package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.1.tar.gz
sha256=583471c8ed4f227cb374ee8a13a769c46579313d407db67a82d202ee48300e4b
doc/src/coq-core.tactics/tacticals.ml.html
Source file tacticals.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Util open Names open Constr open EConstr open Declarations open Tactypes module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration (*********************) (* Tacticals *) (*********************) open Evd exception FailError of int * Pp.t Lazy.t let catch_failerror (e, info) = match e with | FailError (lvl,s) when lvl > 0 -> Exninfo.iraise (FailError (lvl - 1, s), info) | e -> Control.check_for_interrupt () module Old = struct [@@@ocaml.warning "-3"] open Tacmach.Old type tactic = Proofview.V82.tac [@@@ocaml.warning "+3"] let catch_failerror = catch_failerror let unpackage glsig = (ref (glsig.sigma)), glsig.it let repackage r v = {it = v; sigma = !r; } let apply_sig_tac r tac g = Control.check_for_interrupt (); (* Breakpoint *) let glsigma = tac (repackage r g) in r := glsigma.sigma; glsigma.it (* [goal_goal_list : goal sigma -> goal list sigma] *) let goal_goal_list gls = {it=[gls.it]; sigma=gls.sigma; } (* identity tactic without any message *) let tclIDTAC gls = goal_goal_list gls (* the message printing identity tactic *) let tclIDTAC_MESSAGE s gls = Feedback.msg_info (hov 0 s); tclIDTAC gls (* General failure tactic *) let tclFAIL_s s gls = user_err (str s) (* The Fail tactic *) let tclFAIL lvl s g = raise (FailError (lvl,lazy s)) let tclFAIL_lazy lvl s g = raise (FailError (lvl,s)) let start_tac gls = let sigr, g = unpackage gls in (sigr, [g]) let finish_tac (sigr,gl) = repackage sigr gl (* Apply [tacfi.(i)] on the first n subgoals, [tacli.(i)] on the last m subgoals, and [tac] on the others *) let thens3parts_tac tacfi tac tacli (sigr,gs) = let nf = Array.length tacfi in let nl = Array.length tacli in let ng = List.length gs in if ng<nf+nl then user_err (str "Not enough subgoals."); let gll = (List.map_i (fun i -> apply_sig_tac sigr (if i<nf then tacfi.(i) else if i>=ng-nl then tacli.(nl-ng+i) else tac)) 0 gs) in (sigr,List.flatten gll) (* Apply [taci.(i)] on the first n subgoals and [tac] on the others *) let thensf_tac taci tac = thens3parts_tac taci tac [||] (* Apply [tac i] on the ith subgoal (no subgoals number check) *) let thensi_tac tac (sigr,gs) = let gll = List.map_i (fun i -> apply_sig_tac sigr (tac i)) 1 gs in (sigr, List.flatten gll) let then_tac tac = thensf_tac [||] tac (* [tclTHENS3PARTS tac1 [|t1 ; ... ; tn|] tac2 [|t'1 ; ... ; t'm|] gls] applies the tactic [tac1] to [gls] then, applies [t1], ..., [tn] to the first [n] resulting subgoals, [t'1], ..., [t'm] to the last [m] subgoals and [tac2] to the rest of the subgoals in the middle. Raises an error if the number of resulting subgoals is strictly less than [n+m] *) let tclTHENS3PARTS tac1 tacfi tac tacli gls = finish_tac (thens3parts_tac tacfi tac tacli (then_tac tac1 (start_tac gls))) (* [tclTHENSFIRSTn tac1 [|t1 ; ... ; tn|] tac2 gls] applies the tactic [tac1] to [gls] and applies [t1], ..., [tn] to the first [n] resulting subgoals, and [tac2] to the others subgoals. Raises an error if the number of resulting subgoals is strictly less than [n] *) let tclTHENSFIRSTn tac1 taci tac = tclTHENS3PARTS tac1 taci tac [||] (* [tclTHENSLASTn tac1 tac2 [|t1 ;...; tn|] gls] applies the tactic [tac1] to [gls] and applies [t1], ..., [tn] to the last [n] resulting subgoals, and [tac2] to the other subgoals. Raises an error if the number of resulting subgoals