atom.print a syntax
| Quoted_string s -> Escape.quoted s ~syntax
| List l ->
Printf.sprintf "(%s)" (List.map l ~f:(to_string ~syntax)
|> String.concat ~sep:" ")
| Template t -> Template.to_string t ~syntax
let rec pp syntax ppf = function
| Atom s ->
Format.pp_print_string ppf (Atom.print s syntax)
| Quoted_string s ->
Format.pp_print_string ppf (Escape.quoted ~syntax s)
| List [] ->
Format.pp_print_string ppf "()"
| List (first :: rest) ->
Format.pp_open_box ppf 1;
Format.pp_print_string ppf "(";
Format.pp_open_hvbox ppf 0;
pp syntax ppf first;
List.iter rest ~f:(fun sexp ->
Format.pp_print_space ppf ();
pp syntax ppf sexp);
Format.pp_close_box ppf ();
Format.pp_print_string ppf ")";
Format.pp_close_box ppf ()
| Template t -> Template.pp syntax ppf t
let pp_quoted =
let rec loop = function
| Atom (A s) as t ->
if Atom.is_valid_dune s then
t
else
Quoted_string s
| List xs -> List (List.map ~f:loop xs)
| (Quoted_string _ | Template _) as t -> t
in
fun ppf t -> pp Dune ppf (loop t)
let pp_print_quoted_string ppf s =
let syntax = Dune in
if String.contains s '\n' then begin
match String.split s ~on:'\n' with
| [] -> Format.pp_print_string ppf (Escape.quoted ~syntax s)
| first :: rest ->
Format.fprintf ppf "@[<hv 1>\"@{<atom>%s"
(Escape.escaped ~syntax first);
List.iter rest ~f:(fun s ->
Format.fprintf ppf "@,\\n%s" (Escape.escaped ~syntax s));
Format.fprintf ppf "@}\"@]"
end else
Format.pp_print_string ppf (Escape.quoted ~syntax s)
let rec pp_split_strings ppf = function
| Atom s -> Format.pp_print_string ppf (Atom.print s Syntax.Dune)
| Quoted_string s -> pp_print_quoted_string ppf s
| List [] ->
Format.pp_print_string ppf "()"
| List (first :: rest) ->
Format.pp_open_box ppf 1;
Format.pp_print_string ppf "(";
Format.pp_open_hvbox ppf 0;
pp_split_strings ppf first;
List.iter rest ~f:(fun sexp ->
Format.pp_print_space ppf ();
pp_split_strings ppf sexp);
Format.pp_close_box ppf ();
Format.pp_print_string ppf ")";
Format.pp_close_box ppf ()
| Template t -> Template.pp_split_strings ppf t
type formatter_state =
| In_atom
| In_makefile_action
| In_makefile_stuff
let prepare_formatter ppf =
let state = ref [] in
Format.pp_set_mark_tags ppf true;
let ofuncs = Format.pp_get_formatter_out_functions ppf () in
let tfuncs = Format.pp_get_formatter_tag_functions ppf () in
Format.pp_set_formatter_tag_functions ppf
{ tfuncs with
mark_open_tag = (function
| "atom" -> state := In_atom :: !state; ""
| "makefile-action" -> state := In_makefile_action :: !state; ""
| "makefile-stuff" -> state := In_makefile_stuff :: !state; ""
| s -> tfuncs.mark_open_tag s)
; mark_close_tag = (function
| "atom" | "makefile-action" | "makefile-stuff" -> state := List.tl !state; ""
| s -> tfuncs.mark_close_tag s)
};
Format.pp_set_formatter_out_functions ppf
{ ofuncs with
out_newline = (fun () ->
match !state with
| [In_atom; In_makefile_action] ->
ofuncs.out_string "\\\n\t" 0 3
| [In_atom] ->
ofuncs.out_string "\\\n" 0 2
| [In_makefile_action] ->
ofuncs.out_string " \\\n\t" 0 4
| [In_makefile_stuff] ->
ofuncs.out_string " \\\n" 0 3
| [] ->
ofuncs.out_string "\n" 0 1
| _ -> assert false)
; out_spaces = (fun n ->
ofuncs.out_spaces
(match !state with
| In_atom :: _ -> max 0 (n - 2)
| _ -> n))
}
module Ast = struct
type dune_lang = t
type t =
| Atom of Loc.t * Atom.t
