Source file setp.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
type 'a cmp = 'a -> 'a -> int
type 'a tree = Empty | Node of 'a tree * 'a * 'a tree * int
type 'a t = {
cmp : 'a cmp ;
tree : 'a tree ;
}
let check_cmp msg s1 s2 =
if s1.cmp != s2.cmp then failwith (Printf.sprintf "Setp.%s: arguments have different comparison functions." msg)
else s1.cmp
let height = function
Empty -> 0
| Node(_, _, _, h) -> h
let create l v r =
let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1))
let bal l v r =
let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Set.bal"
| Node(ll, lv, lr, _) ->
if height ll >= height lr then
create ll lv (create lr v r)
else begin
match lr with
Empty -> invalid_arg "Set.bal"
| Node(lrl, lrv, lrr, _)->
create (create ll lv lrl) lrv (create lrr v r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Set.bal"
| Node(rl, rv, rr, _) ->
if height rr >= height rl then
create (create l v rl) rv rr
else begin
match rl with
Empty -> invalid_arg "Set.bal"
| Node(rll, rlv, rlr, _) ->
create (create l v rll) rlv (create rlr rv rr)
end
end else
Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1))
let rec add cmp x = function
Empty -> Node(Empty, x, Empty, 1)
| Node(l, v, r, _) as t ->
let c = cmp x v in
if c = 0 then t else
if c < 0 then bal (add cmp x l) v r else bal l v (add cmp x r)
let rec join cmp l v r =
match (l, r) with
(Empty, _) -> add cmp v r
| (_, Empty) -> add cmp v l
| (Node(ll, lv, lr, lh), Node(rl, rv, rr, rh)) ->
if lh > rh + 2 then bal ll lv (join cmp lr v r) else
if rh > lh + 2 then bal (join cmp l v rl) rv rr else
create l v r
let rec min_elt = function
Empty -> raise Not_found
| Node(Empty, v, r, _) -> v
| Node(l, v, r, _) -> min_elt l
let rec max_elt = function
Empty -> raise Not_found
| Node(l, v, Empty, _) -> v
| Node(l, v, r, _) -> max_elt r
let rec remove_min_elt = function
Empty -> invalid_arg "Set.remove_min_elt"
| Node(Empty, v, r, _) -> r
| Node(l, v, r, _) -> bal (remove_min_elt l) v r
let merge t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2)
let concat cmp t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) -> join cmp t1 (min_elt t2) (remove_min_elt t2)
let rec split cmp x = function
Empty ->
(Empty, false, Empty)
| Node(l, v, r, _) ->
let c = cmp x v in
if c = 0 then (l, true, r)
else if c < 0 then
let (ll, pres, rl) = split cmp x l in (ll, pres, join cmp rl v r)
else
let (lr, pres, rr) = split cmp x r in (join cmp l v lr, pres, rr)
let empty cmp = { cmp ; tree = Empty }
let is_empty s = match s.tree with Empty -> true | _ -> false
let rec mem cmp x = function
Empty -> false
| Node(l, v, r, _) ->
let c = cmp x v in
c = 0 || mem cmp x (if c < 0 then l else r)
let rec find cmp x = function
| Empty -> raise Not_found
| Node (l, v, r, _) ->
let c = cmp x v in
if c = 0 then v else find cmp x (if c < 0 then l else r)
let singleton cmp x = { cmp ; tree = Node(Empty, x, Empty, 1) }
let rec remove cmp x = function
Empty -> Empty
| Node(l, v, r, _) ->
let c = cmp x v in
if c = 0 then merge l r else
if c < 0 then bal (remove cmp x l) v r else bal l v (remove cmp x r)
let rec union cmp s1 s2 =
match (s1, s2) with
(Empty, t2) -> t2
| (t1, Empty) -> t1
| (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
if h1 >= h2 then
if h2 = 1 then add cmp v2 s1 else begin
let (l2, _, r2) = split cmp v1 s2 in
join cmp (union cmp l1 l2) v1 (union cmp r1 r2)
end
else
if h1 = 1 then add cmp v1 s2 else begin
let (l1, _, r1) = split cmp v2 s1 in
join cmp (union cmp l1 l2) v2 (union cmp r1 r2)
end
let rec inter cmp s1 s2 =
match (s1, s2) with