is strictly less than [n] *) let tclTHENSLASTn tac1 tac taci = tclTHENS3PARTS tac1 [||] tac taci (* [tclTHEN_i tac taci gls] applies the tactic [tac] to [gls] and applies [(taci i)] to the i_th resulting subgoal (starting from 1), whatever the number of subgoals is *) let tclTHEN_i tac taci gls = finish_tac (thensi_tac taci (then_tac tac (start_tac gls))) (* [tclTHEN tac1 tac2 gls] applies the tactic [tac1] to [gls] and applies [tac2] to every resulting subgoals *) let tclTHEN tac1 tac2 = tclTHENS3PARTS tac1 [||] tac2 [||] (* [tclTHENSV tac1 [t1 ; ... ; tn] gls] applies the tactic [tac1] to [gls] and applies [t1],..., [tn] to the [n] resulting subgoals. Raises an error if the number of resulting subgoals is not [n] *) let tclTHENSV tac1 tac2v = tclTHENS3PARTS tac1 tac2v (tclFAIL_s "Wrong number of tactics.") [||] let tclTHENS tac1 tac2l = tclTHENSV tac1 (Array.of_list tac2l) (* [tclTHENLAST tac1 tac2 gls] applies the tactic [tac1] to [gls] and [tac2] to the last resulting subgoal *) let tclTHENLAST tac1 tac2 = tclTHENSLASTn tac1 tclIDTAC [|tac2|] (* [tclTHENFIRST tac1 tac2 gls] applies the tactic [tac1] to [gls] and [tac2] to the first resulting subgoal *) let tclTHENFIRST tac1 tac2 = tclTHENSFIRSTn tac1 [|tac2|] tclIDTAC (* [tclTHENLIST [t1;..;tn]] applies [t1] then [t2] ... then [tn]. More convenient than [tclTHEN] when [n] is large. *) let rec tclTHENLIST = function [] -> tclIDTAC | t1::tacl -> tclTHEN t1 (tclTHENLIST tacl) (* [tclMAP f [x1..xn]] builds [(f x1);(f x2);...(f xn)] *) let tclMAP tacfun l = List.fold_right (fun x -> (tclTHEN (tacfun x))) l tclIDTAC let weak_progress glss gls = match glss.Evd.it with | [ g ] -> not (Proofview.Progress.goal_equal ~evd:gls.Evd.sigma ~extended_evd:glss.Evd.sigma gls.Evd.it g) | _ -> true (* PROGRESS tac ptree applies tac to the goal ptree and fails if tac leaves the goal unchanged *) let tclPROGRESS tac ptree = let rslt = tac ptree in if weak_progress rslt ptree then rslt (* spiwack: progress normally goes like this: (Evd.progress_evar_map gls.Evd.sigma glss.Evd.sigma) || (weak_progress glss gls) This is immensly slow in the current implementation. Maybe we could reimplement progress_evar_map with restricted folds like "fold_undefined", with a good implementation of them. *) else user_err (str"Failed to progress.") (* ORELSE0 t1 t2 tries to apply t1 and if it fails, applies t2 *) let tclORELSE0 t1 t2 g = try t1 g with (* Breakpoint *) | e when CErrors.noncritical e -> let e = Exninfo.capture e in catch_failerror e; t2 g (* ORELSE t1 t2 tries to apply t1 and if it fails or does not progress, then applies t2 *) let tclORELSE t1 t2 = tclORELSE0 (tclPROGRESS t1) t2 (* applies t1;t2then if t1 succeeds or t2else if t1 fails t2* are called in terminal position (unless t1 produces more than 1 subgoal!) *) let tclORELSE_THEN t1 t2then t2else gls = match try Some(tclPROGRESS t1 gls) with e when CErrors.noncritical e -> let e = Exninfo.capture e in catch_failerror e; None with | None -> t2else gls | Some sgl -> let sigr, gl = unpackage sgl in finish_tac (then_tac t2then (sigr,gl)) (* TRY f tries to apply f, and if it fails, leave the goal unchanged *) let tclTRY f = (tclORELSE0 f tclIDTAC) let tclTHENTRY f g = (tclTHEN f (tclTRY g)) (* Try the first tactic that does not fail in a list of tactics *) let rec tclFIRST = function | [] -> tclFAIL_s "No applicable tactic." | t::rest -> tclORELSE0 t (tclFIRST rest) (* Fails if a tactic did not solve the goal *) let tclCOMPLETE tac = tclTHEN tac (tclFAIL_s "Proof is not complete.") (* Iteration