Source file decimal.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
module Signal = struct
type id = int
type nonrec array = bool array
let clamped = 0
let invalid_operation = 1
let conversion_syntax = 2
let div_by_zero = 3
let div_impossible = 4
let div_undefined = 5
let inexact = 6
let rounded = 7
let subnormal = 8
let overflow = 9
let underflow = 10
let make () = Array.make 11 false
let get = Array.get
let set = Array.set
let to_string = function
| 0 -> "clamped"
| 1 -> "invalid_operation"
| 2 -> "conversion_syntax"
| 3 -> "div_by_zero"
| 4 -> "div_impossible"
| 5 -> "div_undefined"
| 6 -> "inexact"
| 7 -> "rounded"
| 8 -> "subnormal"
| 9 -> "overflow"
| 10 -> "underflow"
| i -> failwith ("Signal.to_string: invalid signal: " ^ string_of_int i)
let pp f array =
let open Format in
pp_print_string f "{ clamped = ";
pp_print_string f (string_of_bool array.(clamped));
pp_print_string f "; invalid_operation = ";
pp_print_string f (string_of_bool array.(invalid_operation));
pp_print_string f "; conversion_syntax = ";
pp_print_string f (string_of_bool array.(conversion_syntax));
pp_print_string f "; div_by_zero = ";
pp_print_string f (string_of_bool array.(div_by_zero));
pp_print_string f "; div_impossible = ";
pp_print_string f (string_of_bool array.(div_impossible));
pp_print_string f "; div_undefined = ";
pp_print_string f (string_of_bool array.(div_undefined));
pp_print_string f "; inexact = ";
pp_print_string f (string_of_bool array.(inexact));
pp_print_string f "; rounded = ";
pp_print_string f (string_of_bool array.(rounded));
pp_print_string f "; subnormal = ";
pp_print_string f (string_of_bool array.(subnormal));
pp_print_string f "; overflow = ";
pp_print_string f (string_of_bool array.(overflow));
pp_print_string f "; underflow = ";
pp_print_string f (string_of_bool array.(underflow));
pp_print_string f " }"
end
module Sign = struct
type t =
| Pos
| Neg
let of_int value = if value >= 0 then Pos else Neg
let to_int = function
| Neg -> -1
| Pos -> 1
let to_string = function
| Pos -> ""
| Neg -> "-"
let negate = function
| Pos -> Neg
| Neg -> Pos
let xor t1 t2 =
match t1, t2 with
| Pos, Pos | Neg, Neg -> Pos
| Pos, Neg | Neg, Pos -> Neg
let min t1 t2 =
match t1, t2 with
| Pos, _ | _, Pos -> Pos
| _ -> Neg
end
type finite =
{ sign : Sign.t;
coef : string;
exp : int
}
type t =
| Finite of finite
| Inf of Sign.t
| NaN
module Context = struct
type round =
| Down
| Up
| Half_up
| Half_down
| Half_even
| Ceiling
| Floor
| Zero_five_up
type _ flag =
| Clamped : unit flag
| Inexact : unit flag
| Rounded : unit flag
| Subnormal : unit flag
| Underflow : unit flag
| Invalid_operation : t flag
| Conversion_syntax : t flag
| Div_by_zero : Sign.t -> t flag
| Div_impossible : t flag
| Div_undefined : t flag
| Overflow : Sign.t -> t flag
type t =
{ prec : int;
round : round;
e_max : int;
e_min : int;
capitals : bool;
clamp : bool;
traps : bool array;
flags : bool array
}
let make ?(prec = 32) ?(round = Half_even) ?(e_max = 999_999)
?(e_min = -999_999) ?(capitals = true) ?(clamp = false) () =
let traps =
let open Signal in
let t = make () in
set t conversion_syntax true;
set t invalid_operation true;
set t div_by_zero true;
set t overflow true;
t
in
{ prec;
round;
e_max;
e_min;
capitals;
clamp;
traps;
flags = Signal.make ()
}
let copy ~orig ?(prec = orig.prec) ?(round = orig.round) ?(e_max = orig.e_max)
?(e_min = orig.e_min) ?(capitals = orig.capitals) ?(clamp = orig.clamp)
?(traps = Array.copy orig.traps) ?(flags = Array.copy orig.flags) () =
{ prec; round; e_max; e_min; capitals; clamp; traps; flags }
let default = () |> make |> ref
let prec t = t.prec
let round t = t.round
let e_max t = t.e_max
let e_min t = t.e_min
let capitals t = t.capitals
let clamp t = t.clamp
let traps t = t.traps
let flags t = t.flags
let e_tiny { prec; e_min; _ } = e_min - prec + 1
let e_top { prec; e_max; _ } = e_max - prec + 1
let string_of_round = function
| Down -> "down"
| Up -> "up"
| Half_up -> "half_up"
| Half_down -> "half_down"
| Half_even -> "half_even"
| Ceiling -> "ceiling"
| Floor -> "floor"
| Zero_five_up -> "zero_five_up"
let pp f t =
let open Format in
pp_print_string f "{ prec = ";
pp_print_int f t.prec;
pp_print_string f "; round = ";
pp_print_string f (string_of_round t.round);
