package datalog
An in-memory datalog implementation for OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
v0.6.tar.gz
md5=4a2d12d630a5edd694968675a84a3ef5
sha512=685c0e186705837cb3ac66df6e8011d9f6a9629484b3a813b767df95348d5a41f37301f3e199ed6c91a42a87d1563e8355377269176785b123eb297a5ad022d7
doc/src/datalog.caml_interface/Datalog_caml_interface.ml.html
Source file Datalog_caml_interface.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
(* this file is part of datalog. See README for the license *) (** {1 Bridge between Datalog.TopDown and OCaml} *) module TopDown = Datalog_top_down (** {2 Constants with universal types} *) module Univ = struct type t = | Store : 'a key * 'a * (unit -> unit) -> t and 'a key = { mutable content : 'a option; eq : 'a -> 'a -> bool; hash : 'a -> int; print : 'a -> string; } let _print_default _ = "<opaque>" let new_key ?(eq=(=)) ?(hash=Hashtbl.hash) ?(print=_print_default) () = { content=None; eq; hash; print; } let pack ~key x = let get () = key.content <- Some x in Store (key, x, get) let unpack ~key u = match u with | Store (_, _, get) -> key.content <- None; get (); key.content let compatible ~key u = match unpack ~key u with | Some _ -> true | None -> false let eq u1 u2 = match u1 with | Store (key1, x1, _) -> match unpack ~key:key1 u2 with | None -> false | Some x2 -> key1.eq x1 x2 let hash u = match u with | Store (key, x, _) -> key.hash x let print u = match u with | Store (key, x, _) -> key.print x let _id x = x let _const x _ = x let string = new_key ~eq:(fun s1 s2 -> s1=s2) ~hash:(fun s -> Hashtbl.hash s) ~print:_id () let int = new_key ~hash:(fun i -> i land max_int) ~eq:(fun i j -> i=j) ~print:string_of_int () let bool = new_key ~eq:(fun i j -> i=j) ~hash:(function true -> 1 | false -> 2) ~print:string_of_bool () let float = new_key ~eq:(fun i j -> i=j) ~print:string_of_float () let unit = new_key ~print:(_const "()") () let pair a b = new_key ~eq:(fun (a1,b1)(a2,b2) -> a.eq a1 a2 && b.eq b1 b2) ~hash:(fun (a1,b1) -> a.hash a1 * 65993 + b.hash b1) ~print:(fun (a1,b1) -> Printf.sprintf "(%s,%s)" (a.print a1) (b.print b1)) () let list a = let _print_list l = let buf = Buffer.create 15 in Buffer.add_char buf '['; List.iteri (fun i x -> if i > 0 then Buffer.add_string buf ", "; Buffer.add_string buf (a.print x)) l; Buffer.add_char buf ']'; Buffer.contents buf in new_key ~eq:(fun l1 l2 -> try List.for_all2 a.eq l1 l2 with Invalid_argument _ -> false) ~hash:(fun l -> List.fold_left (fun h x -> 65993 * h + a.hash x) 13 l) ~print:_print_list () let array k = let _print_arr l = let buf = Buffer.create 15 in Buffer.add_string buf "[|"; Array.iteri (fun i x -> if i > 0 then Buffer.add_string buf ", "; Buffer.add_string buf (k.print x)) l; Buffer.add_string buf "|]"; Buffer.contents buf and _eq a1 a2 = Array.length a1 = Array.length a2 && try for i = 0 to Array.length a1 - 1 do if not (k.eq a1.(i) a2.(i)) then raise Exit done; true with Exit -> false and _hash a = let h = ref 13 in for i = 0 to Array.length a - 1 do h := 65993 * !h + k.hash a.(i) done; !h in new_key ~eq:_eq ~hash:_hash ~print:_print_arr () end (** Datalog constant *) type const = Univ.t let _key_query = Univ.new_key ~print:(fun () -> "query") () (* special query symbol: unit, with a specific, hidden embedding *) let of_string s = Univ.pack ~key:Univ.string s let of_int i = Univ.pack ~key:Univ.int i module Logic = TopDown.Make(struct type t = const let equal = Univ.eq let hash = Univ.hash let to_string = Univ.print let of_string = of_string let query = Univ.pack ~key:_key_query () end) (** {2 Typed relations} *) module T = Logic.T module C = Logic.C module DB = Logic.DB module Rel1 = struct type 'a t = Univ.t * 'a Univ.key let name (n, _) = match Univ.unpack ~key:Univ.string n with | None -> assert false | Some s -> s let create ?