package cryptodbm

  1. Overview
  2. Docs

Source file setp.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

(* 
 * Set, polymorphic version. 
 * Adapted from set.ml in the ocaml distribution. 
 *)

(* This is the original copyright: *)

(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the GNU Library General Public License, with    *)
(*  the special exception on linking described in file ../LICENSE.     *)
(*                                                                     *)
(***********************************************************************)

(* $Id: set.ml 6694 2004-11-25 00:06:06Z doligez $ *)

(* Sets over ordered types *)

type 'a cmp = 'a -> 'a -> int

type 'a tree = Empty | Node of 'a tree * 'a * 'a tree * int

type 'a t = {
    cmp : 'a cmp ;
    tree : 'a tree ;
  }

let check_cmp msg s1 s2 =
  if s1.cmp != s2.cmp then failwith (Printf.sprintf "Setp.%s: arguments have different comparison functions." msg)
  else s1.cmp

(* Sets are represented by balanced binary trees (the heights of the
   children differ by at most 2 *)

let height = function
    Empty -> 0
  | Node(_, _, _, h) -> h

(* Creates a new node with left son l, value v and right son r.
   We must have all elements of l < v < all elements of r.
   l and r must be balanced and | height l - height r | <= 2.
   Inline expansion of height for better speed. *)

let create l v r =
  let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
  let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
  Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1))

(* Same as create, but performs one step of rebalancing if necessary.
   Assumes l and r balanced and | height l - height r | <= 3.
   Inline expansion of create for better speed in the most frequent case
   where no rebalancing is required. *)

let bal l v r =
  let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
  let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
  if hl > hr + 2 then begin
    match l with
      Empty -> invalid_arg "Set.bal"
    | Node(ll, lv, lr, _) ->
        if height ll >= height lr then
          create ll lv (create lr v r)
        else begin
          match lr with
            Empty -> invalid_arg "Set.bal"
          | Node(lrl, lrv, lrr, _)->
              create (create ll lv lrl) lrv (create lrr v r)
        end
  end else if hr > hl + 2 then begin
    match r with
      Empty -> invalid_arg "Set.bal"
    | Node(rl, rv, rr, _) ->
        if height rr >= height rl then
          create (create l v rl) rv rr
        else begin
          match rl with
            Empty -> invalid_arg "Set.bal"
          | Node(rll, rlv, rlr, _) ->
              create (create l v rll) rlv (create rlr rv rr)
        end
  end else
    Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1))
      
(* Insertion of one element *)
      
let rec add cmp x = function
    Empty -> Node(Empty, x, Empty, 1)
  | Node(l, v, r, _) as t ->
      let c = cmp x v in
      if c = 0 then t else
      if c < 0 then bal (add cmp x l) v r else bal l v (add cmp x r)
	
(* Same as create and bal, but no assumptions are made on the
   relative heights of l and r. *)
	
let rec join cmp l v r =
  match (l, r) with
    (Empty, _) -> add cmp v r
  | (_, Empty) -> add cmp v l
  | (Node(ll, lv, lr, lh), Node(rl, rv, rr, rh)) ->
      if lh > rh + 2 then bal ll lv (join cmp lr v r) else
      if rh > lh + 2 then bal (join cmp l v rl) rv rr else
      create l v r
	
(* Smallest and greatest element of a set *)
	
let rec min_elt = function
    Empty -> raise Not_found
  | Node(Empty, v, r, _) -> v
  | Node(l, v, r, _) -> min_elt l

let rec max_elt = function
    Empty -> raise Not_found
  | Node(l, v, Empty, _) -> v
  | Node(l, v, r, _) -> max_elt r
	
(* Remove the smallest element of the given set *)

let rec remove_min_elt = function
    Empty -> invalid_arg "Set.remove_min_elt"
  | Node(Empty, v, r, _) -> r
  | Node(l, v, r, _) -> bal (remove_min_elt l) v r
	