tacticals *) let tclDO n t = let rec dorec k = if k < 0 then user_err (str"Wrong argument : Do needs a positive integer."); if Int.equal k 0 then tclIDTAC else if Int.equal k 1 then t else (* Thunk to avoid stack overflow with large n *) tclTHEN t (fun gl -> dorec (k-1) gl) in dorec n (* Beware: call by need of CAML, g is needed *) let rec tclREPEAT t g = tclORELSE_THEN t (tclREPEAT t) tclIDTAC g let tclAT_LEAST_ONCE t = (tclTHEN t (tclREPEAT t)) (************************************************************************) (* Tacticals applying on hypotheses *) (************************************************************************) let nthDecl m gl = try List.nth (pf_hyps gl) (m-1) with Failure _ -> user_err Pp.(str "No such assumption.") let nthHypId m gl = nthDecl m gl |> NamedDecl.get_id let nthHyp m gl = mkVar (nthHypId m gl) let lastDecl gl = nthDecl 1 gl let lastHypId gl = nthHypId 1 gl let lastHyp gl = nthHyp 1 gl let nLastDecls n gl = try List.firstn n (pf_hyps gl) with Failure _ -> user_err Pp.(str "Not enough hypotheses in the goal.") let nLastHypsId n gl = List.map (NamedDecl.get_id) (nLastDecls n gl) let nLastHyps n gl = List.map mkVar (nLastHypsId n gl) let onNthDecl m tac gl = tac (nthDecl m gl) gl let onNthHypId m tac gl = tac (nthHypId m gl) gl let onNthHyp m tac gl = tac (nthHyp m gl) gl let onLastDecl = onNthDecl 1 let onLastHypId = onNthHypId 1 let onLastHyp = onNthHyp 1 let onHyps find tac gl = tac (find gl) gl let onNLastDecls n tac = onHyps (nLastDecls n) tac let onNLastHypsId n tac = onHyps (nLastHypsId n) tac let onNLastHyps n tac = onHyps (nLastHyps n) tac let afterHyp id gl = fst (List.split_when (NamedDecl.get_id %> Id.equal id) (pf_hyps gl)) (***************************************) (* Clause Tacticals *) (***************************************) (* The following functions introduce several tactic combinators and functions useful for working with clauses. A clause is either None or (Some id), where id is an identifier. This type is useful for defining tactics that may be used either to transform the conclusion (None) or to transform a hypothesis id (Some id). -- --Eduardo (8/8/97) *) let fullGoal gl = None :: List.map Option.make (pf_ids_of_hyps gl) let onAllHyps tac gl = tclMAP tac (pf_ids_of_hyps gl) gl let onAllHypsAndConcl tac gl = tclMAP tac (fullGoal gl) gl let onClause tac cl gls = let hyps () = pf_ids_of_hyps gls in tclMAP tac (Locusops.simple_clause_of hyps cl) gls let onClauseLR tac cl gls = let hyps () = pf_ids_of_hyps gls in tclMAP tac (List.rev (Locusops.simple_clause_of hyps cl)) gls let ifOnHyp pred tac1 tac2 id gl = if pred (id,pf_get_hyp_typ gl id) then tac1 id gl else tac2 id gl let elimination_sort_of_goal gl = pf_apply Retyping.get_sort_family_of gl (pf_concl gl) let elimination_sort_of_hyp id gl = pf_apply Retyping.get_sort_family_of gl (pf_get_hyp_typ gl id) let elimination_sort_of_clause = function | None -> elimination_sort_of_goal | Some id -> elimination_sort_of_hyp id (* Change evars *) let tclEVARS sigma gls = tclIDTAC {gls with Evd.sigma=sigma} let pf_with_evars glsev k gls = let evd, a = glsev gls in tclTHEN (tclEVARS evd) (k a) gls let pf_constr_of_global gr k = pf_with_evars (fun gls -> pf_apply Evd.fresh_global gls gr) k end (************************************************************************) (* Elimination Tacticals *) (************************************************************************) (* The following tacticals allow to apply a tactic to the branches generated by the application of an elimination tactic. Two