pp_print_string f "; e_max = ";
pp_print_int f t.e_max;
pp_print_string f "; e_min = ";
pp_print_int f t.e_min;
pp_print_string f "; capitals = ";
pp_print_bool f t.capitals;
pp_print_string f "; clamp = ";
pp_print_bool f t.clamp;
pp_print_string f "; traps = ";
Signal.pp f t.traps;
pp_print_string f "; flags = ";
Signal.pp f t.flags;
pp_print_string f " }\n"
let id_of_flag : type a. a flag -> Signal.id =
let open Signal in
function
| Clamped -> clamped
| Inexact -> inexact
| Rounded -> rounded
| Subnormal -> subnormal
| Underflow -> underflow
| Invalid_operation -> invalid_operation
| Conversion_syntax -> conversion_syntax
| Div_impossible -> div_impossible
| Div_undefined -> div_undefined
| Div_by_zero _ -> div_by_zero
| Overflow _ -> overflow
let fail_msg str opt =
str
^
match opt with
| Some msg -> msg
| None -> "(no info)"
let exn : type a. ?msg:string -> a flag -> exn =
fun ?msg -> function
| Clamped -> Failure (fail_msg "clamped: " msg)
| Inexact -> Failure (fail_msg "inexact: " msg)
| Rounded -> Failure (fail_msg "rounded: " msg)
| Subnormal -> Failure (fail_msg "subnormal: " msg)
| Underflow -> Failure (fail_msg "underflow: " msg)
| Invalid_operation -> Invalid_argument (fail_msg "invalid operation: " msg)
| Conversion_syntax ->
Invalid_argument (fail_msg "invalid decimal literal: " msg)
| Div_impossible -> Failure (fail_msg "division impossible: " msg)
| Div_undefined -> Failure (fail_msg "division undefined: " msg)
| Div_by_zero _ -> Division_by_zero
| Overflow _ -> Failure (fail_msg "overflow: " msg)
(** [handle flag t] is the result of handling [flag] in the context [t]. *)
let handle : type a. a flag -> t -> a =
fun flag t ->
match flag with
| Clamped -> ()
| Inexact -> ()
| Rounded -> ()
| Subnormal -> ()
| Underflow -> ()
| Invalid_operation -> NaN
| Conversion_syntax -> NaN
| Div_impossible -> NaN
| Div_undefined -> NaN
| Div_by_zero sign -> Inf sign
| Overflow sign -> begin
match t.round, sign with
| (Half_up | Half_even | Half_down | Up), _ | Ceiling, Pos | Floor, Neg ->
Inf sign
| _ ->
Finite
{ sign; coef = String.make t.prec '9'; exp = t.e_max - t.prec + 1 }
end
(** [raise ?msg flag t] sets the [flag], then either handles the signal and
possibly returns a result, or raises an exception (if set to trap the
signal). *)
let raise ?msg flag t =
let id = id_of_flag flag in
Signal.set t.flags id true;
if Signal.get t.traps id then raise (exn ?msg flag) else handle flag t
end
let infinity = Inf Pos
let neg_infinity = Inf Neg
let nan = NaN
let one = Finite { sign = Pos; coef = "1"; exp = 0 }
let zero = Finite { sign = Pos; coef = "0"; exp = 0 }
let adjust exp coef = exp + String.length coef - 1
let adjusted = function
| Inf _ | NaN -> 0
| Finite { exp; coef; _ } -> adjust exp coef
let is_nan = function
| NaN -> true
| _ -> false
let is_normal ?(context = !Context.default) = function
| Inf _ | NaN -> false
| Finite _ as t -> Context.e_min context <= adjusted t
let is_finite = function
| Finite _ -> true
| _ -> false
let is_infinite = function
| Finite _ -> false
| _ -> true
let is_signed = function
| Finite { sign = Neg; _ } | Inf Neg -> true
| _ -> false
let nan_r = Str.regexp "^[+-]?[qs]?nan.*$"
let inf_r = Str.regexp {|^[+]?inf\(inity\)?$|}
let neg_inf_r = Str.regexp {|^-inf\(inity\)?$|}
let finite_r = Str.regexp {|^[+-]?[0-9]*\.?[0-9]*\(e[+-]?[0-9]+\)?$|}
let zeros_r = Str.regexp "0*$"
let is_integral = function
| Finite { exp; _ } when exp >= 0 -> true
| Finite { coef; exp; _ } ->
let idx = -exp in
let end_ = String.(sub coef (length coef - idx) idx) in
Str.string_match zeros_r end_ 0
| _ -> false
let parts_of value =
let value =
value
|> String.trim
|> String.lowercase_ascii
|> Str.global_replace (Str.regexp_string "_") ""
in
if Str.string_match nan_r value 0 then
"nan", "", ""
else if Str.string_match inf_r value 0 then
"inf", "", ""
else if Str.string_match neg_inf_r value 0 then
"-inf", "", ""
else if Str.string_match finite_r value 0 then
if String.contains value '.' then begin
match String.split_on_char '.' value with
| [""; frac] ->
if String.contains frac 'e' then begin
match String.split_on_char 'e' value with
| [frac; ""] -> "", frac, "0"
| [frac; exp] -> "", frac, exp
| _ -> invalid_arg value
end
