package datalog
An in-memory datalog implementation for OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
v0.6.tar.gz
md5=4a2d12d630a5edd694968675a84a3ef5
sha512=685c0e186705837cb3ac66df6e8011d9f6a9629484b3a813b767df95348d5a41f37301f3e199ed6c91a42a87d1563e8355377269176785b123eb297a5ad022d7
doc/src/datalog.top_down/Datalog_top_down.ml.html
Source file Datalog_top_down.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
(* this file is part of datalog. See README for the license *) (** {1 Top-Down Computation} *) (** This module implements top-down computation of Datalog queries with non-stratified negation. See "efficient top-down computation of queries under the well-founded semantics" *) module AST = AST module Lexer = Lexer module Parser = Parser (** {2 Signature for symbols} *) module type CONST = sig type t val equal : t -> t -> bool val hash : t -> int val to_string : t -> string val of_string : string -> t val query : t (** Special symbol, that will never occur in any user-defined clause or term. For strings, this may be the empty string "". *) end module type S = sig module Const : CONST type const = Const.t val set_debug : bool -> unit (** {2 Terms} *) module T : sig type t = private | Var of int | Apply of const * t array val mk_var : int -> t val mk_const : const -> t val mk_apply : const -> t array -> t val mk_apply_l : const -> t list -> t val is_var : t -> bool val is_apply : t -> bool val is_const : t -> bool val eq : t -> t -> bool val hash : t -> int val ground : t -> bool val vars : t -> int list val max_var : t -> int (* max var, or 0 if ground *) val head_symbol : t -> const val to_string : t -> string val pp : out_channel -> t -> unit val fmt : Format.formatter -> t -> unit val pp_tuple : out_channel -> t list -> unit module Tbl : Hashtbl.S with type key = t end (** {2 Literals} *) module Lit : sig type aggregate = { left : T.t; constructor : const; var : T.t; guard : T.t; } (* aggregate: ag_left = ag_constructor set where set is the set of bindings to ag_var that satisfy ag_guard *) type t = | LitPos of T.t | LitNeg of T.t | LitAggr of aggregate val mk_pos : T.t -> t val mk_neg : T.t -> t val mk : bool -> T.t -> t val mk_aggr : left:T.t -> constructor:const -> var:T.t -> guard:T.t -> t val eq : t -> t -> bool val hash : t -> int val to_term : t -> T.t val fmap : (T.t -> T.t) -> t -> t val to_string : t -> string val pp : out_channel -> t -> unit val fmt : Format.formatter -> t -> unit end (** {2 Clauses} *) module C : sig type t = private { head : T.t; body : Lit.t list; } exception Unsafe val mk_clause : T.t -> Lit.t list -> t val mk_fact : T.t -> t val eq : t -> t -> bool val hash : t -> int val head_symbol : t -> const val max_var : t -> int val fmap : (T.t -> T.t) -> t -> t val to_string : t -> string val pp : out_channel -> t -> unit val fmt : Format.formatter -> t -> unit module Tbl : Hashtbl.S with type key = t end (** {2 Substs} *) (** This module is used for variable bindings. *) module Subst : sig type t type scope = int type renaming val empty : t (** Empty subst *) val bind : t -> T.t -> scope -> T.t -> scope -> t (** Bind a variable,scope to a term,scope *) val deref : t -> T.t -> scope -> T.t * scope (** While the term is a variable bound in subst, follow its binding. Returns the final term and scope *) val create_renaming : unit -> renaming val reset_renaming : renaming -> unit val rename : renaming:renaming -> T.t -> scope -> T.t (** Rename the given variable into a variable that is unique within variables known to the given [renaming] *) val eval : t -> renaming:renaming -> T.t -> scope -> T.t (** Apply the substitution to the term. Free variables are renamed using [renaming] *) val eval_lit : t -> renaming:renaming -> Lit.t -> scope -> Lit.t val eval_lits : t -> renaming:renaming -> Lit.t list -> scope -> Lit.t list val eval_clause : t -> renaming:renaming -> C.t -> scope -> C.t val fmt : Format.formatter -> t -> unit end (** {2 Unification, matching...} *) type scope = Subst.scope exception UnifFail (** For {!unify} and {!match_}, the optional parameter [oc] is used to enable or disable occur-check. It is disabled by default. *) val unify : ?oc:bool -> ?subst:Subst.t -> T.t -> scope -> T.t -> scope -> Subst.t (** Unify the two terms. @raise UnifFail if it fails *) val match_ : ?oc:bool -> ?subst:Subst.t -> T.t -> scope -> T.t -> scope -> Subst.t (** [match_ a sa b sb] matches the pattern [a] in scope [sa] with term [b] in scope [sb]. @raise UnifFail if it fails *) val alpha_equiv : ?subst:Subst.t -> T.t -> scope -> T.t -> scope -> Subst.t (** Test for alpha equivalence. @raise UnifFail if it fails *) val are_alpha_equiv : T.t -> T.t -> bool (** Special version of [alpha_equiv], using distinct scopes for the two terms to test, and discarding the result *) val clause_are_alpha_equiv : C.t -> C.t -> bool (** Alpha equivalence of clauses. *) (** {2 Special built-in functions} The built-in functions are symbols that have a special {b meaning}. The meaning is given by a set of OCaml functions that can evaluate applications of the function symbol to arguments. For instance, [sum] is a special built-in function that tries to add its arguments if those are constants. {b Note} that a constant will never be interpreted. *) module BuiltinFun : sig type t = T.t -> T.t option type map (** Map symbols to builtin functions. Every symbol can only have at most one built-in function. *) val create : unit -> map val add : map -> Const.t -> t -> unit (** Interpret the given constant by the given function. The function can assume that any term is it given as a parameter has the constant as head. *) val add_list : map -> (Const.t * t) list -> unit val interpreted : map -> Const.t -> bool (** Is the constant interpreted by a built-in function? *) val eval : map -> T.t -> T.t (** Evaluate the term at root *) end (** The following hashtables use alpha-equivalence checking instead of regular, syntactic equality *) module TVariantTbl : Hashtbl.S with type key = T.t module CVariantTbl : Hashtbl.S with type key = C.t (** {2 Index} An index is a specialized data structured that is used to efficiently store and retrieve data by a key, where the key is a term. Retrieval involves finding all data associated with terms that match, or unify with, a given term. *) module Index(Data : Hashtbl.HashedType) : sig type t (** A set of term->data bindings, for efficient retrieval by unification *) val empty : unit -> t (** new, empty index *) val