package dmap

  1. Overview
  2. Docs

Source file dmap.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
(**************************************************************************)
(*                                                                        *)
(*   Authors:                                                             *)
(*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           *)
(*   Benoît Montagu, projet Celtique, INRIA Rennes Bretagne Atlantique    *)
(*                                                                        *)
(*   Copyright 1996 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

type (_, _) cmp = Lt : (_, _) cmp | Eq : ('a, 'a) cmp | Gt : (_, _) cmp

module type DORDERED = sig
  type _ t

  val compare : 'a t -> 'b t -> ('a, 'b) cmp
end

module type S_WITH_VALUE = sig
  type 'a key
  type 'a value
  type t

  val empty : t
  val is_empty : t -> bool
  val mem : 'a key -> t -> bool
  val add : 'a key -> 'a value -> t -> t
  val update : 'a key -> ('a value option -> 'a value option) -> t -> t
  val singleton : 'a key -> 'a value -> t
  val remove : 'a key -> t -> t

  type poly_merge = {
    merge_fun :
      'a. 'a key -> 'a value option -> 'a value option -> 'a value option;
  }
  [@@unboxed]

  val merge : poly_merge -> t -> t -> t

  type poly_union = {
    union_fun : 'a. 'a key -> 'a value -> 'a value -> 'a value option;
  }
  [@@unboxed]

  val union : poly_union -> t -> t -> t

  type 'b poly1 = { fun1 : 'a. 'a key -> 'a value -> 'b } [@@unboxed]

  type 'b poly2 = { fun2 : 'a. 'a key -> 'a value -> 'a value -> 'b }
  [@@unboxed]

  val compare : int poly2 -> t -> t -> int
  val equal : bool poly2 -> t -> t -> bool
  val iter : unit poly1 -> t -> unit
  val fold : ('b -> 'b) poly1 -> t -> 'b -> 'b
  val for_all : bool poly1 -> t -> bool
  val exists : bool poly1 -> t -> bool
  val filter : bool poly1 -> t -> t

  type poly_filter_map = {
    filter_map_fun : 'a. 'a key -> 'a value -> 'a value option;
  }
  [@@unboxed]

  val filter_map : poly_filter_map -> t -> t
  val partition : bool poly1 -> t -> t * t
  val cardinal : t -> int

  type binding = Binding : 'a key * 'a value -> binding

  val bindings : t -> binding list
  val min_binding : t -> binding
  val min_binding_opt : t -> binding option
  val max_binding : t -> binding
  val max_binding_opt : t -> binding option
  val choose : t -> binding
  val choose_opt : t -> binding option
  val split : 'a key -> t -> t * 'a value option * t
  val find : 'a key -> t -> 'a value
  val find_opt : 'a key -> t -> 'a value option

  type 'b poly0 = { fun0 : 'a. 'a key -> 'b } [@@unboxed]

  val find_first : bool poly0 -> t -> binding
  val find_first_opt : bool poly0 -> t -> binding option
  val find_last : bool poly0 -> t -> binding
  val find_last_opt : bool poly0 -> t -> binding option

  type poly_mapi = { mapi_fun : 'a. 'a key -> 'a value -> 'a value } [@@unboxed]

  val mapi : poly_mapi -> t -> t
  val to_seq : t -> binding Seq.t
  val to_rev_seq : t -> binding Seq.t
  val to_seq_from : 'a key -> t -> binding Seq.t
  val add_seq : binding Seq.t -> t -> t
  val of_seq : binding Seq.t -> t
end

module type S = S_WITH_VALUE with type 'a value := 'a

module type TYPE1 = sig
  type 'a t
end

module MakeWithValue (Ord : DORDERED) (Val : TYPE1) = struct
  type 'a key = 'a Ord.t
  type 'a value = 'a Val.t

  type t =
    | Empty
    | Node : { l : t; v : 'a key; d : 'a value; r : t; h : int } -> t