| Quoted_string of Loc.t * string
| Template of Template.t
| List of Loc.t * t list
let atom_or_quoted_string loc s =
match atom_or_quoted_string s with
| Atom a -> Atom (loc, a)
| Quoted_string s -> Quoted_string (loc, s)
| Template _
| List _ -> assert false
let loc (Atom (loc, _) | Quoted_string (loc, _) | List (loc, _)
| Template { loc ; _ }) = loc
let rec remove_locs t : dune_lang =
match t with
| Template t -> Template (Template.remove_locs t)
| Atom (_, s) -> Atom s
| Quoted_string (_, s) -> Quoted_string s
| List (_, l) -> List (List.map l ~f:remove_locs)
end
let rec add_loc t ~loc : Ast.t =
match t with
| Atom s -> Atom (loc, s)
| Quoted_string s -> Quoted_string (loc, s)
| List l -> List (loc, List.map l ~f:(add_loc ~loc))
| Template t -> Template { t with loc }
module Cst = struct
module Comment = Lexer_shared.Token.Comment
type t =
| Atom of Loc.t * Atom.t
| Quoted_string of Loc.t * string
| Template of Template.t
| List of Loc.t * t list
| Comment of Loc.t * Comment.t
let loc (Atom (loc, _) | Quoted_string (loc, _) | List (loc, _)
| Template { loc ; _ } | Comment (loc, _)) = loc
let fetch_legacy_comments t ~file_contents =
let rec loop t =
match t with
| Template _ | Quoted_string _ | Atom _ | Comment (_, Lines _) -> t
| List (loc, l) -> List (loc, List.map l ~f:loop)
| Comment (loc, Legacy) ->
let start = loc.start.pos_cnum in
let stop = loc.stop.pos_cnum in
let s =
if file_contents.[start] = '#' && file_contents.[start+1] = '|' then
String.sub file_contents ~pos:(start + 2) ~len:(stop - start - 4)
else
String.sub file_contents ~pos:start ~len:(stop - start)
in
Comment (loc, Lines (String.split s ~on:'\n'))
in
loop t
let rec abstract : t -> Ast.t option = function
| Atom (loc, atom) -> Some (Atom (loc, atom))
| Quoted_string (loc, s) -> Some (Quoted_string (loc, s))
| Template t -> Some (Template t)
| List (loc, l) -> Some (List (loc, List.filter_map ~f:abstract l))
| Comment _ -> None
let rec concrete : Ast.t -> t = function
| Atom (loc, atom) -> Atom (loc, atom)
| Quoted_string (loc, s) -> Quoted_string (loc, s)
| Template t -> Template t
| List (loc, l) -> List (loc, List.map ~f:concrete l)
let to_sexp c =
abstract c |> Option.map ~f:Ast.remove_locs
let extract_comments =
let rec loop acc = function
| Atom _ | Quoted_string _ | Template _ -> acc
| List (_, l) -> List.fold_left l ~init:acc ~f:loop
| Comment (loc, comment) -> (loc, comment) :: acc
in
List.fold_left ~init:[] ~f:loop
let tokenize ts =
let tokens = ref [] in
let emit loc (token : Lexer.Token.t) =
tokens := (loc, token) :: !tokens
in
let rec iter = function
| Atom (loc, s) ->
emit loc (Atom s)
| Quoted_string (loc, s) ->
emit loc (Quoted_string s)
| Template ({ loc; _ } as template) ->
emit loc (Template template)
| Comment (loc, comment) ->
emit loc (Comment comment)
| List (loc, l) ->
emit { loc with
stop = { loc.start with pos_cnum = loc.start.pos_cnum + 1 } }
Lparen;
List.iter l ~f:iter;
emit { loc with
start = { loc.stop with pos_cnum = loc.stop.pos_cnum - 1 } }
Rparen
in
List.iter ts ~f:iter;
List.rev !tokens
end
module Parse_error = struct
include Lexer.Error
let loc t : Loc.t = { start = t.start; stop = t.stop }
let message t = t.message
end
exception Parse_error = Lexer.Error
module Lexer = Lexer
module Parser = struct