else
"", frac, "0"
| [whole; ""] -> whole, "", "0"
| [whole; frac] ->
if String.contains frac 'e' then begin
match String.split_on_char 'e' frac with
| [""; exp] -> whole, "", exp
| [frac; exp] -> whole, frac, exp
| _ -> invalid_arg value
end
else
whole, frac, "0"
| _ -> invalid_arg value
end
else if String.contains value 'e' then begin
match String.split_on_char 'e' value with
| [""; _] | [_; ""] -> invalid_arg value
| [whole; exp] -> whole, "", exp
| _ -> invalid_arg value
end
else
value, "", "0"
else
invalid_arg value
let leading_zeros = Str.regexp "^0+"
let strip_leading_zeros = Str.replace_first leading_zeros ""
let of_string ?(context = !Context.default) value =
match parts_of value with
| exception Invalid_argument msg ->
Context.raise ~msg Conversion_syntax context
| "nan", _, _ -> nan
| "inf", _, _ -> infinity
| "-inf", _, _ -> neg_infinity
| whole, frac, exp ->
let exp =
match strip_leading_zeros exp with
| "" -> 0
| e -> int_of_string e
in
let exp = exp - String.length frac in
let sign, whole =
match String.split_on_char '-' whole, String.split_on_char '+' whole with
| [""; whole], _ -> Sign.Neg, whole
| _, [""; whole] | [whole], _ -> Pos, whole
| _ -> failwith "Decimal.of_string: unreachable branch"
in
let whole, frac =
match strip_leading_zeros whole, strip_leading_zeros frac with
| "", "" -> "0", ""
| "", f -> "", f
| w, _ -> w, frac
in
Finite { sign; coef = whole ^ frac; exp }
let of_int value =
Finite { sign = Sign.of_int value; coef = string_of_int (abs value); exp = 0 }
let of_bigint value =
Finite
{ sign = value |> Z.sign |> Sign.of_int;
coef = value |> Z.abs |> Z.to_string;
exp = 0
}
let of_float ?(context = !Context.default) value =
of_string ~context (Printf.sprintf "%f" value)
let of_yojson = function
| `Int i -> Ok (of_int i)
| `Float f -> begin
match of_float f with
| t -> Ok t
| exception Invalid_argument msg -> Error msg
end
| `String s -> begin
match of_string s with
| t -> Ok t
| exception Invalid_argument msg -> Error msg
end
| _ -> Error "of_yojson: invalid argument"
let to_bool = function
| Finite { coef = "0"; _ } -> false
| _ -> true
let to_string ?(format = `standard) ?(context = !Context.default) = function
| Inf sign -> Sign.to_string sign ^ "Infinity"
| NaN -> "NaN"
| Finite { sign; coef; exp } ->
let leftdigits = exp + String.length coef in
let dotplace =
match format with
| `standard ->
if exp <= 0 && leftdigits > -6 then
leftdigits
else
1
| `eng ->
if exp <= 0 && leftdigits > -6 then
leftdigits
else if coef = "0" then
((leftdigits + 1) mod 3) - 1
else
((leftdigits - 1) mod 3) + 1
| `plain -> leftdigits
in
let intpart, fracpart =
if dotplace <= 0 then
"0", "." ^ String.make ~-dotplace '0' ^ coef
else
let len_coef = String.length coef in
if dotplace >= len_coef then
coef ^ String.make (dotplace - len_coef) '0', ""
else
( String.sub coef 0 dotplace,
"." ^ String.sub coef dotplace (len_coef - dotplace) )
in
let exp =
let value = leftdigits - dotplace in
if value = 0 then
""
else
let e = if context.Context.capitals then "E" else "e" in
let s = if value < 0 then "" else "+" in
e ^ s ^ string_of_int value
in
Sign.to_string sign ^ intpart ^ fracpart ^ exp
let to_yojson t = `String (to_string t)
let to_float ?(context = !Context.default) = function
| NaN -> Float.nan
| Inf Pos -> Float.infinity
| Inf Neg -> Float.neg_infinity
| Finite _ as d -> float_of_string (to_string ~context d)
let pp f t = t |> to_string |> Format.pp_print_string f
let z10 = Calc.z10
let to_rational = function
| Inf _ -> invalid_arg "to_rational: cannot handle ∞"
| NaN -> invalid_arg "to_rational: cannot handle NaN"
| Finite { coef = "0"; _ } -> Q.of_ints 0 1
| t -> t |> to_string |> Q.of_string
let to_bigint = function
| NaN -> invalid_arg "to_bigint: cannot convert NaN to integer"
| Inf _ -> invalid_arg "to_bigint: cannot convert ∞ to integer"
| Finite { sign; coef; exp } -> (
let z =
if exp >= 0 then
Z.(of_string coef * pow z10 exp)
else
match String.sub coef 0 (String.length coef + exp) with
| string -> Z.of_string string
| exception Invalid_argument _ -> Z.zero
in
match sign with
| Pos -> z
| Neg -> Z.neg z)
let to_tuple = function
| Inf sign -> Sign.to_int sign, "Inf", 0
| NaN -> 1, "NaN", 0
| Finite { sign; coef; exp } -> Sign.to_int sign, coef, exp
