package core

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Module Core.IntSource

This module extends Base.Int.

Sourcetype t = int
include Sexplib0.Sexpable.S with type t := t
Sourceval t_sexp_grammar : t Sexplib0.Sexp_grammar.t
include Base.Floatable.S with type t := t
Sourceval of_float : float -> t
Sourceval to_float : t -> float
include Base.Intable.S with type t := t
Sourceval of_int_exn : int -> t
Sourceval to_int_exn : t -> int
include Base.Identifiable.S with type t := t
include Sexplib0.Sexpable.S with type t := t
include Base.Stringable.S with type t := t
include Base.Comparable.S with type t := t
include Base.Comparisons.S with type t := t
include Base.Comparisons.Infix with type t := t
include Base.Comparator.S with type t := t
Sourcetype comparator_witness
include Base.Pretty_printer.S with type t := t
include Base.Comparable.With_zero with type t := t
Sourceval is_positive : t -> bool
Sourceval is_non_negative : t -> bool
Sourceval is_negative : t -> bool
Sourceval is_non_positive : t -> bool
Sourceval sign : t -> Base.Sign.t

Returns Neg, Zero, or Pos in a way consistent with the above functions.

include Base.Invariant.S with type t := t
Sourceval invariant : t -> unit
Sourceval to_string_hum : ?delimiter:char -> t -> string

delimiter is an underscore by default.

Infix operators and constants

Sourceval one : t
Sourceval minus_one : t

Negation

There are two pairs of integer division and remainder functions, /% and %, and / and rem. They both satisfy the same equation relating the quotient and the remainder:

  x = (x /% y) * y + (x % y);
  x = (x /  y) * y + (rem x y);

The functions return the same values if x and y are positive. They all raise if y = 0.

The functions differ if x < 0 or y < 0.

If y < 0, then % and /% raise, whereas / and rem do not.

x % y always returns a value between 0 and y - 1, even when x < 0. On the other hand, rem x y returns a negative value if and only if x < 0; that value satisfies abs (rem x y) <= abs y - 1.

Sourceval rem : t -> t -> t

Other common functions

round rounds an int to a multiple of a given to_multiple_of argument, according to a direction dir, with default dir being `Nearest. round will raise if to_multiple_of <= 0. If the result overflows (too far positive or too far negative), round returns an incorrect result.

 | `Down    | rounds toward Int.neg_infinity                          |
 | `Up      | rounds toward Int.infinity                              |
 | `Nearest | rounds to the nearest multiple, or `Up in case of a tie |
 | `Zero    | rounds toward zero                                      |

Here are some examples for round ~to_multiple_of:10 for each direction:

 | `Down    | {10 .. 19} --> 10 | { 0 ... 9} --> 0 | {-10 ... -1} --> -10 |
 | `Up      | { 1 .. 10} --> 10 | {-9 ... 0} --> 0 | {-19 .. -10} --> -10 |
 | `Zero    | {10 .. 19} --> 10 | {-9 ... 9} --> 0 | {-19 .. -10} --> -10 |
 | `Nearest | { 5 .. 14} --> 10 | {-5 ... 4} --> 0 | {-15 ... -6} --> -10 |

For convenience and performance, there are variants of round with dir hard-coded. If you are writing performance-critical code you should use these.

Sourceval round : ?dir:[ `Zero | `Nearest | `Up | `Down ] -> t -> to_multiple_of:t -> t
Sourceval round_towards_zero : t -> to_multiple_of:t -> t
Sourceval round_down : t -> to_multiple_of:t -> t
Sourceval round_up : t -> to_multiple_of:t -> t
Sourceval round_nearest : t -> to_multiple_of:t -> t

Successor and predecessor functions

Sourceval succ : t -> t
Sourceval pred : t -> t

Exponentiation

Sourceval pow : t -> t -> t

pow base exponent returns base raised to the power of exponent. It is OK if base <= 0. pow raises if exponent < 0, or an integer overflow would occur.

Bit-wise logical operations

Sourceval bit_and : t -> t -> t

These are identical to land, lor, etc. except they're not infix and have different names.

Sourceval bit_or : t -> t -> t
Sourceval bit_xor : t -> t -> t
Sourceval bit_not : t -> t
Sourceval popcount : t -> int

Returns the number of 1 bits in the binary representation of the input.

Bit-shifting operations

The results are unspecified for negative shifts and shifts >= num_bits.

Sourceval shift_left : t -> int -> t

Shifts left, filling in with zeroes.

Sourceval shift_right : t -> int -> t

Shifts right, preserving the sign of the input.