  let height = function Empty -> 0 | Node { h; _ } -> h

  let create l x d r =
    let hl = height l and hr = height r in
    Node { l; v = x; d; r; h = (if hl >= hr then hl + 1 else hr + 1) }

  let singleton x d = Node { l = Empty; v = x; d; r = Empty; h = 1 }

  let bal l x d r =
    let hl = match l with Empty -> 0 | Node { h; _ } -> h in
    let hr = match r with Empty -> 0 | Node { h; _ } -> h in
    if hl > hr + 2 then
      match l with
      | Empty -> invalid_arg "Dmap.bal"
      | Node { l = ll; v = lv; d = ld; r = lr; h = _ } -> (
          if height ll >= height lr then create ll lv ld (create lr x d r)
          else
            match lr with
            | Empty -> invalid_arg "Dmap.bal"
            | Node { l = lrl; v = lrv; d = lrd; r = lrr; h = _ } ->
                create (create ll lv ld lrl) lrv lrd (create lrr x d r))
    else if hr > hl + 2 then
      match r with
      | Empty -> invalid_arg "Dmap.bal"
      | Node { l = rl; v = rv; d = rd; r = rr; h = _ } -> (
          if height rr >= height rl then create (create l x d rl) rv rd rr
          else
            match rl with
            | Empty -> invalid_arg "Dmap.bal"
            | Node { l = rll; v = rlv; d = rld; r = rlr; h = _ } ->
                create (create l x d rll) rlv rld (create rlr rv rd rr))
    else Node { l; v = x; d; r; h = (if hl >= hr then hl + 1 else hr + 1) }

  let empty = Empty
  let is_empty = function Empty -> true | _ -> false

  let rec add : type a. a key -> a value -> t -> t =
   fun x data -> function
    | Empty -> Node { l = Empty; v = x; d = data; r = Empty; h = 1 }
    | Node { l; v; d; r; h } as m -> (
        match Ord.compare x v with
        | Eq -> if d == data then m else Node { l; v = x; d = data; r; h }
        | Lt ->
            let ll = add x data l in
            if l == ll then m else bal ll v d r
        | Gt ->
            let rr = add x data r in
            if r == rr then m else bal l v d rr)

  type binding = Binding : 'a key * 'a value -> binding

  let rec find : type a. a key -> t -> a value =
   fun x -> function
    | Empty -> raise Not_found
    | Node { l; v; d; r; h = _ } -> (
        match Ord.compare x v with Eq -> d | Lt -> find x l | Gt -> find x r)

  type 'b poly0 = { fun0 : 'a. 'a key -> 'b } [@@unboxed]
  type 'b poly1 = { fun1 : 'a. 'a key -> 'a value -> 'b } [@@unboxed]

  type 'b poly2 = { fun2 : 'a. 'a key -> 'a value -> 'a value -> 'b }
  [@@unboxed]

  let rec find_first_aux :
      type a. a key -> a value -> bool poly0 -> t -> binding =
   fun v0 d0 f -> function
    | Empty -> Binding (v0, d0)
    | Node { l; v; d; r; h = _ } ->
        if f.fun0 v then find_first_aux v d f l else find_first_aux v0 d0 f r

  let rec find_first f = function
    | Empty -> raise Not_found
    | Node { l; v; d; r; h = _ } ->
        if f.fun0 v then find_first_aux v d f l else find_first f r

  let rec find_first_opt_aux :
      type a. a key -> a value -> bool poly0 -> t -> binding option =
   fun v0 d0 f -> function
    | Empty -> Some (Binding (v0, d0))
    | Node { l; v; d; r; h = _ } ->
        if f.fun0 v then find_first_opt_aux v d f l
        else find_first_opt_aux v0 d0 f r

  let rec find_first_opt f = function
    | Empty -> None
    | Node { l; v; d; r; h = _ } ->
        if f.fun0 v then find_first_opt_aux v d f l else find_first_opt f r

  let rec find_last_aux : type a. a key -> a value -> bool poly0 -> t -> binding
      =
   fun v0 d0 f -> function
    | Empty -> Binding (v0, d0)
    | Node { l; v; d; r; h = _ } ->
        if f.fun0 v then find_last_aux v d f r else find_last_aux v0 d0 f l