let sign_t = function
| NaN -> Sign.Pos
| Inf sign | Finite { sign; _ } -> sign
let sign t = t |> sign_t |> Sign.to_int
let zero_pad_right n string =
if n < 1 then
string
else
string ^ String.make n '0'
let zero_pad_left n string =
if n < 1 then
string
else
String.make n '0' ^ string
module Round = struct
let half = Str.regexp "50*$"
let all_zeros = Str.string_match zeros_r
let exact_half = Str.string_match half
let gt5 = ['5'; '6'; '7'; '8'; '9']
let evens = ['0'; '2'; '4'; '6'; '8']
let zero_five = ['0'; '5']
let down prec { coef; _ } = if all_zeros coef prec then 0 else -1
let up prec finite = -down prec finite
let half_up prec { coef; _ } =
if List.mem coef.[prec] gt5 then
1
else if all_zeros coef prec then
0
else
-1
let half_down prec finite =
if exact_half finite.coef prec then -1 else half_up prec finite
let half_even prec finite =
if
exact_half finite.coef prec
&& (prec = 0 || List.mem finite.coef.[prec - 1] evens)
then
-1
else
half_up prec finite
let ceiling prec finite =
match finite.sign with
| Neg -> down prec finite
| Pos -> -down prec finite
let floor prec finite =
match finite.sign with
| Pos -> down prec finite
| Neg -> -down prec finite
let zero_five_up prec finite =
if prec > 0 && not (List.mem finite.coef.[prec - 1] zero_five) then
down prec finite
else
-down prec finite
let with_function = function
| Context.Down -> down
| Up -> up
| Half_up -> half_up
| Half_down -> half_down
| Half_even -> half_even
| Ceiling -> ceiling
| Floor -> floor
| Zero_five_up -> zero_five_up
end
let add_one coef = Z.(coef |> of_string |> succ |> to_string)
let rescale exp round = function
| (Inf _ | NaN) as t -> t
| Finite ({ coef = "0"; _ } as finite) -> Finite { finite with exp }
| Finite finite ->
if finite.exp >= exp then
Finite
{ finite with
coef = zero_pad_right (finite.exp - exp) finite.coef;
exp
}
else
let digits = String.length finite.coef + finite.exp - exp in
let finite, digits =
if digits < 0 then
{ finite with coef = "1"; exp = exp - 1 }, 0
else
finite, digits
in
let coef =
match String.sub finite.coef 0 digits with
| "" -> "0"
| c -> c
in
let coef =
match Round.with_function round digits finite with
| 1 -> add_one coef
| _ -> coef
in
Finite { finite with coef; exp }
(** [fix context t] is [t] rounded if necessary to keep it within [context.prec]
precision. Rounds and fixes the exponent. *)
let fix context = function
| (Inf _ | NaN) as t -> t
| Finite ({ sign; coef; exp } as finite) as t ->
let e_tiny = Context.e_tiny context in
let e_top = Context.e_top context in
if coef = "0" then
let exp_max = if context.clamp then e_top else context.e_max in
let new_exp = min (max exp e_tiny) exp_max in
if new_exp <> exp then begin
Context.raise Clamped context;
Finite { finite with exp = new_exp }
end
else
t
else
let len_coef = String.length coef in
let exp_min = len_coef + exp - context.prec in
if exp_min > e_top then begin
let ans = Context.raise (Overflow sign) context in
Context.raise Inexact context;
Context.raise Rounded context;
ans
end
else
let is_subnormal = exp_min < e_tiny in
let exp_min = if is_subnormal then e_tiny else exp_min in
if exp < exp_min then (
let digits = len_coef + exp - exp_min in
let finite, digits =
if digits < 0 then
{ finite with coef = "1"; exp = exp_min - 1 }, 0
else
finite, digits
in
let changed = Round.with_function context.round digits finite in
let coef =
match String.sub finite.coef 0 digits with
| "" -> "0"
| c -> c
in
let coef, exp_min =
if changed > 0 then
let coef = add_one coef in
let len_coef = String.length coef in
if len_coef > context.prec then
String.sub coef 0 (len_coef - 1), exp_min + 1
else
coef, exp_min
else
coef, exp_min
in
let ans =
if exp_min > e_top then
Context.raise ~msg:"above e_max" (Overflow sign) context
else
Finite { finite with coef; exp = exp_min }
in
if changed <> 0 && is_subnormal then Context.raise Underflow context;
if is_subnormal then Context.raise Subnormal context;
if changed <> 0 then Context.raise Inexact context;
Context.raise Rounded context;
if not (to_bool ans) then Context.raise Clamped context;
ans)
else begin
if is_subnormal then Context.raise Subnormal context;
if context.clamp && exp > e_top then begin
Context.raise Clamped context;