let error (loc : Loc.t) message =
raise (Parse_error
{ start = loc.start
; stop = loc.stop
; message
})
module Mode = struct
type 'a t =
| Single : Ast.t t
| Many : Ast.t list t
| Many_as_one : Ast.t t
let make_result : type a. a t -> Lexing.lexbuf -> Ast.t list -> a
= fun t lexbuf sexps ->
match t with
| Single -> begin
match sexps with
| [sexp] -> sexp
| [] -> error (Loc.of_lexbuf lexbuf) "no s-expression found in input"
| _ :: sexp :: _ ->
error (Ast.loc sexp) "too many s-expressions found in input"
end
| Many -> sexps
| Many_as_one ->
match sexps with
| [] -> List (Loc.in_file
(Path.of_string lexbuf.lex_curr_p.pos_fname), [])
| x :: l ->
let last = List.fold_left l ~init:x ~f:(fun _ x -> x) in
let loc = { (Ast.loc x) with stop = (Ast.loc last).stop } in
List (loc, x :: l)
end
let rec cst_of_encoded_ast (x : Ast.t) : Cst.t =
match x with
| Template t -> Template t
| Quoted_string (loc, s) -> Quoted_string (loc, s)
| List (loc, l) -> List (loc, List.map l ~f:cst_of_encoded_ast)
| Atom (loc, (A s as atom)) ->
match s.[0] with
| '\000' ->
Comment (loc, Lines (String.drop s 1 |> String.split ~on:'\n'))
| '\001' ->
Comment (loc, Legacy)
| _ ->
Atom (loc, atom)
let rec loop with_comments depth lexer lexbuf acc =
match (lexer ~with_comments lexbuf : Lexer.Token.t) with
| Atom a ->
let loc = Loc.of_lexbuf lexbuf in
loop with_comments depth lexer lexbuf (Ast.Atom (loc, a) :: acc)
| Quoted_string s ->
let loc = Loc.of_lexbuf lexbuf in
loop with_comments depth lexer lexbuf (Quoted_string (loc, s) :: acc)
| Template t ->
let loc = Loc.of_lexbuf lexbuf in
loop with_comments depth lexer lexbuf (Template { t with loc } :: acc)
| Lparen ->
let start = Lexing.lexeme_start_p lexbuf in
let sexps = loop with_comments (depth + 1) lexer lexbuf [] in
let stop = Lexing.lexeme_end_p lexbuf in
loop with_comments depth lexer lexbuf (List ({ start; stop }, sexps) :: acc)
| Rparen ->
if depth = 0 then
error (Loc.of_lexbuf lexbuf)
"right parenthesis without matching left parenthesis";
List.rev acc
| Sexp_comment ->
let sexps =
let loc = Loc.of_lexbuf lexbuf in
match loop with_comments depth lexer lexbuf [] with
| commented :: sexps ->
if not with_comments then
sexps
else
Atom (Ast.loc commented, Atom.of_string "\001") :: sexps
| [] -> error loc "s-expression missing after #;"
in
List.rev_append acc sexps
| Eof ->
if depth > 0 then
error (Loc.of_lexbuf lexbuf)
"unclosed parenthesis at end of input";
List.rev acc
| Comment comment ->
if not with_comments then
loop false depth lexer lexbuf acc
else begin
let loc = Loc.of_lexbuf lexbuf in
let encoded =
match comment with
| Lines lines -> "\000" ^ String.concat lines ~sep:"\n"
| Legacy -> "\001"
in
loop with_comments depth lexer lexbuf
(Atom (loc, Atom.of_string encoded) :: acc)
end
let parse ~mode ?(lexer=Lexer.token) lexbuf =
loop false 0 lexer lexbuf []
|> Mode.make_result mode lexbuf
let parse_cst ?(lexer=Lexer.token) lexbuf =
loop true 0 lexer lexbuf []
|> List.map ~f:cst_of_encoded_ast
end
let insert_comments csts comments =
let compare (a, _) (b, _) =
Int.compare a.Loc.start.pos_cnum b.Loc.start.pos_cnum
in
let rec reconciliate acc tokens1 tokens2 =
match tokens1, tokens2 with
| [], l | l, [] -> List.rev_append acc l
| tok1 :: rest1, tok2 :: rest2 ->
match compare tok1 tok2 with
| Eq