(* Merge two trees l and r into one.
   All elements of l must precede the elements of r.
   Assume | height l - height r | <= 2. *)
	
let merge t1 t2 =
  match (t1, t2) with
    (Empty, t) -> t
  | (t, Empty) -> t
  | (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2)
	
(* Merge two trees l and r into one.
   All elements of l must precede the elements of r.
   No assumption on the heights of l and r. *)
	
let concat cmp t1 t2 =
  match (t1, t2) with
    (Empty, t) -> t
  | (t, Empty) -> t
  | (_, _) -> join cmp t1 (min_elt t2) (remove_min_elt t2)
	
(* Splitting.  split x s returns a triple (l, present, r) where
   - l is the set of elements of s that are < x
   - r is the set of elements of s that are > x
   - present is false if s contains no element equal to x,
   or true if s contains an element equal to x. *)
	
let rec split cmp x = function
    Empty ->
      (Empty, false, Empty)
  | Node(l, v, r, _) ->
      let c = cmp x v in
      if c = 0 then (l, true, r)
      else if c < 0 then
        let (ll, pres, rl) = split cmp x l in (ll, pres, join cmp rl v r)
      else
        let (lr, pres, rr) = split cmp x r in (join cmp l v lr, pres, rr)
	  
(* Implementation of the set operations *)
	  
let empty cmp = { cmp ; tree = Empty }
    
let is_empty s = match s.tree with Empty -> true | _ -> false
    
let rec mem cmp x = function
    Empty -> false
  | Node(l, v, r, _) ->
      let c = cmp x v in
      c = 0 || mem cmp x (if c < 0 then l else r)
       
let rec find cmp x = function
  | Empty -> raise Not_found
  | Node (l, v, r, _) ->
      let c = cmp x v in
      if c = 0 then v else find cmp x (if c < 0 then l else r)

let singleton cmp x = { cmp ; tree = Node(Empty, x, Empty, 1) }

let rec remove cmp x = function
    Empty -> Empty
  | Node(l, v, r, _) ->
      let c = cmp x v in
      if c = 0 then merge l r else
      if c < 0 then bal (remove cmp x l) v r else bal l v (remove cmp x r)
	
let rec union cmp s1 s2 =
  match (s1, s2) with
    (Empty, t2) -> t2
  | (t1, Empty) -> t1
  | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
      if h1 >= h2 then
        if h2 = 1 then add cmp v2 s1 else begin
          let (l2, _, r2) = split cmp v1 s2 in
          join cmp (union cmp l1 l2) v1 (union cmp r1 r2)
        end
      else
        if h1 = 1 then add cmp v1 s2 else begin
          let (l1, _, r1) = split cmp v2 s1 in
          join cmp (union cmp l1 l2) v2 (union cmp r1 r2)
        end
	  
let rec inter cmp s1 s2 =
  match (s1, s2) with
    (Empty, t2) -> Empty
  | (t1, Empty) -> Empty
  | (Node(l1, v1, r1, _), t2) ->
      match split cmp v1 t2 with
        (l2, false, r2) ->
          concat cmp (inter cmp l1 l2) (inter cmp r1 r2)
      | (l2, true, r2) ->
          join cmp (inter cmp l1 l2) v1 (inter cmp r1 r2)
	    
let rec diff cmp s1 s2 =
  match (s1, s2) with
    (Empty, t2) -> Empty
  | (t1, Empty) -> t1
  | (Node(l1, v1, r1, _), t2) ->
      match split cmp v1 t2 with
        (l2, false, r2) ->
          join cmp (diff cmp l1 l2) v1 (diff cmp r1 r2)
      | (l2, true, r2) ->
          concat cmp (diff cmp l1 l2) (diff cmp r1 r2)
	    
type 'a enumeration = End | More of 'a * 'a tree * 'a enumeration

let rec cons_enum s e =
  match s with
    Empty -> e
  | Node(l, v, r, _) -> cons_enum l (More(v, r, e))
	