let padded = zero_pad_right (exp - e_top) coef in
Finite { finite with coef = padded; exp = e_top }
end
else
t
end
let normalize prec tmp other =
let tmp_len = String.length tmp.coef in
let other_len = String.length other.coef in
let exp = tmp.exp + min ~-1 (tmp_len - prec - 2) in
let other =
if other_len + other.exp - 1 < exp then
{ other with coef = "1"; exp }
else
other
in
let coef = zero_pad_right (tmp.exp - other.exp) tmp.coef in
let tmp = { tmp with coef; exp = other.exp } in
let coef =
zero_pad_left (String.length coef - String.length other.coef) other.coef
in
let other = { other with coef } in
tmp, other
(** [normalize ?prec finite1 finite2] is [(op1, op2)] normalized to have the
same exp and length of coefficient. Done during addition. *)
let normalize ?(prec = 0) finite1 finite2 =
if finite1.exp < finite2.exp then
normalize prec finite2 finite1
else
normalize prec finite1 finite2
let copy_negate = function
| NaN -> nan
| Inf sign -> Inf (Sign.negate sign)
| Finite finite -> Finite { finite with sign = Sign.negate finite.sign }
let add ?(context = !Context.default) t1 t2 =
match t1, t2 with
| NaN, _ | _, NaN -> Context.raise Invalid_operation context
| Inf Pos, Inf Pos -> infinity
| Inf Neg, Inf Neg -> neg_infinity
| Inf Pos, Inf Neg | Inf Neg, Inf Pos ->
Context.raise ~msg:"-∞ + ∞" Invalid_operation context
| Inf _, _ -> t1
| _, Inf _ -> t2
| Finite finite1, Finite finite2 -> (
let exp = min finite1.exp finite2.exp in
let negativezero = context.round = Floor && finite1.sign <> finite2.sign in
match finite1.coef, finite2.coef with
| "0", "0" ->
let sign =
if negativezero then Sign.Neg else Sign.min finite1.sign finite2.sign
in
fix context (Finite { sign; coef = "0"; exp })
| "0", _ ->
let exp = max exp (finite2.exp - context.prec - 1) in
t2 |> rescale exp context.round |> fix context
| _, "0" ->
let exp = max exp (finite1.exp - context.prec - 1) in
t1 |> rescale exp context.round |> fix context
| _ -> (
let finite1, finite2 = normalize ~prec:context.prec finite1 finite2 in
match finite1.sign, finite2.sign with
| (Pos, Neg | Neg, Pos) when finite1.coef = finite2.coef ->
fix context
(Finite
{ sign = (if negativezero then Neg else Pos); coef = "0"; exp })
| _ ->
let int1 = Z.of_string finite1.coef in
let int2 = Z.of_string finite2.coef in
let sign, int =
match finite1.sign, finite2.sign, Z.compare int1 int2 with
| Pos, Pos, _ -> Sign.Pos, Z.add int1 int2
| Neg, Neg, _ -> Neg, Z.add int1 int2
| Pos, Neg, 1 -> Pos, Z.sub int1 int2
| Pos, Neg, -1 -> Neg, Z.sub int2 int1
| Neg, Pos, 1 -> Neg, Z.sub int1 int2
| Neg, Pos, -1 -> Pos, Z.sub int2 int1
| _ -> failwith "Decimal.add: unreachable"
in
fix context (Finite { sign; coef = Z.to_string int; exp = finite1.exp })
))
let sub ?(context = !Context.default) t1 t2 = add ~context t1 (copy_negate t2)
let mul ?(context = !Context.default) t1 t2 =
match t1, t2 with
| NaN, _ | _, NaN -> Context.raise Invalid_operation context
| Inf _, Finite { coef = "0"; _ } ->
Context.raise ~msg:"±∞ × 0" Invalid_operation context
| Finite { coef = "0"; _ }, Inf _ ->
Context.raise ~msg:"0 × ±∞" Invalid_operation context
| Inf sign1, Inf sign2 | Inf sign1, Finite { sign = sign2; _ } ->
Inf (Sign.xor sign1 sign2)
| Finite { sign = sign1; _ }, Inf sign2 -> Inf (Sign.xor sign1 sign2)
| Finite finite1, Finite finite2 -> (
let sign = Sign.xor finite1.sign finite2.sign in
let exp = finite1.exp + finite2.exp in
match finite1, finite2 with
| { coef = "0"; _ }, _ | _, { coef = "0"; _ } ->
fix context (Finite { sign; coef = "0"; exp })
| { coef = "1"; _ }, { coef; _ } | { coef; _ }, { coef = "1"; _ } ->
fix context (Finite { sign; coef; exp })
| _ ->
let coef =
Z.(to_string (of_string finite1.coef * of_string finite2.coef))
in
fix context (Finite { sign; coef; exp }))
let divide context t1 t2 =
let expdiff = adjusted t1 - adjusted t2 in
let sign = Sign.xor (sign_t t1) (sign_t t2) in
let exp = function
| NaN -> invalid_arg "exp NaN"
| Inf _ -> 0
| Finite { exp; _ } -> exp
in
let z t =
( Finite { sign; coef = "0"; exp = 0 },
rescale (exp t) context.Context.round t )
in
match t1, t2 with
| NaN, _ | _, NaN -> NaN, NaN
| _, Inf _ -> z t1
| Inf _, _ ->
let ans = Context.raise Invalid_operation context in
ans, ans
| Finite { coef = "0"; _ }, _ -> z t1