| Lt -> reconciliate (tok1 :: acc) rest1 tokens2
| Gt -> reconciliate (tok2 :: acc) tokens1 rest2
in
let tokens =
reconciliate []
(Cst.tokenize csts)
(List.sort comments ~compare
|> List.map ~f:(fun (loc, comment) ->
(loc, Lexer.Token.Comment comment)))
in
let tokens = ref tokens in
let lexer ~with_comments:_ (lb : Lexing.lexbuf) =
match !tokens with
| [] ->
lb.lex_curr_p <- lb.lex_start_p;
Lexer.Token.Eof
| ({ start; stop }, tok) :: rest ->
tokens := rest;
lb.lex_start_p <- start;
lb.lex_curr_p <- stop;
tok
in
Parser.parse_cst (Lexing.from_string "") ~lexer
let lexbuf_from_string ~fname str =
let lb = Lexing.from_string str in
lb.lex_curr_p <-
{ pos_fname = fname
; pos_lnum = 1
; pos_bol = 0
; pos_cnum = 0
};
lb
let parse_string ~fname ~mode ?lexer str =
let lb = lexbuf_from_string ~fname str in
Parser.parse ~mode ?lexer lb
let parse_cst_string ~fname ?lexer str =
let lb = lexbuf_from_string ~fname str in
Parser.parse_cst ?lexer lb
type dune_lang = t
module Encoder = struct
type nonrec 'a t = 'a -> t
let unit () = List []
let char c = atom_or_quoted_string (String.make 1 c)
let string = atom_or_quoted_string
let int n = Atom (Atom.of_int n)
let float f = Atom (Atom.of_float f)
let bool b = Atom (Atom.of_bool b)
let pair fa fb (a, b) = List [fa a; fb b]
let triple fa fb fc (a, b, c) = List [fa a; fb b; fc c]
let list f l = List (List.map l ~f)
let array f a = list f (Array.to_list a)
let sexp x = x
let option f = function
| None -> List []
| Some x -> List [f x]
let record l =
List (List.map l ~f:(fun (n, v) -> List [Atom(Atom.of_string n); v]))
type field =
| Absent
| Normal of string * dune_lang
| Inlined_list of string * dune_lang list
let field name f ?(equal=(=)) ?default v =
match default with
| None -> Normal (name, f v)
| Some d ->
if equal d v then
Absent
else
Normal (name, f v)
let field_o name f v =
match v with
| None -> Absent
| Some v -> Normal (name, f v)
let field_b name v =
if v then
Inlined_list (name, [])
else
Absent
let field_l name f l =
match l with
| [] -> Absent
| _ -> Inlined_list (name, List.map l ~f)
let field_i name f x =
match f x with
| [] -> Absent
| l -> Inlined_list (name, l)
let record_fields (l : field list) =
List.filter_map l ~f:(function
| Absent -> None
| Normal (name, v) ->
Some (List [Atom (Atom.of_string name); v])
| Inlined_list (name, l) ->
Some (List (Atom (Atom.of_string name) :: l)))
let unknown _ = unsafe_atom_of_string "<unknown>"
end
module Decoder = struct
type ast = Ast.t =
| Atom of Loc.t * Atom.t
| Quoted_string of Loc.t * string
| Template of Template.t
| List of Loc.t * ast list
type hint =
{ on: string
; candidates: string list
}
exception Decoder of Loc.t * string * hint option
let of_sexp_error ?hint loc msg =
raise (Decoder (loc, msg, hint))
let of_sexp_errorf ?hint loc fmt =
Printf.ksprintf (fun msg -> of_sexp_error loc ?hint msg) fmt
let no_templates ?hint loc fmt =
Printf.ksprintf (fun msg ->
of_sexp_error loc ?hint ("No variables allowed " ^ msg)) fmt
module Name = struct
module T = struct
type t = string
let compare a b =
let alen = String.length a and blen = String.length b in
match Int.compare alen blen with
| Eq -> String.compare a b
| ne -> ne
end
include T
module Map = Map.Make(T)
end
module Fields = struct
module Unparsed = struct
type t =
{ values : Ast.t list