copy : t -> t (** Recursive copy of the index *) val clear : t -> unit val add : t -> T.t -> Data.t -> t (** Add the term->data binding. This modifies the index! *) val remove : t -> T.t -> Data.t -> t (** Remove the term->data binding. This modifies the index! *) val generalizations : ?oc:bool -> t -> scope -> T.t -> scope -> (Data.t -> Subst.t -> unit) -> unit (** Retrieve data associated with terms that are a generalization of the given query term *) val unify : ?oc:bool -> t -> scope -> T.t -> scope -> (Data.t -> Subst.t -> unit) -> unit (** Retrieve data associated with terms that unify with the given query term *) val iter : t -> (T.t -> Data.t -> unit) -> unit (** Iterate on bindings *) val size : t -> int (** Number of bindings *) end (** {2 Rewriting} Rewriting consists in having a set of {b rules}, oriented from left to right, that we will write [l -> r] (say "l rewrites to r"). Any term t that l matches is {b rewritten} into r by replacing it by sigma(r), where sigma(l) = t. *) module Rewriting : sig type rule = T.t * T.t type t (** A rewriting system. It is basically a mutable set of rewrite rules. *) val create : unit -> t (** New rewriting system *) val copy : t -> t (** Copy the rewriting system *) val add : t -> rule -> unit (** Add a rule to the system *) val add_list : t -> rule list -> unit val to_list : t -> rule list (** List of rules *) val rewrite_root : t -> T.t -> T.t (** rewrite the term, but only its root. Subterms are not rewritten at all. *) val rewrite : t -> T.t -> T.t (** Normalize the term recursively. The returned type cannot be rewritten any further, assuming the rewriting system is {b terminating} *) end (** {2 DB} *) (** A DB stores facts and clauses, that constitute a logic program. Facts and clauses can only be added. Non-stratified programs will be rejected with NonStratifiedProgram. *) exception NonStratifiedProgram module DB : sig type t (** A database is a repository for Datalog clauses. *) type interpreter = T.t -> C.t list (** Interpreted predicate. It takes terms which have a given symbol as head, and return a list of (safe) clauses that have the same symbol as head, and should unify with the query term. *) val create : ?parent:t -> unit -> t val copy : t -> t val clear : t -> unit val add_fact : t -> T.t -> unit val add_facts : t -> T.t list -> unit val add_clause : t -> C.t -> unit val add_clauses : t -> C.t list -> unit val interpret : ?help:string -> t -> const -> interpreter -> unit (** Add an interpreter for the given constant. Goals that start with this constant will be given to all registered interpreters, all of which can add new clauses. The returned clauses must have the constant as head symbol. *) val interpret_list : t -> (const * string * interpreter) list -> unit (** Add several interpreters, with their documentation *) val is_interpreted : t -> const -> bool (** Is the constant interpreted by some OCaml code? *) val add_builtin : t -> Const.t -> BuiltinFun.t -> unit (** Add a builtin fun *) val builtin_funs : t -> BuiltinFun.map val eval : t -> T.t -> T.t (** Evaluate the given term at root *) val help : t -> string list (** Help messages for interpreted predicates *) val num_facts : t -> int val num_clauses : t -> int val size : t -> int val find_facts : ?oc:bool -> t -> scope -> T.t -> scope -> (T.t -> Subst.t -> unit) -> unit (** find facts unifying with the given term, and give them along with the unifier, to the callback *) val find_clauses_head : ?oc:bool -> t -> scope -> T.t -> scope -> (C.t -> Subst.t -> unit) -> unit (** find clauses whose head unifies with the given term, and give them along with the unifier, to the callback *) val find_interpretation : ?oc:bool -> t -> scope -> T.t -> scope -> (C.t -> Subst.t -> unit) -> unit (** Given an interpreted goal, try all interpreters on it, and match the query against their heads. Returns clauses whose head unifies with the goal, along with the substitution. *) end (** {2 Query} *) val ask : ?oc:bool -> ?with_rules:C.t list -> ?with_facts:T.t list -> DB.t -> T.t -> T.t list (** Returns the answers to a query in a given DB. Additional facts and rules can be added in a local scope. @param oc enable occur-check in unification (default [false]) *) val ask_lits : ?oc:bool -> ?with_rules:C.t list -> ?with_facts:T.t list -> DB.t -> T.t list -> Lit.t list -> T.t list (** Extension of {! ask}, where the query ranges over the list of variables (the term list), all of which must be bound in the list of literals that form a constraint. [ask_lits db vars lits] queries over variables [vars] with the constraints given by [lits]. Conceptually, the query adds a clause (v1, ..., vn) :- lits, which should respect the same safety constraint as other clauses. @return a list of answers, each of which is a list of terms that map to the given list of variables. *) end (** {2 Generic implementation} *) let combine_hash hash i = abs (hash * 65599 + i) (** Hash a list. Each element is hashed using [f]. *) let rec hash_list f h l = match l with | [] -> h | x::l' -> hash_list f (combine_hash h (f x)) l' let _array_forall2 p a1 a2 = if Array.length a1 = Array.length a2 then try for i = 0 to Array.length a1 - 1 do if not (p a1.(i) a2.(i)) then raise Exit done; true with Exit -> false else false let _array_exists p a = try for i = 0 to Array.length a - 1 do if p a.(i) then raise Exit done; false with Exit -> true let _array_fold2 f acc a1 a2 = if Array.length a1 <> Array.length a2 then failwith "_array_fold2: arrays must have same length"; let acc = ref acc in for i = 0 to Array.length a1 - 1 do acc := f !acc a1.(i) a2.(i) done; !acc module Make(Const : CONST) = struct module Const = Const type const = Const.t let _debug_enabled = ref false let _debug_real k = k (fun fmt -> Format.fprintf Format.err_formatter "@["; Format.kfprintf (fun fmt -> Format.fprintf fmt "@]@.") Format.err_formatter fmt) let _debug k = if !