| Finite finite1, Finite finite2 ->
let div_impossible () =
let ans =
Context.raise ~msg:"quotient too large in /, (mod), or div_rem"
Div_impossible context
in
ans, ans
in
if expdiff <= -2 then
z t1
else if expdiff <= context.prec then
let int1 = Z.of_string finite1.coef in
let int2 = Z.of_string finite2.coef in
let int1, int2 =
if finite1.exp >= finite2.exp then
Z.mul int1 (Z.pow z10 (finite1.exp - finite2.exp)), int2
else
int1, Z.mul int2 (Z.pow z10 (finite2.exp - finite1.exp))
in
let q, r = Z.div_rem int1 int2 in
if Z.(lt q (pow z10 context.prec)) then
let ideal_exp = min finite1.exp finite2.exp in
( Finite { sign; coef = Z.to_string q; exp = 0 },
Finite { sign = finite1.sign; coef = Z.to_string r; exp = ideal_exp }
)
else
div_impossible ()
else
div_impossible ()
let div_rem ?(context = !Context.default) t1 t2 =
let sign = Sign.xor (sign_t t1) (sign_t t2) in
match t1, t2 with
| NaN, _ | _, NaN ->
let ans = Context.raise Invalid_operation context in
ans, ans
| Inf _, Inf _ ->
let ans = Context.raise ~msg:"div_rem ∞ ∞" Invalid_operation context in
ans, ans
| Inf _, _ -> Inf sign, Context.raise ~msg:"∞ mod x" Invalid_operation context
| Finite { coef = "0"; _ }, Finite { coef = "0"; _ } ->
let ans = Context.raise ~msg:"div_rem 0 0" Div_undefined context in
ans, ans
| _, Finite { coef = "0"; _ } ->
( Context.raise ~msg:"x / 0" (Div_by_zero sign) context,
Context.raise ~msg:"x mod 0" Invalid_operation context )
| _ ->
let quotient, remainder = divide context t1 t2 in
quotient, fix context remainder
let rem ?(context = !Context.default) t1 t2 =
match t1, t2 with
| NaN, _ | _, NaN -> Context.raise Invalid_operation context
| Inf _, _ -> Context.raise ~msg:"∞ mod x" Invalid_operation context
| Finite { coef = "0"; _ }, Finite { coef = "0"; _ } ->
Context.raise ~msg:"0 mod 0" Div_undefined context
| _, Finite { coef = "0"; _ } ->
Context.raise ~msg:"x mod 0" Invalid_operation context
| _ ->
let _, remainder = divide context t1 t2 in
fix context remainder
let div ?(context = !Context.default) t1 t2 =
let sign () = Sign.xor (sign_t t1) (sign_t t2) in
let finalize sign coef exp = fix context (Finite { sign; coef; exp }) in
match t1, t2 with
| NaN, _ | _, NaN -> Context.raise Invalid_operation context
| Inf _, Inf _ -> Context.raise ~msg:"±∞ / ±∞" Invalid_operation context
| Inf _, _ -> Inf (sign ())
| _, Inf _ ->
Context.raise ~msg:"Division by ∞" Clamped context;
Finite { sign = sign (); coef = "0"; exp = Context.e_tiny context }
| Finite { coef = "0"; _ }, Finite { coef = "0"; _ } ->
Context.raise ~msg:"0 / 0" Div_undefined context
| _, Finite { coef = "0"; _ } ->
Context.raise ~msg:"x / 0" (Div_by_zero (sign ())) context
| Finite { coef = "0"; exp = exp1; _ }, Finite { exp = exp2; _ } ->
finalize (sign ()) "0" (exp1 - exp2)
| Finite finite1, Finite finite2 ->
let shift =
String.length finite2.coef - String.length finite1.coef + context.prec + 1
in
let exp = ref (finite1.exp - finite2.exp - shift) in
let int1 = Z.of_string finite1.coef in
let int2 = Z.of_string finite2.coef in
let coef, remainder =
if shift > 0 then
Z.(div_rem (int1 * pow z10 shift) int2)
else
let shift = -shift in
Z.(div_rem int1 (int2 * pow z10 shift))
in
let coef =
if Z.(remainder <> zero && coef mod of_int 5 = zero) then
Z.(coef + one)
else begin
let ideal_exp = finite1.exp - finite2.exp in
let r_coef = ref coef in
while !exp < ideal_exp && Z.(!r_coef mod z10 = zero) do
(r_coef := Z.(!r_coef / z10));
incr exp
done;
!r_coef
end
in
finalize (sign ()) (Z.to_string coef) !exp
let fma ?(context = !Context.default) ~first_mul ~then_add t =
let product =
match t, first_mul with
| NaN, _ | _, NaN -> Context.raise Invalid_operation context
| Inf _, Finite { coef = "0"; _ } ->
Context.raise ~msg:"fma: ∞ × 0" Invalid_operation context
| Finite { coef = "0"; _ }, Inf _ ->
Context.raise ~msg:"fma: 0 × ∞" Invalid_operation context
| Inf sign1, Inf sign2
| Inf sign1, Finite { sign = sign2; _ }
| Finite { sign = sign1; _ }, Inf sign2 -> Inf (Sign.xor sign1 sign2)
| Finite finite1, Finite finite2 ->
Finite
{ sign = Sign.xor finite1.sign finite2.sign;
coef = Z.(to_string (of_string finite1.coef * of_string finite2.coef));
exp = finite1.exp + finite2.exp
}
in
add ~context product then_add