; entry : Ast.t
; prev : t option
}
end
type t =
{ unparsed : Unparsed.t Name.Map.t
; known : string list
}
let consume name state =
{ unparsed = Name.Map.remove state.unparsed name
; known = name :: state.known
}
let add_known name state =
{ state with known = name :: state.known }
let unparsed_ast { unparsed ; _ } =
let rec loop acc = function
| [] -> acc
| x :: xs ->
begin match x.Unparsed.prev with
| None -> loop (x.entry :: acc) xs
| Some p -> loop (x.entry :: acc) (p :: xs)
end
in
loop [] (Name.Map.values unparsed)
|> List.sort ~compare:(fun a b ->
Int.compare (Ast.loc a).start.pos_cnum (Ast.loc b).start.pos_cnum)
end
type fields = Fields.t
type values = Ast.t list
type 'kind context =
| Values : Loc.t * string option * Univ_map.t -> values context
| Fields : Loc.t * string option * Univ_map.t -> Fields.t context
type ('a, 'kind) parser = 'kind context -> 'kind -> 'a * 'kind
type 'a t = ('a, values) parser
type 'a fields_parser = ('a, Fields.t) parser
let return x _ctx state = (x, state)
let (>>=) t f ctx state =
let x, state = t ctx state in
f x ctx state
let (>>|) t f ctx state =
let x, state = t ctx state in
(f x, state)
let (>>>) a b ctx state =
let (), state = a ctx state in
b ctx state
let map t ~f = t >>| f
let try_ t f ctx state =
try
t ctx state
with exn ->
f exn ctx state
let get_user_context : type k. k context -> Univ_map.t = function
| Values (_, _, uc) -> uc
| Fields (_, _, uc) -> uc
let get key ctx state = (Univ_map.find (get_user_context ctx) key, state)
let get_all ctx state = (get_user_context ctx, state)
let set : type a b k. a Univ_map.Key.t -> a -> (b, k) parser -> (b, k) parser
= fun key v t ctx state ->
match ctx with
| Values (loc, cstr, uc) ->
t (Values (loc, cstr, Univ_map.add uc key v)) state
| Fields (loc, cstr, uc) ->
t (Fields (loc, cstr, Univ_map.add uc key v)) state
let set_many : type a k. Univ_map.t -> (a, k) parser -> (a, k) parser
= fun map t ctx state ->
match ctx with
| Values (loc, cstr, uc) ->
t (Values (loc, cstr, Univ_map.superpose uc map)) state
| Fields (loc, cstr, uc) ->
t (Fields (loc, cstr, Univ_map.superpose uc map)) state
let loc : type k. k context -> k -> Loc.t * k = fun ctx state ->
match ctx with
| Values (loc, _, _) -> (loc, state)
| Fields (loc, _, _) -> (loc, state)
let at_eos : type k. k context -> k -> bool = fun ctx state ->
match ctx with
| Values _ -> state = []
| Fields _ -> Name.Map.is_empty state.unparsed
let eos ctx state = (at_eos ctx state, state)
let if_eos ~then_ ~else_ ctx state =
if at_eos ctx state then
then_ ctx state
else
else_ ctx state
let repeat : 'a t -> 'a list t =
let rec loop t acc ctx l =
match l with
| [] -> (List.rev acc, [])
| _ ->
let x, l = t ctx l in
loop t (x :: acc) ctx l
in
fun t ctx state -> loop t [] ctx state
let result : type a k. k context -> a * k -> a =
fun ctx (v, state) ->
match ctx with
| Values (_, cstr, _) -> begin
match state with
| [] -> v
| sexp :: _ ->
match cstr with
| None ->
of_sexp_errorf (Ast.loc sexp) "This value is unused"
| Some s ->
of_sexp_errorf (Ast.loc sexp) "Too many argument for %s" s
end
| Fields _ -> begin
match Name.Map.choose state.unparsed with
| None -> v
| Some (name, { entry; _ }) ->
let name_loc =
match entry with
| List (_, s :: _) -> Ast.loc s
| _ -> assert false
in