_debug_enabled then ( _debug_real k ) let set_debug b = _debug_enabled := b module ConstTbl = Hashtbl.Make(Const) module ConstWeak = Weak.Make(Const) module T = struct type t = | Var of int | Apply of const * t array type term = t let __const_table = ConstWeak.create 255 let mk_var i = assert (i>=0); Var i let mk_apply const args = let const = ConstWeak.merge __const_table const in Apply (const, args) let mk_apply_l const args = mk_apply const (Array.of_list args) let mk_const const = mk_apply const [| |] let is_var = function | Var _ -> true | Apply _ -> false let is_apply = function | Var _ -> false | Apply _ -> true let is_const = function Apply (_, [||]) -> true | _ -> false (* equality *) let rec eq t1 t2 = match t1, t2 with | Var i, Var j -> i = j | Apply (c1, l1), Apply (c2, l2) -> Array.length l1 = Array.length l2 && Const.equal c1 c2 && _array_forall2 eq l1 l2 | Var _, Apply _ | Apply _, Var _ -> false (* hash *) let rec hash t = match t with | Var i -> i | Apply (c, [| |]) -> Const.hash c | Apply (c, args) -> let h = ref (Const.hash c) in for i = 0 to Array.length args -1 do h := combine_hash !h (hash args.(i)) done; !h (* hash invariant by var renaming *) let rec hash_novar t = match t with | Var _ -> 42 | Apply(c, args) -> let h = ref (Const.hash c) in for i = 0 to Array.length args -1 do h := combine_hash !h (hash_novar args.(i)) done; !h let rec ground t = match t with | Var _ -> false | Apply (_, [| |]) -> true | Apply (_, args) -> _ground_arr args 0 and _ground_arr a i = if i = Array.length a then true else ground a.(i) && _ground_arr a (i+1) let vars t = let rec _gather acc t = match t with | Var i when _var_present acc i -> acc | Var i -> i :: acc | Apply (_, [| |]) -> acc | Apply (_, args) -> Array.fold_left _gather acc args and _var_present l i = match l with | [] -> false | j::l' -> i = j || _var_present l' i in _gather [] t let rec max_var t = match t with | Var i -> i | Apply (_, args) -> Array.fold_left (fun m t' -> max m (max_var t')) 0 args let head_symbol t = match t with | Var _ -> failwith "variable has no head symbol" | Apply(c,_) -> c let to_string t = let rec pp buf t = match t with | Var i -> Printf.bprintf buf "X%d" i | Apply (c, [| |]) -> Buffer.add_string buf (Const.to_string c) | Apply (c, args) -> Printf.bprintf buf "%s(" (Const.to_string c); Array.iteri (fun i t' -> if i > 0 then Buffer.add_string buf ", "; pp buf t') args; Buffer.add_char buf ')' in let buf = Buffer.create 10 in pp buf t; Buffer.contents buf let pp oc t = output_string oc (to_string t) let fmt fmt t = Format.pp_print_string fmt (to_string t) let pp_tuple oc l = match l with | [] -> output_string oc "()" | [t] -> Printf.fprintf oc "(%a)" pp t | l -> output_string oc "("; List.iteri (fun i t -> if i > 0 then output_string oc ", "; pp oc t) l; output_string oc ")" module Tbl = Hashtbl.Make(struct type t = term let equal = eq let hash = hash end) end module Lit = struct type aggregate = { left : T.t; constructor : const; var : T.t; guard : T.t; } (* aggregate: ag_left = ag_constructor set where set is the set of bindings to ag_var that satisfy ag_guard *) type t = | LitPos of T.t | LitNeg of T.t | LitAggr of aggregate let mk_pos t = LitPos t let mk_neg t = LitNeg t let mk sign t = if sign then LitPos t else LitNeg t let mk_aggr ~left ~constructor ~var ~guard = LitAggr { left; constructor; var; guard; } let eq lit1 lit2 = match lit1, lit2 with | LitPos t1, LitPos t2 | LitNeg t1, LitNeg t2 -> T.eq t1 t2 | LitAggr a1, LitAggr a2 -> T.eq a1.left a2.left && T.eq a1.var a2.var && T.eq a1.guard a2.guard && Const.equal a1.constructor a2.constructor | _ -> false let hash lit = match lit with | LitPos t -> T.hash t | LitNeg t -> T.hash t + 65599 * 13 | LitAggr a -> combine_hash (combine_hash (T.hash a.left) (T.hash a.var)) (combine_hash (Const.hash a.constructor) (T.hash a.guard)) let hash_novar lit = match lit with | LitPos t -> T.hash_novar t | LitNeg t -> T.hash_novar t + 65599 * 13 | LitAggr a -> combine_hash (combine_hash (T.hash_novar a.left) (T.hash_novar a.var)) (combine_hash (Const.hash a.constructor) (T.hash_novar a.guard)) let to_term = function | LitPos t | LitNeg t -> t | LitAggr a -> let head = Const.of_string "aggr" in T.mk_apply head [| a.left; T.mk_const a.constructor; a.var; a.guard |] let fmap f lit = match lit with | LitPos t -> LitPos (f t) | LitNeg t -> LitNeg (f t) | LitAggr a -> LitAggr { a with left = f a.left; var = f a.var; guard = f a.guard; } let to_string lit = match lit with | LitPos t -> T.to_string t | LitNeg t -> Printf.sprintf "~%s" (T.to_string t) | LitAggr a -> Printf.sprintf "%s := %s %s : %s" (T.to_string a.left) (Const.to_string a.constructor) (T.to_string a.var) (T.to_string a.guard) let pp oc lit = output_string oc (to_string lit) let fmt fmt lit = Format.pp_print_string fmt (to_string lit) end module C = struct type t = { head : T.t; body : Lit.t list; } type clause = t exception Unsafe let _safe_clause _head _body = true (* TODO *) let mk_clause head body = if _safe_clause head body then {head; body;} else raise Unsafe let mk_fact head = mk_clause head [] let eq c1 c2 = T.eq c1.head c2.head && List.length c1.body = List.length c2.body && List.for_all2 Lit.eq c1.body c2.body let hash c = match c.body with | [] -> T.hash c.head | _ -> hash_list Lit.hash (T.hash c.head) c.body let hash_novar c = match c.body with | [] -> T.hash_novar c.head | _ -> hash_list Lit.hash_novar (T.hash_novar c.head) c.body let head_symbol c = T.head_symbol c.head let max_var c = List.fold_left (fun m lit -> max m (T.max_var (Lit.to_term lit))) (T.max_var c.head) c.body let fmap f c = let head = f c.head in let body = List.map (Lit.fmap f) c.body in mk_clause head body let to_string c = match c.body with | [] -> Printf.sprintf "%s." (T.to_string c.head) | _ -> let buf = Buffer.create 16 in Printf.bprintf buf "%s :- " (T.to_string c.head); List.iteri (fun i lit -> if i > 0 then Buffer.add_string buf ", "; Buffer.add_string buf (Lit.to_string lit)) c.body; Buffer.add_char buf '.'; Buffer.contents buf let pp oc c = output_string oc (to_string c) let fmt fmt c = Format.pp_print_string fmt (to_string c) module Tbl = Hashtbl.Make(struct type t = clause let equal = eq let hash = hash end) end (** {2 Substitutions} *) module Subst = struct type scope = int type t = | Nil | Bind of int * scope * T.t * scope * t type renaming = ((int*int), T.t) Hashtbl.t let empty = Nil let bind subst v s_v t s_t = match v with | T.Var i -> Bind (i, s_v, t, s_t, subst) | _ -> failwith "Subst.bind: expected variable" let deref subst t scope = let rec search subst v i scope = match subst with | Nil -> v, scope | Bind (i', s_i', t, s_t, _) when i = i' && scope = s_i' -> begin match t with | T.Var j -> search subst t j s_t | _ -> t, s_t end | Bind (_, _, _, _, subst') -> search subst' v i scope in match t with | T.Var i -> search subst t i scope | _ -> t, scope let create_renaming () = Hashtbl.create 7 (* special renaming *) let __dummy_renaming = create_renaming () let reset_renaming r = Hashtbl.clear r let rename ~renaming