let shift ?(context = !Context.default) t1 t2 =
match t1, t2 with
| NaN, _ | _, (NaN | Inf _) -> Context.raise Invalid_operation context
| Inf _, _ -> t1
| Finite f1, Finite f2 ->
if f2.exp <> 0 then
Context.raise Invalid_operation context
else
let z2 = to_bigint t2 in
let prec_z = Z.of_int context.prec in
if not Z.(-prec_z <= z2 && z2 <= prec_z) then
Context.raise Invalid_operation context
else
let i2 = Z.to_int z2 in
let to_pad = context.prec - String.length f1.coef in
let rot_dig =
if to_pad > 0 then
String.init to_pad (fun _ -> '0') ^ f1.coef
else if to_pad < 0 then
let neg_to_pad = -to_pad in
String.(sub f1.coef neg_to_pad (length f1.coef - neg_to_pad))
else
f1.coef
in
let shifted =
if i2 < 0 then
let neg_i2 = -i2 in
String.(sub rot_dig 0 (length rot_dig - neg_i2))
else
let shifted' = rot_dig ^ String.init i2 (fun _ -> '0') in
String.(sub shifted' (length shifted' - context.prec) context.prec)
in
let zero_stripped = strip_leading_zeros shifted in
let coef =
if String.equal zero_stripped "" then "0" else zero_stripped
in
Finite { coef; sign = f1.sign; exp = f1.exp }
let compare t1 t2 =
match t1, t2 with
| Inf Pos, Inf Pos | Inf Neg, Inf Neg -> 0
| (NaN | Inf Neg), _ | _, Inf Pos -> -1
| _, (NaN | Inf Neg) | Inf Pos, _ -> 1
| Finite { coef = "0"; _ }, Finite { coef = "0"; _ } -> 0
| Finite { coef = "0"; _ }, Finite { sign = s; _ } -> -Sign.to_int s
| Finite { sign = s; _ }, Finite { coef = "0"; _ } -> Sign.to_int s
| Finite { sign = Neg as s1; _ }, Finite { sign = Pos as s2; _ }
| Finite { sign = Pos as s1; _ }, Finite { sign = Neg as s2; _ } ->
compare (Sign.to_int s1) (Sign.to_int s2)
| ( Finite { coef = coef1; exp = exp1; sign },
Finite { coef = coef2; exp = exp2; _ } ) -> begin
match compare (adjust exp1 coef1) (adjust exp2 coef2) with
| 0 ->
let padded1 = zero_pad_right (exp1 - exp2) coef1 in
let padded2 = zero_pad_right (exp2 - exp1) coef2 in
begin
match compare padded1 padded2 with
| 0 -> 0
| -1 -> -Sign.to_int sign
| 1 -> Sign.to_int sign
| _ -> invalid_arg "compare: internal error"
end
| 1 -> Sign.to_int sign
| -1 -> -Sign.to_int sign
| _ -> invalid_arg "compare: internal error"
end
let equal t1 t2 = compare t1 t2 = 0
let hash t =
let triple =
match t with
| NaN -> Sign.Pos, "nan", 0
| Inf sign -> sign, "inf", 0
| Finite { coef = "0"; _ } -> Pos, "0", 0
| Finite { sign; coef; exp } ->
let zero_stripped = Str.replace_first Calc.zeros "" coef in
let num_stripped = String.length coef - String.length zero_stripped in
sign, zero_stripped, exp + num_stripped
in
Hashtbl.hash triple
let quantize ?(context = !Context.default) ?(round = context.round) ~exp t =
match exp, t with
| NaN, _ | _, NaN -> Context.raise Invalid_operation context
| Inf _, Inf _ ->
t
| Inf _, _ | _, Inf _ ->
Context.raise ~msg:"quantize: one ∞" Invalid_operation context
| Finite { exp; _ }, Finite ({ coef = "0"; _ } as finite) ->
fix context (Finite { finite with exp })
| Finite { exp = exp_exp; _ }, Finite { exp = t_exp; _ } -> (
let between =
Context.e_tiny context <= exp_exp && exp_exp <= Context.e_max context
in
if not between then
Context.raise ~msg:"quantize: target exponent out of bounds"
Invalid_operation context
else
let t_adjusted = adjusted t in
if t_adjusted > Context.e_max context then
Context.raise
~msg:"quantize: exponent of result too large for current context"
Invalid_operation context
else if t_adjusted - exp_exp + 1 > Context.prec context then
Context.raise
~msg:"quantize: result has too many digits for current context"
Invalid_operation context
else
match rescale exp_exp round t with
| Finite finite as ans ->
let ans_adjusted = adjusted ans in
if ans_adjusted > Context.e_max context then
Context.raise
~msg:"quantize: exponent of result too large for current context"
Invalid_operation context
else if String.length finite.coef > Context.prec context then
Context.raise
~msg:"quantize: result has too many digits for current context"
Invalid_operation context
else
let return () = fix context ans in
let check_exp () =
if finite.exp > t_exp then begin
if not (equal ans t) then Context.raise Inexact context;
Context.raise Rounded context;
return ()
end
else
return ()
in
if finite.coef <> "0" && ans_adjusted < Context.e_min context then begin
Context.raise Subnormal context;