  let rec find_last f = function
    | Empty -> raise Not_found
    | Node { l; v; d; r; h = _ } ->
        if f.fun0 v then find_last_aux v d f r else find_last f l

  let rec find_last_opt_aux :
      type a. a key -> a value -> bool poly0 -> t -> binding option =
   fun v0 d0 f -> function
    | Empty -> Some (Binding (v0, d0))
    | Node { l; v; d; r; h = _ } ->
        if f.fun0 v then find_last_opt_aux v d f r
        else find_last_opt_aux v0 d0 f l

  let rec find_last_opt f = function
    | Empty -> None
    | Node { l; v; d; r; h = _ } ->
        if f.fun0 v then find_last_opt_aux v d f r else find_last_opt f l

  let rec find_opt : type a. a key -> t -> a value option =
   fun x -> function
    | Empty -> None
    | Node { l; v; d; r; h = _ } -> (
        match Ord.compare x v with
        | Eq -> Some d
        | Lt -> find_opt x l
        | Gt -> find_opt x r)

  let rec mem : type a. a key -> t -> bool =
   fun x -> function
    | Empty -> false
    | Node { l; v; r; d = _; h = _ } -> (
        match Ord.compare x v with Eq -> true | Lt -> mem x l | Gt -> mem x r)

  let rec min_binding = function
    | Empty -> raise Not_found
    | Node { l = Empty; v; d; r = _; h = _ } -> Binding (v, d)
    | Node { l; v = _; d = _; r = _; h = _ } -> min_binding l

  let rec min_binding_opt = function
    | Empty -> None
    | Node { l = Empty; v; d; r = _; h = _ } -> Some (Binding (v, d))
    | Node { l; v = _; d = _; r = _; h = _ } -> min_binding_opt l

  let rec max_binding = function
    | Empty -> raise Not_found
    | Node { v; d; r = Empty; l = _; h = _ } -> Binding (v, d)
    | Node { r; v = _; d = _; l = _; h = _ } -> max_binding r

  let rec max_binding_opt = function
    | Empty -> None
    | Node { v; d; r = Empty; l = _; h = _ } -> Some (Binding (v, d))
    | Node { r; v = _; d = _; l = _; h = _ } -> max_binding_opt r

  let rec remove_min_binding = function
    | Empty -> invalid_arg "Map.remove_min_elt"
    | Node { l = Empty; r; v = _; d = _; h = _ } -> r
    | Node { l; v; d; r; h = _ } -> bal (remove_min_binding l) v d r

  let merge t1 t2 =
    match (t1, t2) with
    | Empty, t -> t
    | t, Empty -> t
    | _, _ ->
        let (Binding (x, d)) = min_binding t2 in
        bal t1 x d (remove_min_binding t2)

  let rec remove : type a. a key -> t -> t =
   fun x -> function
    | Empty -> Empty
    | Node { l; v; d; r; h = _ } as m -> (
        match Ord.compare x v with
        | Eq -> merge l r
        | Lt ->
            let ll = remove x l in
            if l == ll then m else bal ll v d r
        | Gt ->
            let rr = remove x r in
            if r == rr then m else bal l v d rr)

  let rec update : type a. a key -> (a value option -> a value option) -> t -> t
      =
   fun x f -> function
    | Empty -> (
        match f None with
        | None -> Empty
        | Some data -> Node { l = Empty; v = x; d = data; r = Empty; h = 1 })
    | Node { l; v; d; r; h } as m -> (
        match Ord.compare x v with
        | Eq -> (
            match f (Some d) with
            | None -> merge l r
            | Some data ->
                if d == data then m else Node { l; v = x; d = data; r; h })
        | Lt ->
            let ll = update x f l in
            if l == ll then m else bal ll v d r
        | Gt ->
            let rr = update x f r in
            if r == rr then m else bal l v d rr)