of_sexp_errorf ~hint:{ on = name; candidates = state.known }
name_loc "Unknown field %s" name
end
let parse t context sexp =
let ctx = Values (Ast.loc sexp, None, context) in
result ctx (t ctx [sexp])
let capture ctx state =
let f t =
result ctx (t ctx state)
in
(f, [])
let end_of_list (Values (loc, cstr, _)) =
match cstr with
| None ->
let loc = { loc with start = loc.stop } in
of_sexp_errorf loc "Premature end of list"
| Some s ->
of_sexp_errorf loc "Not enough arguments for %s" s
[@@inline never]
let next f ctx sexps =
match sexps with
| [] -> end_of_list ctx
| sexp :: sexps -> (f sexp, sexps)
[@@inline always]
let next_with_user_context f ctx sexps =
match sexps with
| [] -> end_of_list ctx
| sexp :: sexps -> (f (get_user_context ctx) sexp, sexps)
[@@inline always]
let peek _ctx sexps =
match sexps with
| [] -> (None, sexps)
| sexp :: _ -> (Some sexp, sexps)
[@@inline always]
let peek_exn ctx sexps =
match sexps with
| [] -> end_of_list ctx
| sexp :: _ -> (sexp, sexps)
[@@inline always]
let junk = next ignore
let junk_everything : type k. (unit, k) parser = fun ctx state ->
match ctx with
| Values _ -> ((), [])
| Fields _ -> ((), { state with unparsed = Name.Map.empty })
let keyword kwd =
next (function
| Atom (_, s) when Atom.to_string s = kwd -> ()
| sexp -> of_sexp_errorf (Ast.loc sexp) "'%s' expected" kwd)
let match_keyword l ~fallback =
peek >>= function
| Some (Atom (_, A s)) -> begin
match List.assoc l s with
| Some t -> junk >>> t
| None -> fallback
end
| _ -> fallback
let until_keyword kwd ~before ~after =
let rec loop acc =
peek >>= function
| None -> return (List.rev acc, None)
| Some (Atom (_, A s)) when s = kwd ->
junk >>> after >>= fun x ->
return (List.rev acc, Some x)
| _ ->
before >>= fun x ->
loop (x :: acc)
in
loop []
let plain_string f =
next (function
| Atom (loc, A s) | Quoted_string (loc, s) -> f ~loc s
| Template { loc ; _ } | List (loc, _) ->
of_sexp_error loc "Atom or quoted string expected")
let enter t =
next_with_user_context (fun uc sexp ->
match sexp with
| List (loc, l) ->
let ctx = Values (loc, None, uc) in
result ctx (t ctx l)
| sexp ->
of_sexp_error (Ast.loc sexp) "List expected")
let if_list ~then_ ~else_ =
peek_exn >>= function
| List _ -> then_
| _ -> else_
let if_paren_colon_form ~then_ ~else_ =
peek_exn >>= function
| List (_, Atom (loc, A s) :: _) when String.is_prefix s ~prefix:":" ->
let name = String.drop s 1 in
enter
(junk >>= fun () ->
then_ >>| fun f ->
f (loc, name))
| _ ->
else_
let fix f =
let rec p = lazy (f r)
and r ast = (Lazy.force p) ast in
r
let loc_between_states : type k. k context -> k -> k -> Loc.t
= fun ctx state1 state2 ->
match ctx with
| Values _ -> begin
match state1 with
| sexp :: rest when rest == state2 ->
Ast.loc sexp
| [] ->
let (Values (loc, _, _)) = ctx in
{ loc with start = loc.stop }
| sexp :: rest ->
let loc = Ast.loc sexp in
let rec search last l =
if l == state2 then
{ loc with stop = (Ast.loc last).stop }
else
match l with
| [] ->
let (Values (loc, _, _)) = ctx in
{ (Ast.loc sexp) with stop = loc.stop }
| sexp :: rest ->
search sexp rest
in
search sexp rest
end
| Fields _ ->
let parsed =
Name.Map.merge state1.unparsed state2.unparsed
~f:(fun _key before after ->
match before, after with
| Some _, None -> before
| _ -> None)
in
match
Name.Map.values parsed