v scope = match v with | T.Var i -> begin try let v' = Hashtbl.find renaming (i, scope) in v' with Not_found -> let n = Hashtbl.length renaming in let v' = T.mk_var n in Hashtbl.add renaming (i, scope) v'; v' end | _ -> failwith "Subst.rename: expected variable" let rec eval subst ~renaming t scope = let t, scope = deref subst t scope in match t with | T.Var _ when renaming == __dummy_renaming -> t (* keep *) | T.Var _ -> rename ~renaming t scope (* free var *) | T.Apply (_c, [| |]) -> t | T.Apply (c, args) -> let args' = Array.map (fun t' -> eval subst ~renaming t' scope) args in T.mk_apply c args' let eval_lit subst ~renaming lit scope = match lit with | Lit.LitPos t -> Lit.LitPos (eval subst ~renaming t scope) | Lit.LitNeg t -> Lit.LitNeg (eval subst ~renaming t scope) | Lit.LitAggr a -> Lit.LitAggr { a with Lit.left = eval subst ~renaming a.Lit.left scope; Lit.var = eval subst ~renaming a.Lit.var scope; Lit.guard = eval subst ~renaming a.Lit.guard scope; } let eval_lits subst ~renaming lits scope = List.map (fun lit -> match lit with | Lit.LitPos t -> Lit.LitPos (eval subst ~renaming t scope) | Lit.LitNeg t -> Lit.LitNeg (eval subst ~renaming t scope) | Lit.LitAggr _ -> eval_lit subst ~renaming lit scope) lits let eval_clause subst ~renaming c scope = C.fmap (fun t -> eval subst ~renaming t scope) c let fmt out (s:t) = let rec aux out = function | Nil -> () | Bind (x1,sc1,t2,sc2,tl) -> Format.fprintf out "@[X%d[%d] ->@ %a[%d]@],@ %a" x1 sc1 T.fmt t2 sc2 aux tl in Format.fprintf out "{@[<hv>%a@]}" aux s end (** {2 Unification, matching...} *) type scope = Subst.scope exception UnifFail let rec _occur_check subst v sc_v t sc_t = match t with | T.Var _ when T.eq v t && sc_v = sc_t -> true | T.Var _ -> false | T.Apply (_, [| |]) -> false | T.Apply (_, args) -> _array_exists (fun t' -> _occur_check subst v sc_v t' sc_t) args let rec unify ?(oc=false) ?(subst=Subst.empty) t1 sc1 t2 sc2 = let t1, sc1 = Subst.deref subst t1 sc1 in let t2, sc2 = Subst.deref subst t2 sc2 in match t1, t2 with | T.Var i, T.Var j when i = j && sc1 = sc2 -> subst | T.Var _, _ when not oc || not (_occur_check subst t1 sc1 t2 sc2) -> Subst.bind subst t1 sc1 t2 sc2 | _, T.Var _ when not oc || not (_occur_check subst t2 sc2 t1 sc1) -> Subst.bind subst t2 sc2 t1 sc1 | T.Apply (c1, [| |]), T.Apply (c2, [| |]) when Const.equal c1 c2 -> subst | T.Apply (c1, l1), T.Apply (c2, l2) when Const.equal c1 c2 && Array.length l1 = Array.length l2 -> _array_fold2 (fun subst t1' t2' -> unify ~oc ~subst t1' sc1 t2' sc2) subst l1 l2 | _, _ -> raise UnifFail let rec match_ ?(oc=false) ?(subst=Subst.empty) t1 sc1 t2 sc2 = let t1, sc1 = Subst.deref subst t1 sc1 in let t2, sc2 = Subst.deref subst t2 sc2 in match t1, t2 with | T.Var i, T.Var j when i = j && sc1 = sc2 -> subst | T.Var _, _ when not oc || not (_occur_check subst t1 sc1 t2 sc2) -> Subst.bind subst t1 sc1 t2 sc2 | T.Apply (c1, [| |]), T.Apply (c2, [| |]) when Const.equal c1 c2 -> subst | T.Apply (c1, l1), T.Apply (c2, l2) when Const.equal c1 c2 && Array.length l1 = Array.length l2 -> _array_fold2 (fun subst t1' t2' -> match_ ~oc ~subst t1' sc1 t2' sc2) subst l1 l2 | _, _ -> raise UnifFail let rec alpha_equiv ?(subst=Subst.empty) t1 sc1 t2 sc2 = let t1, sc1 = Subst.deref subst t1 sc1 in let t2, sc2 = Subst.deref subst t2 sc2 in match t1, t2 with | T.Var i, T.Var j when i = j && sc1 = sc2 -> subst | T.Var _, T.Var _ when sc1 = sc2 -> raise UnifFail (* would be matching *) | T.Var _, T.Var _ -> Subst.bind subst t1 sc1 t2 sc2 (* can bind *) | T.Apply (c1, [| |]), T.Apply (c2, [| |]) when Const.equal c1 c2 -> subst | T.Apply (c1, l1), T.Apply (c2, l2) when Const.equal c1 c2 && Array.length l1 = Array.length l2 -> _array_fold2 (fun subst t1' t2' -> alpha_equiv ~subst t1' sc1 t2' sc2) subst l1 l2 | _, _ -> raise UnifFail let are_alpha_equiv t1 t2 = try let _ = alpha_equiv t1 0 t2 1 in true with UnifFail -> false let _lit_alpha_equiv ~subst lit1 sc1 lit2 sc2 = match lit1, lit2 with | Lit.LitPos t1, Lit.LitPos t2 | Lit.LitNeg t1, Lit.LitNeg t2 -> alpha_equiv ~subst t1 sc1 t2 sc2 | _ -> raise UnifFail let clause_are_alpha_equiv c1 c2 = List.length c1.C.body = List.length c2.C.body && try let subst = alpha_equiv c1.C.head 0 c2.C.head 1 in let _ = List.fold_left2 (fun subst lit1 lit2 -> _lit_alpha_equiv ~subst lit1 0 lit2 1) subst c1.C.body c2.C.body in true with UnifFail -> false module BuiltinFun = struct type t = T.t -> T.t option type map = t ConstTbl.t let create () = ConstTbl.create 17 let clear t = ConstTbl.clear t let add map c f = ConstTbl.replace map c f let add_list map l = List.iter (fun (c,f) -> add map c f) l let interpreted map c = ConstTbl.mem map c let rec eval map t = match t with | T.Var _ -> t | T.Apply (_, [| |]) -> t (* non interpreted *) | T.Apply (c, _) -> let t' = try let f = ConstTbl.find map c in begin match f t with | None -> t | Some t' -> t' end with Not_found -> t in if t == t' then t else eval map t' end (* hashtable on terms that use alpha-equiv-checking as equality *) module TVariantTbl = Hashtbl.Make(struct type t = T.t let equal = are_alpha_equiv let hash = T.hash_novar end) module CVariantTbl = Hashtbl.Make(struct type t = C.t let equal = clause_are_alpha_equiv let hash = C.hash_novar end) (** {2 Indexing} *) (** Functor that allows fast retrieval of sets of values for the given {! Data} type, by unification or matching with a term. This is a kind of fingerprint indexing, but only at the very first level of subterms. *) module Index(Data : Hashtbl.HashedType) = struct (* what is the head of the term we can find at the given position? *) type fingerprint = | Var | Const of Const.t (* A hashset of (term * data) *) module TermDataTbl = Hashtbl.Make(struct type t = T.t * Data.t let equal (t1,d1) (t2,d2) = are_alpha_equiv t1 t2 && Data.equal d1 d2 let hash (t,d) = combine_hash (T.hash_novar t) (Data.hash d) end) type t = { mutable sub : t ConstTbl.t; mutable var : t option; (* follow var *) mutable data : unit TermDataTbl.t option; } let create size = { sub=ConstTbl.create size; var=None; data=None; } let empty () = create 23 (* is the tree empty? *) let is_empty tree = ConstTbl.length tree.sub = 0 && (match tree.data with | None -> true | Some _ -> false) && (match tree.var with | None -> true | Some _ -> false) (* fingerprint of a term *) let term_to_fingerprint t = match t with | T.Var _ -> [| Var |] | T.Apply (s, [||]) -> [| Const s |] | T.Apply (s, arr) -> let n = Array.length arr in let a = Array.make (n+1) Var in a.