package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.1.tar.gz
sha256=583471c8ed4f227cb374ee8a13a769c46579313d407db67a82d202ee48300e4b
doc/src/coq-core.tactics/elim.ml.html
Source file elim.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names open Constr open Termops open EConstr open Inductiveops open Hipattern open Tacmach open Tacticals open Clenv open Tactics type branch_args = { branchnum : int; (* the branch number *) nassums : int; (* number of assumptions/letin to be introduced *) branchsign : bool list; (* the signature of the branch. true=assumption, false=let-in *) branchnames : Tactypes.intro_patterns} type elim_kind = Case of bool | Elim (* Find the right elimination suffix corresponding to the sort of the goal *) (* c should be of type A1->.. An->B with B an inductive definition *) let general_elim_then_using mk_elim rec_flag allnames tac predicate (ind, u, args) id = let open Pp in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let sort = Retyping.get_sort_family_of env sigma (Proofview.Goal.concl gl) in let sigma, elim, elimt = match mk_elim with | Case dep -> let u = EInstance.kind sigma u in let (sigma, r, t) = Indrec.build_case_analysis_scheme env sigma (ind, u) dep sort in (sigma, EConstr.of_constr r, EConstr.of_constr t) | Elim -> let gr = Indrec.lookup_eliminator env ind sort in let sigma, r = Evd.fresh_global env sigma gr in (sigma, r, Retyping.get_type_of env sigma r) in (* applying elimination_scheme just a little modified *) let elimclause = mk_clenv_from env sigma (elim, elimt) in let indmv = match EConstr.kind elimclause.evd (last_arg elimclause.evd elimclause.templval.Evd.rebus) with | Meta mv -> mv | _ -> CErrors.anomaly (str"elimination.") in let pmv = let p, _ = decompose_app elimclause.evd elimclause.templtyp.Evd.rebus in match EConstr.kind elimclause.evd p with | Meta p -> p | _ -> let name_elim = match EConstr.kind sigma elim with | Const _ | Var _ -> str " " ++ Printer.pr_econstr_env env sigma elim | _ -> mt () in CErrors.user_err (str "The elimination combinator " ++ name_elim ++ str " is unknown.") in let elimclause' = clenv_instantiate indmv elimclause (mkVar id, mkApp (mkIndU (ind, u), args)) in let branchsigns = Tacticals.compute_constructor_signatures env ~rec_flag (ind, u) in let brnames = Tacticals.compute_induction_names false branchsigns allnames in let flags = Unification.elim_flags () in let elimclause' = match predicate with | None -> elimclause' | Some p -> clenv_unify ~flags Reduction.CONV (mkMeta pmv) p elimclause' in let after_tac i = let ba = { branchsign = branchsigns.(i); branchnames = brnames.(i); nassums = List.length branchsigns.(i); branchnum = i+1; } in tac ba in let branchtacs = List.init (Array.length branchsigns) after_tac in Proofview.tclTHEN (Clenv.res_pf ~flags elimclause') (Proofview.tclEXTEND [] tclIDTAC branchtacs) end (* computing the case/elim combinators *) let make_elim_branch_assumptions ba hyps = let assums = try List.rev (List.firstn ba.nassums hyps) with Failure _ -> CErrors.anomaly (Pp.str "make_elim_branch_assumptions.") in assums let elim_on_ba tac ba = Proofview.Goal.enter begin fun gl -> let branches = make_elim_branch_assumptions ba (Proofview.Goal.hyps gl) in tac branches end let elimination_then tac id = let open Declarations in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let ((ind, u), t) = pf_apply Tacred.reduce_to_atomic_ind gl (pf_get_type_of gl (mkVar id)) in let _, args = decompose_app_vect (Proofview.Goal.sigma gl) t in let isrec,mkelim = match (Environ.lookup_mind (fst ind) env).mind_record with | NotRecord -> true, Elim | FakeRecord | PrimRecord _ -> false, Case true in general_elim_then_using mkelim isrec None tac None (ind, u, args) id end (* Supposed to be called without as clause *) let introElimAssumsThen tac ba = assert (ba.branchnames == []); let introElimAssums = tclDO ba.nassums intro in (tclTHEN introElimAssums (elim_on_ba tac ba)) (* Supposed to be called with a non-recursive scheme *) let introCaseAssumsThen with_evars tac ba = let n1 = List.length ba.branchsign in let n2 = List.length ba.branchnames in let (l1,l2),l3 = if n1 < n2 then List.chop n1 ba.branchnames, [] else (ba.branchnames, []), List.make (n1-n2) false in let introCaseAssums = tclTHEN (intro_patterns with_evars l1) (intros_clearing l3) in (tclTHEN introCaseAssums (elim_on_ba (tac l2) ba)) let case_tac dep names tac elim ind c = let tac = introCaseAssumsThen false (* ApplyOn not supported by inversion *) tac in general_elim_then_using (Case dep) false names tac (Some elim) ind c (* The following tactic Decompose repeatedly applies the elimination(s) rule(s) of the types satisfying the predicate ``recognizer'' onto a certain hypothesis. For example : Require Elim. Require Le. Goal (y:nat){x:nat | (le O x)/\(le x y)}->{x:nat | (le O x)}. Intros y H. Decompose [sig and] H;EAuto. Qed. Another example : Goal (A,B,C:Prop)(A/\B/\C \/ B/\C \/ C/\A) -> C. Intros A B C H; Decompose [and or] H; Assumption. Qed. *) let rec general_decompose_on_hyp recognizer = ifOnHyp recognizer (general_decompose_aux recognizer) (fun _ -> Proofview.tclUNIT()) and general_decompose_aux recognizer id = elimination_then (introElimAssumsThen (fun bas -> tclTHEN (clear [id]) (tclMAP (general_decompose_on_hyp recognizer) (ids_of_named_context bas)))) id (* We should add a COMPLETE to be sure that the created hypothesis doesn't stay if no elimination is possible *) (* Best strategies but loss of compatibility *) let tmphyp_name = Id.of_string "_TmpHyp" let general_decompose recognizer c = Proofview.Goal.enter begin fun gl -> let typc = pf_get_type_of gl c in tclTHENS (cut typc) [ intro_using_then tmphyp_name (fun id -> ifOnHyp recognizer (general_decompose_aux recognizer) (fun id -> clear [id]) id); exact_no_check c ] end let head_in indl t gl = let sigma = Tacmach.project gl in try let ity,_ = extract_mrectype sigma t in List.exists (fun i -> Ind.CanOrd.equal (fst i) (fst ity)) indl with Not_found -> false let decompose_these c l = Proofview.Goal.enter begin fun gl -> let indl = List.map (fun x -> x, Univ.Instance.empty) l in general_decompose (fun env sigma (_,t) -> head_in indl t gl) c end let decompose_and c = general_decompose (fun env sigma (_,t) -> is_record env sigma t) c let decompose_or c = general_decompose (fun env sigma (_,t) -> is_disjunction env sigma t) c let h_decompose l c = decompose_these c l let h_decompose_or = decompose_or let h_decompose_and = decompose_and
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>