package dose3

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file strongconflicts_int.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
(**************************************************************************************)
(*  Copyright (C) 2009 Pietro Abate <pietro.abate@pps.jussieu.fr>                     *)
(*  Copyright (C) 2009 Mancoosi Project                                               *)
(*                                                                                    *)
(*  This library is free software: you can redistribute it and/or modify              *)
(*  it under the terms of the GNU Lesser General Public License as                    *)
(*  published by the Free Software Foundation, either version 3 of the                *)
(*  License, or (at your option) any later version.  A special linking                *)
(*  exception to the GNU Lesser General Public License applies to this                *)
(*  library, see the COPYING file for more information.                               *)
(**************************************************************************************)

(** Strong Conflicts *)

open ExtLib
open Dose_common

include Util.Logging (struct
  let label = "dose_algo.strongconflicts_int"
end)

module SG = Defaultgraphs.IntPkgGraph.G
module PkgV = Defaultgraphs.IntPkgGraph.PkgV

type cfl_type = Explicit | Conjunctive | Other of Diagnostic.reason_int list

module CflE = struct
  type t = int * int * cfl_type

  let compare = Stdlib.compare

  let default = (0, 0, Other [])
end

(* unlabelled indirected graph, for the cache *)
module IG = Graph.Imperative.Matrix.Graph
module CG = Graph.Imperative.Graph.ConcreteLabeled (PkgV) (CflE)

(** progress bar *)
let seedingbar = Util.Progress.create "Strongconflicts_int.seeding"

let localbar = Util.Progress.create "Strongconflicts_int.local"

(** timer *)
let sctimer = Util.Timer.create "Strongconflicts_int.main"

(* open Depsolver_int *)

module S = Set.Make (struct
  type t = int

  let compare = Stdlib.compare
end)

let swap (p, q) = (min p q, max p q)

let to_set l = List.fold_right S.add l S.empty

let explicit univ =
  let conflict_pairs = Hashtbl.create 1023 in
  Cudf.iteri_packages
    (fun i p ->
      List.iter
        (fun j ->
          let pair = swap (i, j) in
          if i <> j && not (Hashtbl.mem conflict_pairs pair) then
            Hashtbl.add conflict_pairs pair ())
        (CudfAdd.resolve_vpkgs_int univ p.Cudf.conflicts))
    univ ;
  conflict_pairs

let triangle reverse xpred ypred common =
  if not (S.is_empty common) then
    let xrest = S.diff xpred ypred in
    let yrest = S.diff ypred xpred in
    let pred_pred =
      S.fold (fun z acc -> S.union (to_set reverse.(z)) acc) common S.empty
    in
    S.subset xrest pred_pred && S.subset yrest pred_pred
  else false

(* [strongconflicts mdf] return the list of strong conflicts *)
let strongconflicts univ =
  let solver = Depsolver_int.init_solver_univ ~global_constraints:[] univ in
  let reverse = Depsolver_int.reverse_dependencies univ in
  let size = Cudf.universe_size univ in
  let cache = IG.make size in
  Util.Timer.start sctimer ;
  debug "Pre-seeding ..." ;
  Util.Progress.set_total seedingbar size ;
  let cg = SG.create ~size () in
  for i = 0 to size - 1 do
    Util.Progress.progress seedingbar ;
    Defaultgraphs.IntPkgGraph.conjdepgraph_int cg univ i ;
    IG.add_vertex cache i
  done ;
  (* we already add the transitive closure on the fly *)
  (* let cg = Strongdeps_int.SO.O.add_transitive_closure cg in *)
  debug
    "dependency graph : nodes %d , edges %d"
    (SG.nb_vertex cg)
    (SG.nb_edges cg) ;
  (* add all edges to the cache *)
  SG.iter_edges (IG.add_edge cache) cg ;
  debug " done" ;
  let i = ref 0 in
  let total = ref 0 in
  let ex = explicit univ in
  let conflict_size = Hashtbl.length ex in
  let try_add_edge stronglist p q x y =
    if not (IG.mem_edge cache p q) then (
      IG.add_edge cache p q ;
      match Depsolver_int.solve solver ~explain:true [p; q] with
      | Diagnostic.SuccessInt _ -> ()
      | Diagnostic.FailureInt f ->
          CG.add_edge_e stronglist (p, (x, y, Other (f ())), q))
  in
  let strongraph = CG.create () in
  Util.Progress.set_total localbar conflict_size ;
  (* The simplest algorithm. We iterate over all explicit conflicts,
   * filtering out all couples that cannot possiby be in conflict
   * because either of strong dependencies or because already considered.
   * Then we iter over the reverse dependency closures of the selected
   * conflict and we check all pairs that have not been considered before.
   * *)
  Hashtbl.iter
    (fun (x, y) _ ->
      incr i ;
      Util.Progress.progress localbar ;
      if not (IG.mem_edge cache x y) then (
        let donei = ref 0 in
        let pkg_x = CudfAdd.inttopkg univ x in
        let pkg_y = CudfAdd.inttopkg univ y in
        let (a, b) =
          ( to_set (Depsolver_int.reverse_dependency_closure reverse [x]),
            to_set (Depsolver_int.reverse_dependency_closure reverse [y]) )
        in
        IG.add_edge cache x y ;
        CG.add_edge_e strongraph (x, (x, y, Explicit), y) ;
        debug
          "(%d of %d) %s # %s ; Strong conflicts %d Tuples %d"
          !i
          conflict_size
          pkg_x.Cudf.package
          pkg_y.Cudf.package
          (CG.nb_edges strongraph)
          (S.cardinal a * S.cardinal b) ;
        List.iter
          (fun p ->
            List.iter
              (fun q ->
                if p <> q && not (IG.mem_edge cache p q) then (
                  IG.add_edge cache p q ;
                  CG.add_edge_e strongraph (p, (x, y, Conjunctive), q)))
              (y :: SG.pred cg y))
          (x :: SG.pred cg x) ;
        (* unless :
         * 1- x and y are in triangle, that is: there is ONE reverse dependency
         * of both x and y that has a disjunction "x | y". *)
        let xpred = to_set reverse.(x) in
        let ypred = to_set reverse.(y) in
        let common = S.inter xpred ypred in
        if
          S.cardinal xpred = 1
          && S.cardinal ypred = 1
          && S.choose xpred = S.choose ypred
        then (
          let p = S.choose xpred in
          debug
            "triangle %s - %s (%s)"
            (CudfAdd.string_of_package pkg_x)
            (CudfAdd.string_of_package pkg_y)
            (CudfAdd.string_of_package (CudfAdd.inttopkg univ p)) ;
          try_add_edge strongraph p x x y ;
          incr donei ;
          try_add_edge strongraph p y x y ;
          incr donei)
        else if triangle reverse xpred ypred common then
          debug
            "debconf triangle %s - %s"
            (CudfAdd.string_of_package pkg_x)
            (CudfAdd.string_of_package pkg_y)
        else
          S.iter
            (fun p ->
              S.iter
                (fun q ->
                  try_add_edge strongraph p q x y ;
                  incr donei ;
                  if !donei mod 10000 = 0 then debug "%d" !donei)
                (S.diff b (to_set (IG.succ cache p))))
            a ;
        debug "\n | tuple examined %d" !donei ;
        total := !total + !donei))
    ex ;
  Util.Progress.reset localbar ;
  debug " total tuple examined %d" !total ;
  ignore (Util.Timer.stop sctimer ()) ;
  strongraph
OCaml

Innovation. Community. Security.