(0) <- Const s; for i = 0 to n-1 do a.(i+1) <- match arr.(i) with | T.Var _ -> Var | T.Apply (s, _) -> Const s done; a (* recursive copy of an index *) let rec copy t = let var = match t.var with | None -> None | Some t' -> Some (copy t') in let sub = ConstTbl.create 5 in ConstTbl.iter (fun s t' -> ConstTbl.add sub s (copy t')) t.sub; let data = match t.data with | None -> None | Some set -> Some (TermDataTbl.copy set) in { var; sub; data; } let clear t = ConstTbl.clear t.sub; t.var <- None; t.data <- None; () let add idx t data = let arr = term_to_fingerprint t in (* traverse the trie *) let rec add tree i = if i = Array.length arr then (* add to data *) let set = match tree.data with | None -> let set = TermDataTbl.create 5 in tree.data <- Some set; set | Some set -> set in TermDataTbl.replace set (t,data) (); tree else match arr.(i) with | Var -> let tree' = match tree.var with | None -> create 5 | Some tree' -> tree' in let tree' = add tree' (i+1) in tree.var <- Some tree'; tree | Const s -> let tree' = try ConstTbl.find tree.sub s with Not_found -> create 5 in let tree' = add tree' (i+1) in ConstTbl.replace tree.sub s tree'; tree in add idx 0 let remove idx t data = let arr = term_to_fingerprint t in (* traverse the trie *) let rec remove tree i = if i = Array.length arr then match tree.data with | None -> tree (* not present *) | Some set -> TermDataTbl.remove set (t, data); if TermDataTbl.length set = 0 then tree.data <- None; (* remove data set *) tree else match arr.(i) with | Var -> begin match tree.var with | None -> tree | Some tree' -> let tree' = remove tree' (i+1) in (if is_empty tree' then tree.var <- None (* remove subtree *) else tree.var <- Some tree'); tree end | Const s -> begin try let tree' = ConstTbl.find tree.sub s in let tree' = remove tree' (i+1) in (if is_empty tree' then ConstTbl.remove tree.sub s else ConstTbl.replace tree.sub s tree'); tree with Not_found -> tree end in remove idx 0 (* unify [t] with terms indexed in [tree]. Successful unifiers are passed to [k] along with the data *) let unify ?(oc=false) tree s_tree t s_t k = let arr = term_to_fingerprint t in (* iterate on tree *) let rec iter tree i = if i = Array.length arr then match tree with | {data=Some set;_} -> (* unify against the indexed terms now *) TermDataTbl.iter (fun (t',data) () -> try let subst = unify ~oc t' s_tree t s_t in k data subst with UnifFail -> ()) set | _ -> () else begin (* recurse into subterms which have a variable *) begin match tree.var with | None -> () | Some tree' -> iter tree' (i+1) end; match arr.(i) with | Var -> (* iterate on all subtrees *) ConstTbl.iter (fun _ tree' -> iter tree' (i+1)) tree.sub | Const s -> (* iterate on the subtree with same symbol, if present *) try let tree' = ConstTbl.find tree.sub s in iter tree' (i+1) with Not_found -> () end in iter tree 0 (* same as {!unify} but for matching *) let generalizations ?(oc=false) tree s_tree t s_t k = let arr = term_to_fingerprint t in (* iterate on tree *) let rec iter tree i = if i = Array.length arr then match tree with | {data=Some set;_} -> (* unify against the indexed terms now *) TermDataTbl.iter (fun (t',data) () -> try let subst = match_ ~oc t' s_tree t s_t in k data subst with UnifFail -> ()) set | _ -> () else begin (* recurse into subterms which have a variable *) begin match tree.var with | None -> () | Some tree' -> iter tree' (i+1) end; match arr.(i) with | Var -> () (* only variable does it *) | Const s -> (* iterate on the subtree with same symbol, if present *) try let tree' = ConstTbl.find tree.sub s in iter tree' (i+1) with Not_found -> () end in iter tree 0 let rec iter t f = (match t.var with | None -> () | Some t' -> iter t' f); (match t.data with | None -> () | Some set -> TermDataTbl.iter (fun (t,data) () -> f t data) set); ConstTbl.iter (fun _ t' -> iter t' f) t.sub let rec size t = let s = match t.var with | None -> 0 | Some t' -> size t' in let s = match t.data with | None -> s | Some set -> TermDataTbl.length set + s in ConstTbl.fold (fun _ t' s -> size t' + s) t.sub s end (** {Rewriting} *) module TermIndex = Index(struct type t = T.t let equal = are_alpha_equiv let hash = T.hash_novar end) module Rewriting = struct type rule = T.t * T.t type t = { mutable idx : TermIndex.t; } let create () = { idx = TermIndex.empty (); } let copy trs = { idx = TermIndex.copy trs.idx; } let add trs (l,r) = trs.idx <- TermIndex.add trs.idx l r let rec add_list trs l = match l with | [] -> () | hd::l' -> add trs hd; add_list trs l' let to_list trs = let acc = ref [] in TermIndex.iter trs.idx (fun l r -> acc := (l,r) :: !acc); !acc exception RewriteInto of T.t * Subst.t * scope let rec rewrite_root trs t = match t with | T.Var _ -> t | T.Apply _ -> try TermIndex.generalizations trs.idx 1 t 0 (fun r subst -> raise (RewriteInto (r, subst, 1))); t (* didn't fire *) with RewriteInto (r, subst, scope) -> let t' = Subst.eval subst ~renaming:Subst.__dummy_renaming r scope in (* rewrite again *) rewrite_root trs t' (* TODO: more efficient rewriting *) let rec rewrite trs t = match t with | T.Var _ -> t | T.Apply (_, [| |]) -> rewrite_root trs t | T.Apply (s, arr) -> let arr' = Array.map (rewrite trs) arr in rewrite_root trs (T.mk_apply s arr') end (** {2 DB} *) (* TODO: aggregate {b functions} that collapse all their arguments into a constant (e.g., sum, average, max, min). Plug this into [slg_complete_aggregate]. *) (* TODO: dependency graph to check whether program is stratified *) (* TODO: reification of DB, with open(db) predicate that evaluates the rest of the clause in the scope of the given DB (parent: current context)*) (* TODO: on-disk DB, for instance append-only set of Bencode records? see the dict format google uses for bigtable *) exception NonStratifiedProgram module DB = struct type interpreter = T.t -> C.t list (** Interpreted predicate *) module ClauseIndex = Index(struct type t = C.t let equal = clause_are_alpha_equiv let hash = C.hash_novar end) type t = { mutable rules : ClauseIndex.t; (* clauses with non null body *) mutable facts : TermIndex.t; (* set of facts *) interpreters : interpreter list ConstTbl.t; (* constants -> interpreters *) builtin : BuiltinFun.map; mutable help : string list; parent : t option; (* for further query *) } let create ?parent () = let db = { rules = ClauseIndex.empty (); facts = TermIndex.empty (); interpreters = ConstTbl.create 7; builtin = BuiltinFun.create (); help = []; parent; } in db let rec copy db = let rules = ClauseIndex.copy db.rules in let facts = TermIndex.copy db.facts in let interpreters = ConstTbl.copy db.interpreters in let parent = match db.parent with | None -> None | Some db' -> Some (copy db') in { db with rules; facts; parent; interpreters; } let clear db = ClauseIndex.clear db.rules; TermIndex.clear db.facts; ConstTbl.clear db.interpreters; BuiltinFun.clear db.builtin; db.help <- []; () let add_fact db t = db.facts <- TermIndex.add db.facts t t let add_facts db l = List.iter (fun f -> add_fact db f) l let add_clause db c = match c.C.body with | [] -> add_fact db c.C.head | _::_ -> db.rules <- ClauseIndex.add db.rules c.C.head c let add_clauses db l = List.iter (fun c -> add_clause db c) l let builtin_funs db = db.builtin let add_builtin db c f = BuiltinFun.add db.builtin c f let rec eval db t = let t' = BuiltinFun.eval db.builtin t in if t == t' (* try with parent DB, may have more success *) then match db.parent with | None -> t' | Some db' -> eval db' t' else eval db t' let interpret ?help db c inter = let help = match help with | None -> Printf.sprintf "<symbol %s>" (Const.to_string c) | Some h -> h in db.help <- help :: db.help; try let l = ConstTbl.find db.interpreters c in ConstTbl.replace db.interpreters c (inter :: l) with Not_found -> ConstTbl.add db.interpreters c [inter] let interpret_list db l = List.iter (fun (c, help, i) -> interpret ~help db c i) l let is_interpreted db c = ConstTbl.mem db.interpreters c let help db = let rec help acc db = let acc = List.rev_append db.help acc in match db.parent with | None -> acc | Some db' -> help acc db' in help [] db let num_facts db = TermIndex.size db.facts let num_clauses db = ClauseIndex.size db.rules let size db = num_facts db + num_clauses db let rec find_facts ?(oc=false) db s_db t s_t k = TermIndex.unify ~oc db.facts s_db t s_t k; match db.parent with | None -> () | Some db' -> find_facts ~oc db' s_db t s_t k let rec find_clauses_head ?(oc=false) db s_db t s_t k = ClauseIndex.unify ~oc db.rules s_db t s_t k; match db.parent with | None -> () | Some db' -> find_clauses_head ~oc db' s_db t s_t k let rec find_interpretation ?(oc=false) db s_db t s_t k = assert (not (T.is_var t)); let c = T.head_symbol t in begin try let interpreters = ConstTbl.find db.interpreters c in List.iter (fun inter -> (* call interpreter to get clauses of its extension *) let clauses = inter t in List.iter (fun clause -> try let subst = unify ~oc t s_t clause.C.head s_db in k clause subst (* clause unifies! *) with UnifFail -> ()) clauses) interpreters with Not_found -> () end; match db.parent with | None -> () | Some db' -> find_interpretation ~oc db' s_db t s_t k end (** {2 Query} *) module Query = struct type t = { db : DB.t; oc : bool; (* perform occur-check? *) forest : goal_entry TVariantTbl.t; (* forest of goals *) renaming : Subst.renaming; (* renaming *) mutable stack : action; (* stack of actions to do *) } (** A global state for querying *) and action = | Done | Enter of goal_entry * action | NewClause of goal_entry * C.t * action | Aggregate of goal_entry * C.t * T.t * action | Exit of goal_entry * action and goal_entry = { goal : T.t; mutable answers : unit T.Tbl.t; (* set of answers *) mutable poss : (goal_entry * C.t) list; (* positive waiters *) mutable negs : (goal_entry * C.t) list; (* negative waiters *) mutable complete : bool; (* goal evaluation completed? *) } (** Root of the proof forest *) (** In a goal entry, [poss] and [negs] are other goals that depend on this given goal. IT's the reverse dependency graph. When an answer is added to this goal, it's also propagated to waiters. *) let create ~oc ~db = let query = { db; oc; forest = TVariantTbl.create 127; stack = Done; renaming = Subst.create_renaming (); } in query (* reset and return the renaming *) let _get_renaming ~query = Subst.reset_renaming query.renaming; query.renaming (* try to resolve fact with clause's first body literal *) let resolve ~query fact clause = match clause.C.body with | (Lit.LitPos lit) :: body' -> begin try let subst = unify ~oc:query.oc fact 0 lit 1 in let renaming = _get_renaming ~query in Some { C.head=Subst.eval subst ~renaming clause.C.head 1; C.body=Subst.eval_lits subst ~renaming body' 1; } with UnifFail -> None end | _ -> None let _iter_answers k node = T.Tbl.iter (fun t () -> k t) node.answers let _get_aggr c = match c.C.body with | Lit.LitAggr a :: _ -> a | _ -> assert false (* main loop for the DFS traversal of SLG resolution *) let rec slg_main ~query = match query.stack with | Done -> () (* done *) | Enter (goal_entry, stack') -> query.stack <- stack'; (* expand goal entry *) slg_subgoal ~query goal_entry; slg_main ~query | Exit (goal_entry, stack') -> query.stack <- stack'; (* close goal entry *) if not goal_entry.complete then slg_complete ~query goal_entry; slg_main ~query | NewClause (goal_entry, clause, stack') -> query.stack <- stack'; (* process new clause in the forest of [goal_entry] *) slg_newclause ~query goal_entry clause; slg_main ~query | Aggregate (goal_entry, clause, subgoal, stack') -> query.stack <- stack'; (* compute the answer of the aggregate *) let subgoal_entry = TVariantTbl.find query.forest subgoal in slg_complete_aggregate ~query goal_entry clause subgoal_entry.answers; slg_main ~query (* solve the [goal] by all possible means. Returns the goal_entry for this goal. *) and slg_solve ~query goal = _debug (fun k->k "slg_solve with %a" T.fmt goal); try TVariantTbl.find query.forest goal with Not_found -> (* new goal! insert it in the forest, and start solving it *) let goal_entry = { goal; answers = T.Tbl.create 7; poss = []; negs = []; complete = false; } in TVariantTbl.add query.forest goal goal_entry; (* push the goal on stack so that it is solved *) query.stack <- Enter (goal_entry, Exit (goal_entry, query.stack)); goal_entry (* [goal_entry] is a fresh goal, resolve it with facts and clauses to obtain its answers *) and slg_subgoal ~query goal_entry = _debug (fun k->k "slg_subgoal with %a" T.fmt goal_entry.goal); DB.find_facts ~oc:query.oc query.db 1 goal_entry.goal 0 (fun _fact subst -> let renaming = _get_renaming ~query in let answer = Subst.eval subst ~renaming goal_entry.goal 0 in (* process the new answer to the goal *) slg_answer ~query goal_entry answer); (* resolve with rules *) DB.find_clauses_head ~oc:query.oc query.db 1 goal_entry.goal 0 (fun clause subst -> let renaming = _get_renaming ~query in let clause' = Subst.eval_clause subst ~renaming clause 1 in (* add a new clause to the forest of [goal] *) query.stack <- NewClause (goal_entry, clause', query.stack)); (* resolve with interpreters *) DB.find_interpretation ~oc:query.oc query.db 1 goal_entry.goal 0 (fun clause subst -> let renaming = _get_renaming ~query in let clause' = Subst.eval_clause subst ~renaming clause 1 in (* add a new clause to the forest of [goal] *) query.stack <- NewClause (goal_entry, clause', query.stack)); () (* called when a new clause appears in the forest of [goal] *) and slg_newclause ~query goal_entry clause = _debug (fun k->k "slg_newclause with %a and clause %a" T.fmt goal_entry.goal C.fmt clause); match clause.C.body with | [] -> (* new fact (or clause with only delayed lits) *) slg_answer ~query goal_entry clause.C.head | (Lit.LitPos subgoal)::_ -> (* positive subgoal *) slg_positive ~query goal_entry clause subgoal | (Lit.LitNeg neg_subgoal)::body' when T.ground neg_subgoal -> (* negative subgoal: if neg_subgoal is solved, continue with clause' *) let clause' = {clause with C.body=body'; } in slg_negative ~query goal_entry clause' neg_subgoal | (Lit.LitAggr a)::_ -> (* aggregate: subgoal is a.guard *) slg_aggregate ~query goal_entry clause a.Lit.guard | _ -> failwith "slg_newclause with non-ground negative goal" (* add an answer [ans] to the given [goal]. If [ans] is new, insert it into the list of answers of [goal], and update positive and negative dependencies *) and slg_answer ~query goal_entry ans = _debug (fun k->k "slg_answer: %a" T.fmt ans); assert (T.ground ans); if not goal_entry.complete && not (T.Tbl.mem goal_entry.answers ans) then begin (* new answer! *) T.Tbl.add goal_entry.answers ans (); (* it's a fact, negative dependencies must fail *) goal_entry.negs <- []; (* resolve ans.head with positive dependencies *) List.iter (fun (goal', clause') -> match resolve ~query ans clause' with | None -> () | Some clause'' -> (* resolution succeeded, add clause to the forest of [goal'] *) query.stack <- NewClause (goal', clause'', query.stack)) goal_entry.poss; end (* positive subgoal. *) and slg_positive ~query goal_entry clause subgoal = _debug (fun k->k "slg_positive %a with clause %a, subgoal %a" T.fmt goal_entry.goal C.fmt clause T.fmt subgoal); let subgoal_entry = slg_solve ~query subgoal in (* register for future answers *) subgoal_entry.poss <- (goal_entry, clause) :: subgoal_entry.poss; (* use current answers *) T.Tbl.iter (fun ans () -> match resolve ~query ans clause with | None -> () | Some clause' -> query.stack <- NewClause(goal_entry, clause', query.stack)) subgoal_entry.answers; () (* negative subgoal *) and slg_negative ~query goal_entry clause neg_subgoal = _debug (fun k->k "slg_negative %a with clause %a, neg_subgoal %a" T.fmt goal_entry.goal C.fmt clause T.fmt neg_subgoal); let subgoal_entry = slg_solve ~query neg_subgoal in if T.Tbl.length subgoal_entry.answers = 0 then if subgoal_entry.complete then (* success, the negative goal has been solved *) slg_newclause ~query goal_entry clause else (* negative subgoal can still succeed, wait for completion *) subgoal_entry.negs <- (goal_entry, clause) :: subgoal_entry.negs else () (* failure, there are already positive answers; do nothing *) (* subgoal is the guard of the agregate in [clause] *) and slg_aggregate ~query goal_entry clause subgoal = _debug (fun k->k "slg_aggregate %a with clause %a, subgoal %a" T.fmt goal_entry.goal C.fmt clause T.fmt subgoal); (* before querying subgoal, prepare to gather its results *) query.stack <- Aggregate(goal_entry, clause, subgoal, query.stack); (* start subquery, and wait for it to complete *) let _ = slg_solve ~query subgoal in () (* called exactly once, when the subgoal has completed *) and slg_complete_aggregate ~query goal_entry clause answers = _debug (fun k->k "slg_complete_aggregate %a with %a (%d ans)" T.fmt goal_entry.goal C.fmt clause (T.Tbl.length answers)); let a = _get_aggr clause in (* the group by subst on all vars by [a.var], mapping each term (ground except for [a.var] to the set of values for [a.var] *) let groups: T.t list T.Tbl.t = T.Tbl.create 24 in (* gather all answers, grouped by substitution on variables excluding [a.var] *) let renaming = _get_renaming ~query in (* consistent renaming of [a.var] *) let new_var = let subst = Subst.bind Subst.empty a.Lit.var 0 a.Lit.var 2 in Subst.eval subst ~renaming a.Lit.var 0 in T.Tbl.iter (fun t () -> (* unify a.guard with the answer, and extract the binding of a.var *) let subst = try unify a.Lit.guard 0 t 1 with UnifFail -> failwith "could not unify with var?!" in (* the value to aggregate *) let res = Subst.eval subst ~renaming a.Lit.var 0 in assert (T.ground res); (* remap [a.var] to [new_var] in [t'] *) let subst = Subst.bind subst a.Lit.var 0 a.Lit.var 2 in let t' = Subst.eval subst ~renaming a.Lit.guard 0 in let l = try T.Tbl.find groups t' with Not_found -> [] in T.Tbl.replace groups t' (res::l)) answers; (* now build [subst(goal)] where [a.var] maps to [f(res1…resn)] for this particular subst *) T.Tbl.iter (fun t res_l -> assert (res_l <> []); let aggr_t_raw = T.mk_apply_l a.Lit.constructor res_l in (* eval aggregate *) let aggr_t = DB.eval query.db aggr_t_raw in _debug (fun k->k "@[slg_aggr.group: t: %a,@ aggr_t: %a,@ eval-into: %a@]" T.fmt t T.fmt aggr_t_raw T.fmt aggr_t); try let subst = unify ~oc:query.oc a.Lit.guard 0 t 1 in (* add [a.left = aggr_t] *) let subst = unify ~subst ~oc:query.oc a.Lit.left 0 aggr_t 1 in let answer = Subst.eval subst ~renaming goal_entry.goal 0 in _debug (fun k->k "@[<2>slg_aggr.answer: %a@ subst: %a@]" T.fmt answer Subst.fmt subst); (* add answer *) _debug (fun k->k "slg_aggr.yield-answer: %a" T.fmt answer); slg_answer ~query goal_entry answer with UnifFail -> (* answer aggregate does not match left *) () ) groups; () (* goal is completely evaluated, no more answers will arrive. *) and slg_complete ~query goal_entry = _debug (fun k->k "slg_complete %a" T.fmt goal_entry.goal); assert (not goal_entry.complete); goal_entry.complete <- true; if T.Tbl.length goal_entry.answers = 0 then begin (* all negative goals succeed *) List.iter (fun (goal, clause) -> slg_newclause ~query goal clause) goal_entry.negs end; (* reclaim memory *) goal_entry.negs <- []; goal_entry.poss <- []; () end let ask ?(oc=false) ?(with_rules=[]) ?