Increment and decrement functions for integer references

Sourceval decr : t Caml.ref -> unit
Sourceval incr : t Caml.ref -> unit
Sourceval of_int32_exn : int32 -> t
Sourceval to_int32_exn : t -> int32
Sourceval of_int64_exn : int64 -> t
Sourceval to_int64 : t -> int64
Sourceval of_nativeint_exn : nativeint -> t
Sourceval to_nativeint_exn : t -> nativeint
Sourceval of_float_unchecked : float -> t

of_float_unchecked truncates the given floating point number to an integer, rounding towards zero. The result is unspecified if the argument is nan or falls outside the range of representable integers.

Sourceval num_bits : int

The number of bits available in this integer type. Note that the integer representations are signed.

Sourceval max_value : t

The largest representable integer.

Sourceval min_value : t

The smallest representable integer.

Sourceval shift_right_logical : t -> int -> t

Shifts right, filling in with zeroes, which will not preserve the sign of the input.

Sourceval ceil_pow2 : t -> t

ceil_pow2 x returns the smallest power of 2 that is greater than or equal to x. The implementation may only be called for x > 0. Example: ceil_pow2 17 = 32

Sourceval floor_pow2 : t -> t

floor_pow2 x returns the largest power of 2 that is less than or equal to x. The implementation may only be called for x > 0. Example: floor_pow2 17 = 16

Sourceval ceil_log2 : t -> int

ceil_log2 x returns the ceiling of log-base-2 of x, and raises if x <= 0.

Sourceval floor_log2 : t -> int

floor_log2 x returns the floor of log-base-2 of x, and raises if x <= 0.

Sourceval is_pow2 : t -> bool

is_pow2 x returns true iff x is a power of 2. is_pow2 raises if x <= 0.

Sourceval clz : t -> int

Returns the number of leading zeros in the binary representation of the input, as an integer between 0 and one less than num_bits.

The results are unspecified for t = 0.

Sourceval ctz : t -> int

Returns the number of trailing zeros in the binary representation of the input, as an integer between 0 and one less than num_bits.

The results are unspecified for t = 0.

Sourcemodule O : sig ... end
include module type of O
Sourceval (+) : t -> t -> t
Sourceval (-) : t -> t -> t
Sourceval (*) : t -> t -> t
Sourceval (/) : t -> t -> t
Sourceval (~-) : t -> t
Sourceval (**) : t -> t -> t
Sourceval (land) : t -> t -> t
Sourceval (lor) : t -> t -> t
Sourceval (lxor) : t -> t -> t
Sourceval lnot : t -> t
Sourceval abs : t -> t
Sourceval neg : t -> t
Sourceval zero : t
Sourceval (%) : t -> t -> t
Sourceval (/%) : t -> t -> t
Sourceval (//) : t -> t -> float
Sourceval (lsl) : t -> int -> t
Sourceval (asr) : t -> int -> t
Sourceval (lsr) : t -> int -> t
Sourceval max_value_30_bits : t

max_value_30_bits = 2^30 - 1. It is useful for writing tests that work on both 64-bit and 32-bit platforms.

Conversion functions

Sourceval of_int : int -> t
Sourceval to_int : t -> int
Sourceval of_int32 : int32 -> t option
Sourceval to_int32 : t -> int32 option
Sourceval of_int64 : int64 -> t option
Sourceval of_nativeint : nativeint -> t option
Sourceval to_nativeint : t -> nativeint

Truncating conversions

These functions return the least-significant bits of the input. In cases where optional conversions return Some x, truncating conversions return x.

Sourceval to_int32_trunc : t -> int32
Sourceval of_int32_trunc : int32 -> t
Sourceval of_int64_trunc : int64 -> t
Sourceval of_nativeint_trunc : nativeint -> t

Byte swap operations

Byte swap operations reverse the order of bytes in an integer. For example, Int32.bswap32 reorders the bottom 32 bits (or 4 bytes), turning 0x1122_3344 to 0x4433_2211. Byte swap functions exposed by Base use OCaml primitives to generate assembly instructions to perform the relevant byte swaps.

For a more extensive list of byteswap functions, see Int32 and Int64.

Sourceval bswap16 : int -> int

Byte swaps bottom 16 bits (2 bytes). The values of the remaining bytes are undefined.

Note that int is already stable by itself, since as a primitive type it is an integral part of the sexp / bin_io protocol. Int.Stable exists only to introduce Int.Stable.Set and Int.Stable.Map, and provide interface uniformity with other stable types.

include Int_intf.Extension_with_stable with type t := t and type comparator_witness := comparator_witness
include Int_intf.Extension with type t := t with type comparator_witness := comparator_witness
include Bin_prot.Binable.S with type t := t
include Int_intf.Hexable with type t := t
Sourcemodule Hex : sig ... end
include Base.Int.Hexable with type t := t and module Hex := Hex
include Identifiable.S with type t := t with type comparator_witness := comparator_witness
include Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
Sourceval bin_size_t : t Bin_prot.Size.sizer
Sourceval bin_write_t : t Bin_prot.Write.writer
Sourceval bin_read_t : t Bin_prot.Read.reader
Sourceval __bin_read_t__ : (int -> t) Bin_prot.Read.reader

This function only needs implementation if t exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variant t afterwards.