auxiliary types --branch_args and branch_assumptions-- are used to keep track of some information about the ``branches'' of the elimination. *) let fix_empty_or_and_pattern nv l = (* 1- The syntax does not distinguish between "[ ]" for one clause with no names and "[ ]" for no clause at all *) (* 2- More generally, we admit "[ ]" for any disjunctive pattern of arbitrary length *) match l with | IntroOrPattern [[]] -> IntroOrPattern (List.make nv []) | _ -> l let check_or_and_pattern_size ?loc check_and names branchsigns = let n = Array.length branchsigns in let msg p1 p2 = strbrk "a conjunctive pattern made of " ++ int p1 ++ (if p1 == p2 then mt () else str " or " ++ int p2) ++ str " patterns" in let err1 p1 p2 = user_err ?loc (str "Expects " ++ msg p1 p2 ++ str ".") in let errn n = user_err ?loc (str "Expects a disjunctive pattern with " ++ int n ++ str " branches.") in let err1' p1 p2 = user_err ?loc (strbrk "Expects a disjunctive pattern with 1 branch or " ++ msg p1 p2 ++ str ".") in let errforthcoming ?loc = user_err ?loc (strbrk "Unexpected non atomic pattern.") in match names with | IntroAndPattern l -> if not (Int.equal n 1) then errn n; let l' = List.filter CAst.(function {v=IntroForthcoming _} -> true | {v=IntroNaming _} | {v=IntroAction _} -> false) l in if l' != [] then errforthcoming ?loc:(List.hd l').CAst.loc; if check_and then let p1 = List.count (fun x -> x) branchsigns.(0) in let p2 = List.length branchsigns.(0) in let p = List.length l in if not (Int.equal p p1 || Int.equal p p2) then err1 p1 p2; if Int.equal p p1 then IntroAndPattern (List.extend branchsigns.(0) (CAst.make @@ IntroNaming Namegen.IntroAnonymous) l) else names else names | IntroOrPattern ll -> if not (Int.equal n (List.length ll)) then if Int.equal n 1 then let p1 = List.count (fun x -> x) branchsigns.(0) in let p2 = List.length branchsigns.(0) in err1' p1 p2 else errn n; names let get_and_check_or_and_pattern_gen ?loc check_and names branchsigns = let names = check_or_and_pattern_size ?loc check_and names branchsigns in match names with | IntroAndPattern l -> [|l|] | IntroOrPattern l -> Array.of_list l let get_and_check_or_and_pattern ?loc = get_and_check_or_and_pattern_gen ?loc true let compute_induction_names check_and branchletsigns = function | None -> Array.make (Array.length branchletsigns) [] | Some {CAst.loc;v=names} -> let names = fix_empty_or_and_pattern (Array.length branchletsigns) names in get_and_check_or_and_pattern_gen check_and ?loc names branchletsigns (* Compute the let-in signature of case analysis or standard induction scheme *) let compute_constructor_signatures env ~rec_flag ((_,k as ity),u) = let rec analrec c recargs = match c, recargs with | RelDecl.LocalAssum _ :: c, recarg::rest -> let rest = analrec c rest in begin match Declareops.dest_recarg recarg with | Norec | Nested _ -> true :: rest | Mrec (_,j) -> if rec_flag && Int.equal j k then true :: true :: rest else true :: rest end | RelDecl.LocalDef _ :: c, rest -> false :: analrec c rest | [], [] -> [] | _ -> anomaly (Pp.str "compute_constructor_signatures.") in let (mib,mip) = Inductive.lookup_mind_specif env ity in let map (ctx, _) = List.skipn (Context.Rel.length mib.mind_params_ctxt) (List.rev ctx) in let lc = Array.map map mip.mind_nf_lc in let lrecargs = Declareops.dest_subterms mip.mind_recargs in Array.map2 analrec lc lrecargs open Proofview open Proofview.Notations open Tacmach let tclIDTAC = tclUNIT () let tclTHEN t1 t2 = t1 <*> t2 let tclFAILn ?info lvl msg = let info = match info with (* If the