|> List.map ~f:(fun f -> Ast.loc f.Fields.Unparsed.entry)
|> List.sort ~compare:(fun a b ->
Int.compare a.Loc.start.pos_cnum b.start.pos_cnum)
with
| [] ->
let (Fields (loc, _, _)) = ctx in
loc
| first :: l ->
let last = List.fold_left l ~init:first ~f:(fun _ x -> x) in
{ first with stop = last.stop }
let located t ctx state1 =
let x, state2 = t ctx state1 in
((loc_between_states ctx state1 state2, x), state2)
let raw = next Fn.id
let unit =
next
(function
| List (_, []) -> ()
| sexp -> of_sexp_error (Ast.loc sexp) "() expected")
let basic desc f =
next (function
| Template { loc; _ } | List (loc, _) | Quoted_string (loc, _) ->
of_sexp_errorf loc "%s expected" desc
| Atom (loc, s) ->
match f (Atom.to_string s) with
| Result.Error () ->
of_sexp_errorf loc "%s expected" desc
| Ok x -> x)
let string = plain_string (fun ~loc:_ x -> x)
let char = plain_string (fun ~loc x ->
if String.length x = 1 then
x.[0]
else
of_sexp_errorf loc "character expected")
let int =
basic "Integer" (fun s ->
match int_of_string s with
| x -> Ok x
| exception _ -> Result.Error ())
let float =
basic "Float" (fun s ->
match float_of_string s with
| x -> Ok x
| exception _ -> Result.Error ())
let pair a b =
enter
(a >>= fun a ->
b >>= fun b ->
return (a, b))
let triple a b c =
enter
(a >>= fun a ->
b >>= fun b ->
c >>= fun c ->
return (a, b, c))
let list t = enter (repeat t)
let array t = list t >>| Array.of_list
let option t =
enter
(eos >>= function
| true -> return None
| false -> t >>| Option.some)
let find_cstr cstrs loc name ctx values =
match List.assoc cstrs name with
| Some t ->
result ctx (t ctx values)
| None ->
of_sexp_errorf loc
~hint:{ on = name
; candidates = List.map cstrs ~f:fst
}
"Unknown constructor %s" name
let sum cstrs =
next_with_user_context (fun uc sexp ->
match sexp with
| Atom (loc, A s) ->
find_cstr cstrs loc s (Values (loc, Some s, uc)) []
| Template { loc; _ }
| Quoted_string (loc, _) ->
of_sexp_error loc "Atom expected"
| List (loc, []) ->
of_sexp_error loc "Non-empty list expected"
| List (loc, name :: args) ->
match name with
| Quoted_string (loc, _) | List (loc, _) | Template { loc; _ } ->
of_sexp_error loc "Atom expected"
| Atom (s_loc, A s) ->
find_cstr cstrs s_loc s (Values (loc, Some s, uc)) args)
let enum cstrs =
next (function
| Quoted_string (loc, _)
| Template { loc; _ }
| List (loc, _) -> of_sexp_error loc "Atom expected"
| Atom (loc, A s) ->
match List.assoc cstrs s with
| Some value -> value
| None ->
of_sexp_errorf loc
~hint:{ on = s
; candidates = List.map cstrs ~f:fst
}
"Unknown value %s" s)
let bool = enum [ ("true", true); ("false", false) ]
let map_validate t ~f ctx state1 =
let x, state2 = t ctx state1 in
match f x with
| Result.Ok x -> (x, state2)
| Error msg ->
let loc = loc_between_states ctx state1 state2 in
of_sexp_errorf loc "%s" msg
let field_missing loc name =
of_sexp_errorf loc "field %s missing" name
[@@inline never]
let field_present_too_many_times _ name entries =
match entries with
| _ :: second :: _ ->
of_sexp_errorf (Ast.loc second) "Field %S is present too many times"
name
| _ -> assert false
let multiple_occurrences ?(on_dup=field_present_too_many_times) uc name last =
let rec collect acc (x : Fields.Unparsed.t) =
let acc = x.entry :: acc in
match x.prev with
| None -> acc