check_exp ()
end
else
check_exp ()
| _ -> failwith "quantize: unreachable")
let round ?n t =
match n, t with
| Some n, _ -> quantize ~exp:(Finite { sign = Pos; coef = "1"; exp = ~-n }) t
| None, NaN -> invalid_arg "round: cannot round a NaN"
| None, Inf _ -> invalid_arg "round: cannot round an ∞"
| None, _ -> rescale 0 Half_even t
let copy_abs = function
| Finite { sign = Neg; coef; exp } -> Finite { sign = Pos; coef; exp }
| Inf _ -> infinity
| t -> t
let negate ?(context = !Context.default) = function
| NaN -> Context.raise Invalid_operation context
| Inf sign -> Inf (Sign.negate sign)
| Finite { coef = "0"; _ } as t when context.round <> Floor ->
t |> copy_abs |> fix context
| Finite finite ->
fix context (Finite { finite with sign = Sign.negate finite.sign })
let posate ?(context = !Context.default) = function
| NaN -> Context.raise Invalid_operation context
| Inf _ -> infinity
| Finite { coef = "0"; _ } as t when context.round <> Floor -> copy_abs t
| t -> fix context t
let abs ?(round = true) ?(context = !Context.default) t =
if not round then
copy_abs t
else
match t with
| NaN -> Context.raise Invalid_operation context
| Inf _ -> infinity
| Finite { sign = Neg; _ } -> negate ~context t
| _ -> posate ~context t
let sqrt ?(context = !Context.default) = function
| NaN -> Context.raise Invalid_operation context
| Inf Pos -> Inf Pos
| Finite { coef = "0"; sign; exp } ->
fix context (Finite { coef = "0"; sign; exp = exp asr 1 })
| Inf Neg | Finite { sign = Neg; _ } ->
Context.raise ~msg:"sqrt: x < 0" Invalid_operation context
| Finite { exp; coef; sign = Pos; _ } ->
let prec = context.prec + 1 in
let e = exp asr 1 in
let c = Z.of_string coef in
let c, l =
if exp land 1 <> 0 then
let c = Z.(c * Z.of_int 10) in
let l = (String.length coef asr 1) + 1 in
c, l
else
let l = (String.length coef + 1) asr 1 in
c, l
in
let shift = prec - l in
let c, exact =
if shift >= 0 then
let c = Z.(c * (of_int 100 ** shift)) in
c, true
else
let neg_shift = -shift in
let c, r = Z.(div_rem c (of_int 100 ** neg_shift)) in
c, not Z.(equal r zero)
in
let e = e - shift in
let n = Z.(of_int 10 ** prec) in
let rec aux n =
let q = Z.(c / n) in
if n <= q then
n
else
let n = Z.((n + q) / of_int 2) in
aux n
in
let n = aux n in
let exact = exact && Z.(n * n = c) in
let n, e =
if exact then
let n =
if shift >= 0 then
Z.(n / (of_int 10 ** shift))
else
let neg_shift = -shift in
Z.(n * (of_int 10 ** neg_shift))
in
let e = e + shift in
n, e
else
let n =
if Z.(n mod of_int 5 = of_int 0) then
Z.(n + one)
else
n
in
n, e
in
let ctx = { context with round = Half_even } in
fix ctx (Finite { sign = Pos; coef = Z.to_string n; exp = e })
let scaleb ?(context = !Context.default) t1 t2 =
let check_precision () =
let liminf = Z.of_int (-2 * (context.e_max + context.prec)) in
let z2 = to_bigint t2 in
if not Z.(liminf <= z2 && z2 <= -liminf) then
Some (Context.raise Invalid_operation context)
else
None
in
match t1, t2 with
| NaN, _ | _, (NaN | Inf _) -> Context.raise Invalid_operation context
| _, Finite { exp; _ } when exp <> 0 ->
Context.raise Invalid_operation context
| Inf sign, Finite _ -> (
match check_precision () with
| Some nan -> nan
| None -> Inf sign)
| Finite f1, Finite _ -> (
match check_precision () with
| Some nan -> nan
| None ->
let i2 = Z.to_int (to_bigint t2) in
let tmp = Finite { sign = f1.sign; coef = f1.coef; exp = f1.exp + i2 } in
fix context tmp)
let ( ~- ) t = negate t
let ( ~+ ) t = posate t
let ( < ) t1 t2 =
match t1, t2 with
| NaN, _ | _, NaN -> false
| _ -> compare t1 t2 < 0
let ( > ) t1 t2 =
match t1, t2 with
| NaN, _ | _, NaN -> false
| _ -> compare t1 t2 > 0
let ( <= ) t1 t2 =
match t1, t2 with
| NaN, _ | _, NaN -> false
| _ -> compare t1 t2 <= 0
let ( >= ) t1 t2 =
match t1, t2 with
| NaN, _ | _, NaN -> false
| _ -> compare t1 t2 >= 0
let ( = ) t1 t2 =
match t1, t2 with
| NaN, _ | _, NaN -> false
| _ -> compare t1 t2 = 0
let ( <> ) t1 t2 =
match t1, t2 with
| NaN, _ | _, NaN -> false
| _ -> compare t1 t2 <> 0
let ( == ) = ( == )
let ( != ) = ( != )
let ( + ) t1 t2 = add t1 t2
let ( - ) t1 t2 = sub t1 t2
let ( * ) t1 t2 = mul t1 t2
let ( / ) t1 t2 = div t1 t2
let ( mod ) t1 t2 = rem t1 t2
let min t1 t2 = if t1 > t2 then t2 else t1
let max t1 t2 = if t1 > t2 then t1 else t2