backtrace points here it means the caller didn't save the backtrace correctly *) | None -> Exninfo.reify () | Some info -> info in tclZERO ~info (FailError (lvl,lazy msg)) let tclFAIL ?info msg = tclFAILn ?info 0 msg let tclZEROMSG ?info ?loc msg = let info = match info with (* If the backtrace points here it means the caller didn't save the backtrace correctly *) | None -> Exninfo.reify () | Some info -> info in let info = match loc with | None -> info | Some loc -> Loc.add_loc info loc in let err = UserError msg in tclZERO ~info err let catch_failerror e = try catch_failerror e; tclUNIT () with e when CErrors.noncritical e -> let _, info = Exninfo.capture e in tclZERO ~info e (* spiwack: I chose to give the Ltac + the same semantics as [Proofview.tclOR], however, for consistency with the or-else tactical, we may consider wrapping the first argument with [tclPROGRESS]. It strikes me as a bad idea, but consistency can be considered valuable. *) let tclOR t1 t2 = tclINDEPENDENT begin Proofview.tclOR t1 begin fun e -> catch_failerror e <*> t2 end end let tclORD t1 t2 = tclINDEPENDENT begin Proofview.tclOR t1 begin fun e -> catch_failerror e <*> t2 () end end let tclONCE = Proofview.tclONCE let tclEXACTLY_ONCE t = Proofview.tclEXACTLY_ONCE (FailError(0,lazy (assert false))) t let tclIFCATCH t tt te = tclINDEPENDENT begin Proofview.tclIFCATCH t tt (fun e -> catch_failerror e <*> te ()) end let tclORELSE0 t1 t2 = tclINDEPENDENT begin tclORELSE t1 begin fun e -> catch_failerror e <*> t2 end end let tclORELSE0L t1 t2 = tclINDEPENDENTL begin tclORELSE t1 begin fun e -> catch_failerror e <*> t2 end end let tclORELSE t1 t2 = tclORELSE0 (tclPROGRESS t1) t2 let tclTHENS3PARTS t1 l1 repeat l2 = tclINDEPENDENT begin t1 <*> Proofview.tclORELSE (* converts the [SizeMismatch] error into an ltac error *) begin tclEXTEND (Array.to_list l1) repeat (Array.to_list l2) end begin function (e, info) -> match e with | SizeMismatch (i,_)-> let errmsg = str"Incorrect number of goals" ++ spc() ++ str"(expected "++int i++str(String.plural i " tactic") ++ str")" in tclFAIL errmsg | reraise -> tclZERO ~info reraise end end let tclTHENSFIRSTn t1 l repeat = tclTHENS3PARTS t1 l repeat [||] let tclTHENFIRSTn t1 l = tclTHENSFIRSTn t1 l (tclUNIT()) let tclTHENFIRST t1 t2 = tclTHENFIRSTn t1 [|t2|] let tclBINDFIRST t1 t2 = t1 >>= fun ans -> Proofview.Unsafe.tclGETGOALS >>= fun gls -> match gls with | [] -> tclFAIL (str "Expect at least one goal.") | hd::tl -> Proofview.Unsafe.tclSETGOALS [hd] <*> t2 ans >>= fun ans -> Proofview.Unsafe.tclNEWGOALS tl <*> Proofview.tclUNIT ans let tclTHENSLASTn t1 repeat l = tclTHENS3PARTS t1 [||] repeat l let tclTHENLASTn t1 l = tclTHENS3PARTS t1 [||] (tclUNIT()) l let tclTHENLAST t1 t2 = tclTHENLASTn t1 [|t2|] let option_of_failure f x = try Some (f x) with Failure _ -> None let tclBINDLAST t1 t2 = t1 >>= fun ans -> Proofview.Unsafe.tclGETGOALS >>= fun gls -> match option_of_failure List.sep_last gls with | None -> tclFAIL (str "Expect at least one goal.") | Some (last,firstn) -> Proofview.Unsafe.tclSETGOALS [last] <*> t2 ans >>= fun ans -> Proofview.Unsafe.tclGETGOALS >>= fun newgls -> tclEVARMAP >>= fun sigma -> let firstn = Proofview.Unsafe.undefined sigma firstn in Proofview.Unsafe.tclSETGOALS (firstn@newgls) <*> Proofview.tclUNIT ans let tclTHENS t l = tclINDEPENDENT begin t <*>Proofview.tclORELSE (* converts the [SizeMismatch] error into an ltac error *) begin tclDISPATCH l end begin function (e, info) -> match e with | SizeMismatch (i,_)-> let errmsg = str"Incorrect number of goals" ++ spc() ++ str"(expected "++int i++str(String.plural i " tactic") ++ str")" in tclFAIL errmsg | reraise -> tclZERO ~info reraise end end let tclTHENLIST l = List.fold_left tclTHEN (tclUNIT()) l (* [tclMAP f [x1..xn]] builds [(f x1);(f x2);...