  let rec iter f = function
    | Empty -> ()
    | Node { l; v; d; r; h = _ } ->
        iter f l;
        f.fun1 v d;
        iter f r

  type poly_mapi = { mapi_fun : 'a. 'a key -> 'a value -> 'a value } [@@unboxed]

  let rec mapi f = function
    | Empty -> Empty
    | Node { l; v; d; r; h } ->
        let l' = mapi f l in
        let d' = f.mapi_fun v d in
        let r' = mapi f r in
        Node { l = l'; v; d = d'; r = r'; h }

  let rec fold f m accu =
    match m with
    | Empty -> accu
    | Node { l; v; d; r; h = _ } -> fold f r (f.fun1 v d (fold f l accu))

  let rec for_all p = function
    | Empty -> true
    | Node { l; v; d; r; h = _ } -> p.fun1 v d && for_all p l && for_all p r

  let rec exists p = function
    | Empty -> false
    | Node { l; v; d; r; h = _ } -> p.fun1 v d || exists p l || exists p r

  (* Beware: those two functions assume that the added k is *strictly*
     smaller (or bigger) than all the present keys in the tree; it
     does not test for equality with the current min (or max) key.

     Indeed, they are only used during the "join" operation which
     respects this precondition.
  *)

  let rec add_min_binding k x = function
    | Empty -> singleton k x
    | Node { l; v; d; r; h = _ } -> bal (add_min_binding k x l) v d r

  let rec add_max_binding k x = function
    | Empty -> singleton k x
    | Node { l; v; d; r; h = _ } -> bal l v d (add_max_binding k x r)

  (* Same as create and bal, but no assumptions are made on the
     relative heights of l and r. *)

  let rec join l v d r =
    match (l, r) with
    | Empty, _ -> add_min_binding v d r
    | _, Empty -> add_max_binding v d l
    | ( Node { l = ll; v = lv; d = ld; r = lr; h = lh },
        Node { l = rl; v = rv; d = rd; r = rr; h = rh } ) ->
        if lh > rh + 2 then bal ll lv ld (join lr v d r)
        else if rh > lh + 2 then bal (join l v d rl) rv rd rr
        else create l v d r

  (* Merge two trees l and r into one.
     All elements of l must precede the elements of r.
     No assumption on the heights of l and r. *)

  let concat t1 t2 =
    match (t1, t2) with
    | Empty, t -> t
    | t, Empty -> t
    | _, _ ->
        let (Binding (x, d)) = min_binding t2 in
        join t1 x d (remove_min_binding t2)

  let concat_or_join t1 v d t2 =
    match d with Some d -> join t1 v d t2 | None -> concat t1 t2

  let rec split : type a. a key -> t -> t * a value option * t =
   fun x -> function
    | Empty -> (Empty, None, Empty)
    | Node { l; v; d; r; h = _ } -> (
        match Ord.compare x v with
        | Eq -> (l, Some d, r)
        | Lt ->
            let ll, pres, rl = split x l in
            (ll, pres, join rl v d r)
        | Gt ->
            let lr, pres, rr = split x r in
            (join l v d lr, pres, rr))

  type poly_merge = {
    merge_fun :
      'a. 'a key -> 'a value option -> 'a value option -> 'a value option;
  }
  [@@unboxed]

  let rec merge f s1 s2 =
    match (s1, s2) with
    | Empty, Empty -> Empty
    | Node { l = l1; v = v1; d = d1; r = r1; h = h1 }, _ when h1 >= height s2 ->
        let l2, d2, r2 = split v1 s2 in
        concat_or_join (merge f l1 l2) v1
          (f.merge_fun v1 (Some d1) d2)
          (merge f r1 r2)
    | _, Node { l = l2; v = v2; d = d2; r = r2; h = _ } ->
        let l1, d1, r1 = split v2 s1 in
        concat_or_join (merge f l1 l2) v2
          (f.merge_fun v2 d1 (Some d2))
          (merge f r1 r2)
    | _ -> assert false

  type poly_union = {
    union_fun : 'a. 'a key -> 'a value -> 'a value -> 'a value option;
  }
  [@@unboxed]