(k=Univ.new_key ()) name = (of_string name, k) let get (name,k1) t = match t with | T.Apply (name', [| T.Apply(u1, [| |]) |]) when Univ.eq name name' -> Univ.unpack ~key:k1 u1 | _ -> None let make (n,k) x = let a1 = T.mk_const (Univ.pack ~key:k x) in T.mk_apply n [| a1 |] let apply (n,_) t = T.mk_apply n [| t |] (* find instances of the relation *) let find db ((n,_k) as rel) = let query = T.mk_apply n [| T.mk_var 0 |] in let l = Logic.ask db query in List.fold_left (fun acc t -> match get rel t with | None -> acc | Some x -> x :: acc) [] l (* r1(X) => r2(X), so r1 subset of r2 *) let subset db (n1,_) (n2,_) = let x = T.mk_var 0 in let c = C.mk_clause (T.mk_apply n2 [|x|]) [ Logic.Lit.mk_pos (T.mk_apply n1 [|x|]) ] in DB.add_clause db c let from_fun db ((n,_k) as rel) f = DB.interpret db n (fun t -> match get rel t with | None -> [] | Some x -> if f x then [C.mk_fact t] (* the fact is true, says [f] *) else []) let add_list db rel l = List.iter (fun t -> DB.add_fact db (make rel t)) l let to_string t = name t ^ "/1" let fmt fmt t = Format.pp_print_string fmt (to_string t) end module Rel2 = struct type ('a,'b) t = Univ.t * 'a Univ.key * 'b Univ.key let name (n, _, _) = match Univ.unpack ~key:Univ.string n with | None -> assert false | Some s -> s let create ?(k1=Univ.new_key ()) ?(k2=Univ.new_key ()) name = (of_string name, k1, k2) let get (name,k1,k2) t = match t with | T.Apply (name', [| T.Apply(u1, [| |]) ; T.Apply(u2, [| |]) |]) when Univ.eq name name' -> begin match Univ.unpack ~key:k1 u1, Univ.unpack ~key:k2 u2 with | Some x1, Some x2 -> Some (x1,x2) | _ -> None end | _ -> None let make (n,k1,k2) x1 x2 = let a1 = T.mk_const (Univ.pack ~key:k1 x1) in let a2 = T.mk_const (Univ.pack ~key:k2 x2) in T.mk_apply n [| a1; a2 |] let apply (n,_,_) t1 t2 = T.mk_apply n [| t1; t2 |] (* find instances of the relation *) let find db ((n,_,_) as rel) = let query = T.mk_apply n [| T.mk_var 0; T.mk_var 1 |] in let l = Logic.ask db query in List.fold_left (fun acc t -> match get rel t with | None -> acc | Some (x,y) -> (x,y) :: acc) [] l (* r1 => r2, so r1 subset of r2 *) let subset db (n1,_,_) (n2,_,_) = let x, y = T.mk_var 0, T.mk_var 1 in let c = C.mk_clause (T.mk_apply n2 [|x;y|]) [ Logic.Lit.mk_pos (T.mk_apply n1 [|x;y|]) ] in DB.add_clause db c (* r(X,Y) :- r(X,Z), r(Z,Y) *) let transitive db (n,_,_) = let x, y, z = T.mk_var 0, T.mk_var 1, T.mk_var 2 in let c = C.mk_clause (T.mk_apply n [|x; y|]) [ Logic.Lit.mk_pos (T.mk_apply n [|x; z|]) ; Logic.Lit.mk_pos (T.mk_apply n [|z; y|]) ] in DB.add_clause db c (* tc(X,Y) <=> r*(X,Y) *) let tc_of db ~tc:((name_tc,_,_) as tc) ((name_r,_,_) as r) = let x, y, z = T.mk_var 0, T.mk_var 1, T.mk_var 2 in let c = C.mk_clause (T.mk_apply name_tc [|x; y|]) [ Logic.Lit.mk_pos (T.mk_apply name_r [|x; z|]) ; Logic.Lit.mk_pos (T.mk_apply name_tc [|z; y|]) ] in DB.add_clause db c; subset db r tc; () (* r(X,Y) :- X=Y *) let reflexive db (n,_,_) = let x, y = T.mk_var 0, T.mk_var 1 in let c = C.mk_clause (T.mk_apply n [|x;y|]) [ Logic.Lit.mk_pos (T.mk_apply (of_string "=") [|x;y|]) ] in DB.add_clause db c (* r(X,Y) => r(Y,X) *) let symmetry db (n,_,_) = let x, y = T.mk_var 0, T.mk_var 1 in let c = C.mk_clause (T.mk_apply n [|x;y|]) [ Logic.Lit.mk_pos (T.mk_apply n [|y;x|]) ] in DB.add_clause db c let from_fun db ((n,_,_) as rel) f = DB.interpret db n (fun t -> match get rel t with | None -> [] | Some (x,y) -> if f x y then [C.mk_fact t] (* the fact is true, says [f] *) else []) let add_list db rel l = List.iter (fun (x,y) -> DB.add_fact db (make rel x y)) l let to_string t = name t ^ "/2" let fmt fmt t = Format.pp_print_string fmt (to_string t) end module Rel3 = struct type ('a,'b,'c) t = Univ.t * 'a Univ.key * 'b Univ.key * 'c Univ.key let name (n, _, _, _) = match Univ.unpack ~key:Univ.string n with | None -> assert false | Some s -> s let create ?(k1=Univ.new_key ()) ?(k2=Univ.new_key ()) ?