(f xn)] *) let tclMAP tacfun l = List.fold_right (fun x -> (tclTHEN (tacfun x))) l (tclUNIT()) let tclTRY t = tclORELSE0 t (tclUNIT ()) let tclTRYb t = tclORELSE0L (t <*> tclUNIT true) (tclUNIT false) let tclIFTHENELSE t1 t2 t3 = tclINDEPENDENT begin Proofview.tclIFCATCH t1 (fun () -> t2) (fun (e, info) -> Proofview.tclORELSE t3 (fun e' -> tclZERO ~info e)) end let tclIFTHENSVELSE t1 a t3 = Proofview.tclIFCATCH t1 (fun () -> tclDISPATCH (Array.to_list a)) (fun _ -> t3) let tclIFTHENFIRSTELSE t1 t2 t3 = Proofview.tclIFCATCH t1 (fun () -> tclEXTEND [t2] (tclUNIT ()) []) (fun _ -> t3) let tclIFTHENTRYELSEMUST t1 t2 = tclIFTHENELSE t1 (tclTRY t2) t2 let tclIFTHENFIRSTTRYELSEMUST t1 t2 = tclIFTHENFIRSTELSE t1 (tclTRY t2) t2 (* Try the first tactic that does not fail in a list of tactics *) let rec tclFIRST = function | [] -> let info = Exninfo.reify () in tclZEROMSG ~info (str"No applicable tactic.") | t::rest -> tclORELSE0 t (tclFIRST rest) let rec tclFIRST_PROGRESS_ON tac = function | [] -> tclFAIL (str "No applicable tactic") | [a] -> tac a (* so that returned failure is the one from last item *) | a::tl -> tclORELSE (tac a) (tclFIRST_PROGRESS_ON tac tl) let rec tclDO n t = if n < 0 then let info = Exninfo.reify () in tclZEROMSG ~info (str"Wrong argument : Do needs a positive integer.") else if n = 0 then tclUNIT () else if n = 1 then t else (* Thunk to avoid stack overflow with large n *) tclTHEN t (tclUNIT () >>= fun () -> (tclDO (n-1) t)) let rec tclREPEAT0 t = tclINDEPENDENT begin Proofview.tclIFCATCH t (fun () -> tclCHECKINTERRUPT <*> tclREPEAT0 t) (fun e -> catch_failerror e <*> tclUNIT ()) end let tclREPEAT t = tclREPEAT0 (tclPROGRESS t) let rec tclREPEAT_MAIN0 t = Proofview.tclIFCATCH t (fun () -> tclTRYFOCUS 1 1 (tclREPEAT_MAIN0 t)) (fun e -> catch_failerror e <*> tclUNIT ()) let tclREPEAT_MAIN t = tclREPEAT_MAIN0 (tclPROGRESS t) let tclCOMPLETE t = t >>= fun res -> (tclINDEPENDENT (let info = Exninfo.reify () in tclZEROMSG ~info (str"Proof is not complete.")) ) <*> tclUNIT res (* Try the first that solves the current goal *) let tclSOLVE tacl = tclFIRST (List.map tclCOMPLETE tacl) let tclPROGRESS t = Proofview.tclINDEPENDENT (Proofview.tclPROGRESS t) (* Check that holes in arguments have been resolved *) let check_evars env sigma extsigma origsigma = let reachable = lazy (Evarutil.reachable_from_evars sigma (Evar.Map.domain (Evd.undefined_map origsigma))) in let rec is_undefined_up_to_restriction sigma evk = if Evd.mem origsigma evk then None else let evi = Evd.find sigma evk in match Evd.evar_body evi with | Evd.Evar_empty -> Some (evk,evi) | Evd.Evar_defined c -> match Constr.kind (EConstr.Unsafe.to_constr c) with | Evar (evk,l) -> is_undefined_up_to_restriction sigma evk | _ -> (* We make the assumption that there is no way to refine an evar remaining after typing from the initial term given to apply/elim and co tactics, is it correct? *) None in let rest = Evd.fold_undefined (fun evk evi acc -> match is_undefined_up_to_restriction sigma evk with | Some (evk',evi) -> (* If [evk'] descends from [evk] which descends itself from an originally undefined evar in [origsigma], it is a not a fresh undefined hole from [sigma]. *) if Evar.Set.mem evk (Lazy.force reachable) then acc else (evk',evi)::acc | _ -> acc) extsigma [] in match