  let rec union f s1 s2 =
    match (s1, s2) with
    | Empty, s | s, Empty -> s
    | ( Node { l = l1; v = v1; d = d1; r = r1; h = h1 },
        Node { l = l2; v = v2; d = d2; r = r2; h = h2 } ) -> (
        if h1 >= h2 then
          let l2, d2, r2 = split v1 s2 in
          let l = union f l1 l2 and r = union f r1 r2 in
          match d2 with
          | None -> join l v1 d1 r
          | Some d2 -> concat_or_join l v1 (f.union_fun v1 d1 d2) r
        else
          let l1, d1, r1 = split v2 s1 in
          let l = union f l1 l2 and r = union f r1 r2 in
          match d1 with
          | None -> join l v2 d2 r
          | Some d1 -> concat_or_join l v2 (f.union_fun v2 d1 d2) r)

  let rec filter p = function
    | Empty -> Empty
    | Node { l; v; d; r; h = _ } as m ->
        (* call [p] in the expected left-to-right order *)
        let l' = filter p l in
        let pvd = p.fun1 v d in
        let r' = filter p r in
        if pvd then if l == l' && r == r' then m else join l' v d r'
        else concat l' r'

  type poly_filter_map = {
    filter_map_fun : 'a. 'a key -> 'a value -> 'a value option;
  }
  [@@unboxed]

  let rec filter_map f = function
    | Empty -> Empty
    | Node { l; v; d; r; h = _ } -> (
        (* call [f] in the expected left-to-right order *)
        let l' = filter_map f l in
        let fvd = f.filter_map_fun v d in
        let r' = filter_map f r in
        match fvd with Some d' -> join l' v d' r' | None -> concat l' r')

  let rec partition p = function
    | Empty -> (Empty, Empty)
    | Node { l; v; d; r; h = _ } ->
        (* call [p] in the expected left-to-right order *)
        let lt, lf = partition p l in
        let pvd = p.fun1 v d in
        let rt, rf = partition p r in
        if pvd then (join lt v d rt, concat lf rf)
        else (concat lt rt, join lf v d rf)

  type enumeration =
    | End
    | More : 'a key * 'a value * t * enumeration -> enumeration

  let rec cons_enum m e =
    match m with
    | Empty -> e
    | Node { l; v; d; r; h = _ } -> cons_enum l (More (v, d, r, e))

  let compare cmp m1 m2 =
    let rec compare_aux e1 e2 =
      match (e1, e2) with
      | End, End -> 0
      | End, _ -> -1
      | _, End -> 1
      | More (v1, d1, r1, e1), More (v2, d2, r2, e2) -> (
          match Ord.compare v1 v2 with
          | Lt -> -1
          | Gt -> 1
          | Eq ->
              let c = cmp.fun2 v1 d1 d2 in
              if c <> 0 then c
              else compare_aux (cons_enum r1 e1) (cons_enum r2 e2))
    in
    compare_aux (cons_enum m1 End) (cons_enum m2 End)

  let equal cmp m1 m2 =
    let rec equal_aux e1 e2 =
      match (e1, e2) with
      | End, End -> true
      | End, _ -> false
      | _, End -> false
      | More (v1, d1, r1, e1), More (v2, d2, r2, e2) -> (
          match Ord.compare v1 v2 with
          | Eq ->
              cmp.fun2 v1 d1 d2 && equal_aux (cons_enum r1 e1) (cons_enum r2 e2)
          | _ -> false)
    in
    equal_aux (cons_enum m1 End) (cons_enum m2 End)

  let rec cardinal = function
    | Empty -> 0
    | Node { l; r; v = _; d = _; h = _ } -> cardinal l + 1 + cardinal r

  let rec bindings_aux accu = function
    | Empty -> accu
    | Node { l; v; d; r; h = _ } ->
        bindings_aux (Binding (v, d) :: bindings_aux accu r) l