(with_facts=[]) db lit = (* create a DB on top of the given one? *) let db = match with_rules, with_facts with | [], [] -> db | _ -> let db' = DB.create ~parent:db () in DB.add_facts db' with_facts; DB.add_clauses db' with_rules; db' in let query = Query.create ~oc ~db in (* recursive search for answers *) let goal_node = Query.slg_solve ~query lit in Query.slg_main ~query; (* get fact answers *) let l = ref [] in Query._iter_answers (fun ans -> l := ans :: !l) goal_node; !l let ask_lits ?(oc=false) ?(with_rules=[]) ?(with_facts=[]) db vars lits = (* special clause that defines the query *) let head = T.mk_apply Const.query (Array.of_list vars) in let clause = C.mk_clause head lits in let with_rules = clause :: with_rules in let l = ask ~oc ~with_rules ~with_facts db head in l end (** {2 Parsing} *) module type PARSABLE_CONST = sig type t val of_string : string -> t val of_int : int -> t end module type PARSE = sig type term type lit type clause type name_ctx = (string, term) Hashtbl.t val create_ctx : unit -> name_ctx val term_of_ast : ctx:name_ctx -> AST.term -> term val lit_of_ast : ctx:name_ctx -> AST.literal -> lit val clause_of_ast : ?ctx:name_ctx -> AST.clause -> clause val clauses_of_ast : ?ctx:name_ctx -> AST.clause list -> clause list val parse_chan : in_channel -> [`Ok of clause list | `Error of string] val parse_file : string -> [`Ok of clause list | `Error of string] val parse_string : string -> [`Ok of clause list | `Error of string] val clause_of_string : string -> clause val term_of_string : string -> term end module MakeParse(C : PARSABLE_CONST)(TD : S with type Const.t = C.t) = struct type term = TD.T.t type lit = TD.Lit.t type clause = TD.C.t module A = AST type name_ctx = (string, TD.T.t) Hashtbl.t let create_ctx () = Hashtbl.create 5 let _mk_var ~ctx name = try Hashtbl.find ctx name with Not_found -> let n = Hashtbl.length ctx in let v = TD.T.mk_var n in Hashtbl.add ctx name v; v let rec term_of_ast ~ctx t = match t with | A.Apply (s, args) -> let args = List.map (term_of_ast ~ctx) args in TD.T.mk_apply_l (C.of_string s) args | A.Int i -> TD.T.mk_const (C.of_int i) | A.Var s -> _mk_var ~ctx s and lit_of_ast ~ctx lit = match lit with | A.LitPos t -> TD.Lit.mk_pos (term_of_ast ~ctx t) | A.LitNeg t -> TD.Lit.mk_neg (term_of_ast ~ctx t) | A.LitAggr a -> TD.Lit.mk_aggr ~constructor:(C.of_string a.A.ag_constructor) ~left:(term_of_ast ~ctx a.A.ag_left) ~guard:(term_of_ast ~ctx a.A.ag_guard) ~var:(_mk_var ~ctx a.A.ag_var) let clause_of_ast ?(ctx=Hashtbl.create 3) c = match c with | (head, body) -> let head = term_of_ast ~ctx head in let body = List.map (lit_of_ast ~ctx) body in TD.C.mk_clause head body let clauses_of_ast ?ctx l = List.map (clause_of_ast ?ctx) l let _parse ~msg lexbuf = try let decls = Parser.parse_file Lexer.token lexbuf in `Ok (clauses_of_ast decls) with | Parsing.Parse_error -> let msg = A.error_to_string msg lexbuf in `Error msg | Failure msg -> `Error msg let parse_chan ic = _parse ~msg:"error while parsing <channel>" (Lexing.from_channel ic) let parse_file f = let ic = open_in f in try let res = _parse ~msg:("error while parsing " ^ f) (Lexing.from_channel ic) in close_in ic; res with e -> close_in ic; `Error (Printexc.to_string e) let parse_string s = _parse ~msg:"error while parsing string" (Lexing.from_string s) let clause_of_string s = try let lexbuf = Lexing.from_string s in let ast = Parser.parse_clause Lexer.token lexbuf in clause_of_ast ast with Parsing.Parse_error -> failwith "clause_of_string: parse error" let term_of_string s = try let lexbuf = Lexing.from_string s in let ast = Parser.parse_term Lexer.token lexbuf in let ctx = create_ctx () in term_of_ast ~ctx ast with Parsing.Parse_error -> failwith "term_of_string: parse error" end (** {2 Default Implementation with Strings} *) type const = | Int of int | String of string module Default = struct module TD = Make(struct type t = const let equal a b = a = b let hash a = Hashtbl.hash a let to_string a = match a with | String s -> s | Int i -> string_of_int i let of_string s = String s let query = String "" end) include TD include MakeParse(struct type t = const let of_string s = String s let of_int i = Int i end)(TD) let default_interpreters = let _less goal = _debug (fun k->k "call less with %a" T.fmt goal); match goal with | T.Apply (_, [| T.Apply (a, [||]); T.Apply (b, [||]) |]) when a < b -> [ C.mk_fact goal ] | _ -> [] and _lesseq goal = match goal with | T.Apply (_, [| T.Apply (a, [||]); T.Apply (b, [||]) |]) when a <= b -> [ C.mk_fact goal ] | _ -> [] and _greater goal = match goal with | T.Apply (_, [| T.Apply (a, [||]); T.Apply (b, [||]) |]) when a > b -> [ C.mk_fact goal ] | _ -> [] and _greatereq goal = match goal with | T.Apply (_, [| T.Apply (a, [||]); T.Apply (b, [||]) |]) when a >= b -> [ C.mk_fact goal ] | _ -> [] and _eq goal = match goal with | T.Apply (_, [| T.Apply (a, [||]); T.Apply (b, [||]) |]) when a = b -> [ C.mk_fact goal ] | _ -> [] and _neq goal = match goal with | T.Apply (_, [| T.Apply (a, [||]); T.Apply (b, [||]) |]) when a <> b -> [ C.mk_fact goal ] | _ -> [] and _print goal = begin match goal with | T.Apply (_, [| a |]) when T.ground a -> Printf.printf "> %a\n" T.pp a; | _ -> () end; [ C.mk_fact goal ] (* given a list of arguments, "replace" the goal by any of its arguments. this allow arguments (variables...) to get to the proposition level *) and _eval goal = match goal with | T.Apply (String "eval", subgoals) -> (* for each goal \in subgoals, add a clause goal :- subgoal *) Array.fold_left (fun acc sub -> C.mk_clause goal [Lit.mk_pos sub] :: acc) [] subgoals | _ -> [] in [ String "lt", "lt(a,b): true if a < b", _less ; String "<", "a < b", _less ; String "le", "leq(a,b): true if a <= b", _lesseq ; String "<=", "a <= b", _lesseq ; String "gt", "gt(a,b): true if a > b", _greater ; String ">", "a > b", _greater ; String "ge", "geq(a, b): true if a >= b", _greatereq ; String ">=", "a >= b", _greatereq ; String "eq", "eq(a,b): true if a = b", _eq ; String "=", "=", _eq ; String "neq", "neq(a, b): true if a != b", _neq ; String "!=", "!=", _neq ; String "print", "print(a): print a term on stdout", _print ; String "eval", "eval(*goals): add eval(goals) :- g for each g in goals", _eval ] let _sum t = match t with | T.Apply (_, arr) -> begin try let x = Array.fold_left (fun x t' -> match t' with | T.Apply (Int i, [| |]) -> i+x | _ -> raise Exit) 0 arr in Some (T.mk_const (Int x)) with Exit -> None end | _ -> None let builtin = [ String "sum", _sum ] let setup_default db = DB.interpret_list db default_interpreters; BuiltinFun.add_list (DB.builtin_funs db) builtin; () end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>