| Some prev -> collect acc prev
in
on_dup uc name (collect [] last)
[@@inline never]
let find_single ?on_dup uc (state : Fields.t) name =
let res = Name.Map.find state.unparsed name in
(match res with
| Some ({ prev = Some _; _ } as last) ->
multiple_occurrences uc name last ?on_dup
| _ -> ());
res
let field name ?default ?on_dup t (Fields (loc, _, uc)) state =
match find_single uc state name ?on_dup with
| Some { values; entry; _ } ->
let ctx = Values (Ast.loc entry, Some name, uc) in
let x = result ctx (t ctx values) in
(x, Fields.consume name state)
| None ->
match default with
| Some v -> (v, Fields.add_known name state)
| None -> field_missing loc name
let field_o name ?on_dup t (Fields (_, _, uc)) state =
match find_single uc state name ?on_dup with
| Some { values; entry; _ } ->
let ctx = Values (Ast.loc entry, Some name, uc) in
let x = result ctx (t ctx values) in
(Some x, Fields.consume name state)
| None ->
(None, Fields.add_known name state)
let field_b_gen field_gen ?check ?on_dup name =
field_gen name ?on_dup
(Option.value check ~default:(return ()) >>= fun () ->
eos >>= function
| true -> return true
| _ -> bool)
let field_b = field_b_gen (field ~default:false)
let field_o_b = field_b_gen field_o
let multi_field name t (Fields (_, _, uc)) (state : Fields.t) =
let rec loop acc (field : Fields.Unparsed.t option) =
match field with
| None -> acc
| Some { values; prev; entry } ->
let ctx = Values (Ast.loc entry, Some name, uc) in
let x = result ctx (t ctx values) in
loop (x :: acc) prev
in
let res = loop [] (Name.Map.find state.unparsed name) in
(res, Fields.consume name state)
let fields t (Values (loc, cstr, uc)) sexps =
let unparsed =
List.fold_left sexps ~init:Name.Map.empty ~f:(fun acc sexp ->
match sexp with
| List (_, name_sexp :: values) -> begin
match name_sexp with
| Atom (_, A name) ->
Name.Map.add acc name
{ Fields.Unparsed.
values
; entry = sexp
; prev = Name.Map.find acc name
}
| List (loc, _) | Quoted_string (loc, _) | Template { loc; _ } ->
of_sexp_error loc "Atom expected"
end
| _ ->
of_sexp_error (Ast.loc sexp)
"S-expression of the form (<name> <values>...) expected")
in
let ctx = Fields (loc, cstr, uc) in
let x = result ctx (t ctx { Fields. unparsed; known = [] }) in
(x, [])
let leftover_fields (Fields (_, _, _)) state =
( Fields.unparsed_ast state
, { Fields.
known = state.known @ Name.Map.keys state.unparsed
; unparsed = Name.Map.empty
}
)
let record t = enter (fields t)
type kind =
| Values of Loc.t * string option
| Fields of Loc.t * string option
let kind : type k. k context -> k -> kind * k
= fun ctx state ->
match ctx with
| Values (loc, cstr, _) -> (Values (loc, cstr), state)
| Fields (loc, cstr, _) -> (Fields (loc, cstr), state)
let ( let* ) = ( >>= )
let ( let+ ) = ( >>| )
let ( and+ ) a b ctx state =
let a, state = a ctx state in
let b, state = b ctx state in
((a, b), state)
end
module type Conv = sig
type t
val decode : t Decoder.t
val encode : t Encoder.t
end
let rec to_sexp = function
| Atom (A a) -> Sexp.Atom a
| List s -> List (List.map s ~f:to_sexp)
| Quoted_string s -> Sexp.Atom s
| Template t ->
List
[ Atom "template"
; Atom (Template.to_string ~syntax:Dune t)
]
module Io = struct
let load ?lexer path ~mode =
Io.with_lexbuf_from_file path ~f:(Parser.parse ~mode ?lexer)
end