  let bindings s = bindings_aux [] s
  let choose = min_binding
  let choose_opt = min_binding_opt
  let add_seq i m = Seq.fold_left (fun m (Binding (k, v)) -> add k v m) m i
  let of_seq i = add_seq i empty

  let rec seq_of_enum_ c () =
    match c with
    | End -> Seq.Nil
    | More (k, v, t, rest) ->
        Seq.Cons (Binding (k, v), seq_of_enum_ (cons_enum t rest))

  let to_seq m = seq_of_enum_ (cons_enum m End)

  let rec snoc_enum s e =
    match s with
    | Empty -> e
    | Node { l; v; d; r; h = _ } -> snoc_enum r (More (v, d, l, e))

  let rec rev_seq_of_enum_ c () =
    match c with
    | End -> Seq.Nil
    | More (k, v, t, rest) ->
        Seq.Cons (Binding (k, v), rev_seq_of_enum_ (snoc_enum t rest))

  let to_rev_seq c = rev_seq_of_enum_ (snoc_enum c End)

  let to_seq_from low m =
    let rec aux : type a. a key -> t -> enumeration -> enumeration =
     fun low m c ->
      match m with
      | Empty -> c
      | Node { l; v; d; r; _ } -> (
          match Ord.compare v low with
          | Eq -> More (v, d, r, c)
          | Lt -> aux low r c
          | Gt -> aux low l (More (v, d, r, c)))
    in
    seq_of_enum_ (aux low m End)
end

module IdVal = struct
  type 'a t = 'a
end

module Make (Ord : DORDERED) : S with type 'a key = 'a Ord.t =
  MakeWithValue (Ord) (IdVal)

(** Functor that converts a [DORDERED] into an ordered type *)
module ToOrdered (X : DORDERED) : sig
  type t = Hide : 'a X.t -> t

  val compare : t -> t -> int
end = struct
  type t = Hide : 'a X.t -> t

  let compare (Hide x1) (Hide x2) =
    match X.compare x1 x2 with Lt -> -1 | Eq -> 0 | Gt -> 1
end

(** Functor that creates a non-dependendent map for keys of a [DORDERED] type *)
module MakeMap (X : DORDERED) :
  Map.S
    with type key = ToOrdered(X).t
     and type 'a t = 'a Map.Make(ToOrdered(X)).t = struct
  include Map.Make (ToOrdered (X))
end

(** Functor that creates a set of values of a [DORDERED] type *)
module MakeSet (X : DORDERED) : Set.S with type t = Set.Make(ToOrdered(X)).t =
struct
  include Set.Make (ToOrdered (X))
end

(** Functor that extends the indices of a [DORDERED] type, given some
   type-level function *)
module Extend
    (X : DORDERED) (F : sig
      type !'a t
    end) : sig
  type _ t = Extend : 'a X.t -> 'a F.t t

  val compare : 'a t -> 'b t -> ('a, 'b) cmp
end = struct
  type _ t = Extend : 'a X.t -> 'a F.t t

  let compare (type a b) (Extend x1 : a t) (Extend x2 : b t) : (a, b) cmp =
    match X.compare x1 x2 with Lt -> Lt | Eq -> Eq | Gt -> Gt
end

(** Functor that extends the indices of a [DORDERED] type by adding
   some data to its left-hand side *)
module ExtendL
    (X : DORDERED) (Y : sig
      type t
    end) : sig
  type _ t = Extend : 'a X.t -> (Y.t * 'a) t

  val compare : 'a t -> 'b t -> ('a, 'b) cmp
end =
  Extend
    (X)
    (struct
      type 'a t = Y.t * 'a
    end)

(** Functor that extends the indices of a [DORDERED] type by adding
   some data to its right-hand side *)
module ExtendR
    (X : DORDERED) (Y : sig
      type t
    end) : sig
  type _ t = Extend : 'a X.t -> ('a * Y.t) t

  val compare : 'a t -> 'b t -> ('a, 'b) cmp
end =
  Extend
    (X)
    (struct
      type 'a t = 'a * Y.t
    end)
OCaml

Innovation. Community. Security.