(k3=Univ.new_key ()) name = (of_string name, k1, k2, k3) let get (name,k1,k2,k3) t = match t with | T.Apply (name', [| T.Apply(u1, [| |]) ; T.Apply(u2, [| |]) ; T.Apply(u3, [| |]) |]) when Univ.eq name name' -> begin match Univ.unpack ~key:k1 u1, Univ.unpack ~key:k2 u2, Univ.unpack ~key:k3 u3 with | Some x1, Some x2, Some x3 -> Some (x1,x2,x3) | _ -> None end | _ -> None let make (n,k1,k2,k3) x1 x2 x3 = let a1 = T.mk_const (Univ.pack ~key:k1 x1) in let a2 = T.mk_const (Univ.pack ~key:k2 x2) in let a3 = T.mk_const (Univ.pack ~key:k3 x3) in T.mk_apply n [| a1; a2; a3 |] let apply (n,_,_,_) t1 t2 t3 = T.mk_apply n [| t1; t2; t3 |] (* find instances of the relation *) let find db ((n,_,_,_) as rel) = let query = T.mk_apply n [| T.mk_var 0; T.mk_var 1; T.mk_var 2 |] in let l = Logic.ask db query in List.fold_left (fun acc t -> match get rel t with | None -> acc | Some (x,y,z) -> (x,y,z) :: acc) [] l (* r1 => r2, so r1 subset of r2 *) let subset db (n1,_,_,_) (n2,_,_,_) = let x, y, z = T.mk_var 0, T.mk_var 1, T.mk_var 2 in let c = C.mk_clause (T.mk_apply n2 [|x;y;z|]) [ Logic.Lit.mk_pos (T.mk_apply n1 [|x;y;z|]) ] in DB.add_clause db c let from_fun db ((n,_,_,_) as rel) f = DB.interpret db n (fun t -> match get rel t with | None -> [] | Some (x,y,z) -> if f x y z then [C.mk_fact t] (* the fact is true, says [f] *) else []) let add_list db rel l = List.iter (fun (x,y,z) -> DB.add_fact db (make rel x y z)) l let to_string t = name t ^ "/3" let fmt fmt t = Format.pp_print_string fmt (to_string t) end module RelList = struct type 'a t = (Univ.t * 'a Univ.key) let name (n, _) = match Univ.unpack ~key:Univ.string n with | None -> assert false | Some s -> s let create ?(k=Univ.new_key ()) name = of_string name, k let get (name, k) t = match t with | T.Apply (name', a) when Univ.eq name name' -> begin try let l = Array.fold_left (fun acc t' -> match t' with | T.Apply (u, [| |]) -> begin match Univ.unpack ~key:k u with | None -> raise Exit | Some x -> x :: acc end | _ -> raise Exit) [] a in Some (List.rev l) with Exit -> None end | _ -> None let make (name,k) l = let args = List.map (fun x -> T.mk_const (Univ.pack ~key:k x)) l in T.mk_apply_l name args end module Parse = struct include TopDown.MakeParse(struct type t = const let of_string = of_string let of_int = of_int end)(Logic) let _load db res = match res with | `Error _ -> false | `Ok clauses -> Logic.DB.add_clauses db clauses; true let load_chan db ic = _load db (parse_chan ic) let load_file db file = _load db (parse_file file) let load_string db s = _load db (parse_string s) end (** {2 Interpretation} *) let add_builtin db = let builtin = let _eq goal = match goal with | Logic.T.Apply (_, [| Logic.T.Apply (a, [||]); Logic.T.Apply (b, [||]) |]) when Univ.eq a b -> [ C.mk_fact goal ] | _ -> [] and _neq goal = match goal with | Logic.T.Apply (_, [| Logic.T.Apply (a, [||]); Logic.T.Apply (b, [||]) |]) when not (Univ.eq a b) -> [ Logic.C.mk_fact goal ] | _ -> [] and _print goal = begin match goal with | Logic.T.Apply (_, [| a |]) when Logic.T.ground a -> Printf.printf "> %a\n" Logic.T.pp a; | _ -> () end; [ Logic.C.mk_fact goal ] (* given a list of arguments, "replace" the goal by any of its arguments. this allow arguments (variables...) to get to the proposition level *) and _eval goal = match goal with | Logic.T.Apply (_, subgoals) -> (* for each goal \in subgoals, add a clause goal :- subgoal *) Array.fold_left (fun acc sub -> Logic.C.mk_clause goal [Logic.Lit.mk_pos sub] :: acc) [] subgoals | _ -> [] in [ of_string "=", "=; equality", _eq ; of_string "!=", "!=, inequality", _neq ; of_string "print", "print(a): print a term on stdout", _print ; of_string "eval", "eval(*goals): add eval(goals) :- g for each g in goals", _eval ] in DB.interpret_list db builtin; let _assertz db goal = match goal with | Logic.T.Apply(_, [| fact |]) when Logic.T.ground fact -> Logic.DB.add_fact db fact; [ C.mk_fact goal ] | _ -> [] in DB.interpret ~help:"assertz(fact): add fact to the DB" db (of_string "assertz") (_assertz db); ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>