let rec compare_aux cmp e1 e2 =
  match (e1, e2) with
    (End, End) -> 0
  | (End, _)  -> -1
  | (_, End) -> 1
  | (More(v1, r1, e1), More(v2, r2, e2)) ->
      let c = cmp v1 v2 in
      if c <> 0
      then c
      else compare_aux cmp (cons_enum r1 e1) (cons_enum r2 e2)
	  
let compare s1 s2 =
  let cmp = check_cmp "compare" s1 s2 in
  compare_aux cmp (cons_enum s1.tree End) (cons_enum s2.tree End)
    
let equal s1 s2 = compare s1 s2 = 0
    
let rec subset cmp s1 s2 =
  match (s1, s2) with
    Empty, _ ->
      true
  | _, Empty ->
      false
  | Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) ->
      let c = cmp v1 v2 in
      if c = 0 then
        subset cmp l1 l2 && subset cmp r1 r2
      else if c < 0 then
        subset cmp (Node (l1, v1, Empty, 0)) l2 && subset cmp r1 t2
      else
        subset cmp (Node (Empty, v1, r1, 0)) r2 && subset cmp l1 t2
	  
let rec iter f = function
    Empty -> ()
  | Node(l, v, r, _) -> iter f l; f v; iter f r
	
let rec fold f s accu =
  match s with
    Empty -> accu
  | Node(l, v, r, _) -> fold f r (f v (fold f l accu))
	
let rec for_all p = function
    Empty -> true
  | Node(l, v, r, _) -> p v && for_all p l && for_all p r
	
let rec exists p = function
    Empty -> false
  | Node(l, v, r, _) -> p v || exists p l || exists p r
      
let filter cmp p s =
  let rec filt accu = function
    | Empty -> accu
    | Node(l, v, r, _) ->
        filt (filt (if p v then add cmp v accu else accu) l) r in
  filt Empty s
    
let partition cmp p s =
  let rec part (t, f as accu) = function
    | Empty -> accu
    | Node(l, v, r, _) ->
        part (part (if p v then (add cmp v t, f) else (t, add cmp v f)) l) r in
  part (Empty, Empty) s
    
let rec cardinal = function
    Empty -> 0
  | Node(l, v, r, _) -> cardinal l + 1 + cardinal r
	
let rec elements_aux accu = function
    Empty -> accu
  | Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l
	
let elements s =
  elements_aux [] s


let mem x s = mem s.cmp x s.tree
let find x s = find s.cmp x s.tree

let add x s = { cmp = s.cmp ; tree = add s.cmp x s.tree }
let remove x s = { cmp = s.cmp ; tree = remove s.cmp x s.tree }

(* It is not worth factorizing the following few definitions...for the moment. *)
let union s1 s2 = { cmp = check_cmp "union" s1 s2 ; tree = union s1.cmp s1.tree s2.tree }
let inter s1 s2 = { cmp = check_cmp "inter" s1 s2 ; tree = inter s1.cmp s1.tree s2.tree }
let diff  s1 s2 = { cmp = check_cmp "diff" s1 s2 ; tree = diff s1.cmp s1.tree s2.tree }
    
let subset s1 s2 = subset (check_cmp "subset" s1 s2) s1.tree s2.tree

let iter f s = iter f s.tree
let fold f s a = fold f s.tree a
let for_all f s = for_all f s.tree
let exists f s = exists f s.tree
let filter f s = { cmp = s.cmp ; tree = filter s.cmp f s.tree }
let partition f s = 
  let (tree1, tree2) = partition s.cmp f s.tree in
  { cmp = s.cmp ; tree = tree1 }, { cmp = s.cmp ; tree = tree2 }

let split x s =
  let (tree1, flag, tree2) = split s.cmp x s.tree in
  { cmp = s.cmp ; tree = tree1 }, flag, { cmp = s.cmp ; tree = tree2 }

let cardinal s = cardinal s.tree
let elements s = elements s.tree

let min_elt s = min_elt s.tree
let max_elt s = max_elt s.tree

let choose = min_elt
OCaml

Innovation. Community. Security.