(Empty, t2) -> Empty
| (t1, Empty) -> Empty
| (Node(l1, v1, r1, _), t2) ->
match split cmp v1 t2 with
(l2, false, r2) ->
concat cmp (inter cmp l1 l2) (inter cmp r1 r2)
| (l2, true, r2) ->
join cmp (inter cmp l1 l2) v1 (inter cmp r1 r2)
let rec diff cmp s1 s2 =
match (s1, s2) with
(Empty, t2) -> Empty
| (t1, Empty) -> t1
| (Node(l1, v1, r1, _), t2) ->
match split cmp v1 t2 with
(l2, false, r2) ->
join cmp (diff cmp l1 l2) v1 (diff cmp r1 r2)
| (l2, true, r2) ->
concat cmp (diff cmp l1 l2) (diff cmp r1 r2)
type 'a enumeration = End | More of 'a * 'a tree * 'a enumeration
let rec cons_enum s e =
match s with
Empty -> e
| Node(l, v, r, _) -> cons_enum l (More(v, r, e))
let rec compare_aux cmp e1 e2 =
match (e1, e2) with
(End, End) -> 0
| (End, _) -> -1
| (_, End) -> 1
| (More(v1, r1, e1), More(v2, r2, e2)) ->
let c = cmp v1 v2 in
if c <> 0
then c
else compare_aux cmp (cons_enum r1 e1) (cons_enum r2 e2)
let compare s1 s2 =
let cmp = check_cmp "compare" s1 s2 in
compare_aux cmp (cons_enum s1.tree End) (cons_enum s2.tree End)
let equal s1 s2 = compare s1 s2 = 0
let rec subset cmp s1 s2 =
match (s1, s2) with
Empty, _ ->
true
| _, Empty ->
false
| Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) ->
let c = cmp v1 v2 in
if c = 0 then
subset cmp l1 l2 && subset cmp r1 r2
else if c < 0 then
subset cmp (Node (l1, v1, Empty, 0)) l2 && subset cmp r1 t2
else
subset cmp (Node (Empty, v1, r1, 0)) r2 && subset cmp l1 t2
let rec iter f = function
Empty -> ()
| Node(l, v, r, _) -> iter f l; f v; iter f r
let rec fold f s accu =
match s with
Empty -> accu
| Node(l, v, r, _) -> fold f r (f v (fold f l accu))
let rec for_all p = function
Empty -> true
| Node(l, v, r, _) -> p v && for_all p l && for_all p r
let rec exists p = function
Empty -> false
| Node(l, v, r, _) -> p v || exists p l || exists p r
let filter cmp p s =
let rec filt accu = function
| Empty -> accu
| Node(l, v, r, _) ->
filt (filt (if p v then add cmp v accu else accu) l) r in
filt Empty s
let partition cmp p s =
let rec part (t, f as accu) = function
| Empty -> accu
| Node(l, v, r, _) ->
part (part (if p v then (add cmp v t, f) else (t, add cmp v f)) l) r in
part (Empty, Empty) s
let rec cardinal = function
Empty -> 0
| Node(l, v, r, _) -> cardinal l + 1 + cardinal r
let rec elements_aux accu = function
Empty -> accu
| Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l
let elements s =
elements_aux [] s
let mem x s = mem s.cmp x s.tree
let find x s = find s.cmp x s.tree
let add x s = { cmp = s.cmp ; tree = add s.cmp x s.tree }
let remove x s = { cmp = s.cmp ; tree = remove s.cmp x s.tree }
let union s1 s2 = { cmp = check_cmp "union" s1 s2 ; tree = union s1.cmp s1.tree s2.tree }
let inter s1 s2 = { cmp = check_cmp "inter" s1 s2 ; tree = inter s1.cmp s1.tree s2.tree }
let diff s1 s2 = { cmp = check_cmp "diff" s1 s2 ; tree = diff s1.cmp s1.tree s2.tree }
let subset s1 s2 = subset (check_cmp "subset" s1 s2) s1.tree s2.tree
let iter f s = iter f s.tree
let fold f s a = fold f s.tree a
let for_all f s = for_all f s.tree
let exists f s = exists f s.tree
let filter f s = { cmp = s.cmp ; tree = filter s.cmp f s.tree }
let partition f s =
let (tree1, tree2) = partition s.cmp f s.tree in
{ cmp = s.cmp ; tree = tree1 }, { cmp = s.cmp ; tree = tree2 }
let split x s =
let (tree1, flag, tree2) = split s.cmp x s.tree in
{ cmp = s.cmp ; tree = tree1 }, flag, { cmp = s.cmp ; tree = tree2 }
let cardinal s = cardinal s.tree
let elements s = elements s.tree
let min_elt s = min_elt s.tree
let max_elt s = max_elt s.tree
let choose = min_elt