Sourceval bin_shape_t : Bin_prot.Shape.t
include Ppx_hash_lib.Hashable.S with type t := t
include Sexplib0.Sexpable.S with type t := t
Sourceval t_of_sexp : Sexplib0.Sexp.t -> t
include Ppx_compare_lib.Comparable.S with type t := t
include Ppx_hash_lib.Hashable.S with type t := t
Sourceval sexp_of_t : t -> Sexplib0.Sexp.t
include Base.Stringable.S with type t := t
Sourceval of_string : string -> t
Sourceval to_string : t -> string
include Base.Pretty_printer.S with type t := t
Sourceval pp : Base.Formatter.t -> t -> unit
include Comparable.S_binable with type t := t with type comparator_witness := comparator_witness
include Base.Comparable.S with type t := t with type comparator_witness := comparator_witness
include Base.Comparisons.S with type t := t
include Base.Comparisons.Infix with type t := t
Sourceval (>=) : t -> t -> bool
Sourceval (<=) : t -> t -> bool
Sourceval (=) : t -> t -> bool
Sourceval (>) : t -> t -> bool
Sourceval (<) : t -> t -> bool
Sourceval (<>) : t -> t -> bool
Sourceval equal : t -> t -> bool
Sourceval compare : t -> t -> int

compare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.

Sourceval min : t -> t -> t
Sourceval max : t -> t -> t
Sourceval ascending : t -> t -> int

ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~compare:ascending and List.sort ~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.

Sourceval descending : t -> t -> int
Sourceval between : t -> low:t -> high:t -> bool

between t ~low ~high means low <= t <= high

Sourceval clamp_exn : t -> min:t -> max:t -> t

clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.

Raises if not (min <= max).

Sourceval clamp : t -> min:t -> max:t -> t Base.Or_error.t
include Base.Comparator.S with type t := t with type comparator_witness := comparator_witness
include Hashable.S_binable with type t := t
include Ppx_hash_lib.Hashable.S with type t := t
Sourceval hash_fold_t : Base.Hash.state -> t -> Base.Hash.state
Sourceval hashable : t Base.Hashable.t
Sourcemodule Table : Hashtbl.S_binable with type key = t
Sourcemodule Hash_set : Hash_set.S_binable with type elt = t
Sourcemodule Hash_queue : Hash_queue.S with type key = t
include Comparable.Validate_with_zero with type t := t
Sourceval validate_lbound : min:t Maybe_bound.t -> t Validate.check
Sourceval validate_ubound : max:t Maybe_bound.t -> t Validate.check
Sourceval validate_bound : min:t Maybe_bound.t -> max:t Maybe_bound.t -> t Validate.check
Sourceval validate_positive : t Validate.check
Sourceval validate_non_negative : t Validate.check
Sourceval validate_negative : t Validate.check
Sourceval validate_non_positive : t Validate.check
include Quickcheckable.S_int with type t := t
include Quickcheck_intf.S_range with type t := t
include Quickcheck_intf.S with type t := t
Sourceval quickcheck_generator : t Base_quickcheck.Generator.t
Sourceval quickcheck_observer : t Base_quickcheck.Observer.t
Sourceval quickcheck_shrinker : t Base_quickcheck.Shrinker.t
Sourceval gen_incl : t -> t -> t Base_quickcheck.Generator.t

gen_incl lower_bound upper_bound produces values between lower_bound and upper_bound, inclusive. It uses an ad hoc distribution that stresses boundary conditions more often than a uniform distribution, while still able to produce any value in the range. Raises if lower_bound > upper_bound.

Sourceval gen_uniform_incl : t -> t -> t Base_quickcheck.Generator.t

gen_uniform_incl lower_bound upper_bound produces a generator for values uniformly distributed between lower_bound and upper_bound, inclusive. Raises if lower_bound > upper_bound.

Sourceval gen_log_uniform_incl : t -> t -> t Base_quickcheck.Generator.t

gen_log_uniform_incl lower_bound upper_bound produces a generator for values between lower_bound and upper_bound, inclusive, where the number of bits used to represent the value is uniformly distributed. Raises if (lower_bound < 0) || (lower_bound > upper_bound).

Sourceval gen_log_incl : t -> t -> t Base_quickcheck.Generator.t

gen_log_incl lower_bound upper_bound is like gen_log_uniform_incl, but weighted slightly more in favor of generating lower_bound and upper_bound specifically.

OCaml

Innovation. Community. Security.