rest with | [] -> () | (evk,evi) :: _ -> let (loc,_) = evi.Evd.evar_source in Pretype_errors.error_unsolvable_implicit ?loc env sigma evk None let tclMAPDELAYEDWITHHOLES accept_unresolved_holes l tac = let rec aux = function | [] -> tclUNIT () | x :: l -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma_initial = Proofview.Goal.sigma gl in let (sigma, x) = x env sigma_initial in Proofview.Unsafe.tclEVARS sigma <*> tac x >>= fun () -> aux l >>= fun () -> if accept_unresolved_holes then tclUNIT () else tclEVARMAP >>= fun sigma_final -> try let () = check_evars env sigma_final sigma sigma_initial in tclUNIT () with e when CErrors.noncritical e -> let e, info = Exninfo.capture e in tclZERO ~info e end in aux l (* The following is basically tclMAPDELAYEDWITHHOLES accept_unresolved_holes [fun _ _ -> (sigma,())] (fun () -> tac) but with value not necessarily in unit *) let tclWITHHOLES accept_unresolved_holes tac sigma = tclEVARMAP >>= fun sigma_initial -> if sigma == sigma_initial then tac else let check_evars_if x = if not accept_unresolved_holes then tclEVARMAP >>= fun sigma_final -> tclENV >>= fun env -> try let () = check_evars env sigma_final sigma sigma_initial in tclUNIT x with e when CErrors.noncritical e -> let e, info = Exninfo.capture e in tclZERO ~info e else tclUNIT x in Proofview.Unsafe.tclEVARS sigma <*> tac >>= check_evars_if let tclDELAYEDWITHHOLES check x tac = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let (sigma, x) = x env sigma in tclWITHHOLES check (tac x) sigma end let tclTIMEOUT n t = Proofview.tclOR (Proofview.tclTIMEOUT n t) begin function (e, info) -> match e with | Logic_monad.Tac_Timeout as e -> let info = Exninfo.reify () in Proofview.tclZERO ~info (FailError (0,lazy (CErrors.print e))) | e -> Proofview.tclZERO ~info e end let tclTIME s t = Proofview.tclTIME s t let nthDecl m gl = let hyps = Proofview.Goal.hyps gl in try List.nth hyps (m-1) with Failure _ -> CErrors.user_err Pp.(str "No such assumption.") let nLastDecls gl n = try List.firstn n (Proofview.Goal.hyps gl) with Failure _ -> CErrors.user_err Pp.(str "Not enough hypotheses in the goal.") let nthHypId m gl = (* We only use [id] *) nthDecl m gl |> NamedDecl.get_id let nthHyp m gl = mkVar (nthHypId m gl) let onNthHypId m tac = Proofview.Goal.enter begin fun gl -> tac (nthHypId m gl) end let onNthHyp m tac = Proofview.Goal.enter begin fun gl -> tac (nthHyp m gl) end let onLastHypId = onNthHypId 1 let onLastHyp = onNthHyp 1 let onNthDecl m tac = Proofview.Goal.enter begin fun gl -> Proofview.tclUNIT (nthDecl m gl) >>= tac end let onLastDecl = onNthDecl 1 let nLastHypsId gl n = List.map (NamedDecl.get_id) (nLastDecls gl n) let nLastHyps gl n = List.map mkVar (nLastHypsId gl n) let ifOnHyp pred tac1 tac2 id = Proofview.Goal.enter begin fun gl -> let typ = Tacmach.pf_get_hyp_typ id gl in if pf_apply pred gl (id,typ) then tac1 id else tac2 id end let onHyps find tac = Proofview.Goal.enter begin fun gl -> tac (find gl) end let onNLastDecls n tac = onHyps (fun gl -> nLastDecls gl n) tac let onNLastHypsId n tac = onHyps (fun gl -> nLastHypsId gl n) tac let onNLastHyps n tac = onHyps (fun gl -> nLastHyps gl n) tac let afterHyp id tac = Proofview.Goal.enter begin fun gl -> let hyps = Proofview.Goal.hyps gl in let rem, _ = List.split_when (NamedDecl.get_id %> Id.equal id) hyps in tac rem end let fullGoal gl = let hyps = Tacmach.pf_ids_of_hyps gl in None :: List.map Option.make hyps let tryAllHyps tac = Proofview.Goal.enter begin fun gl -> let hyps = Tacmach.pf_ids_of_hyps gl in tclFIRST_PROGRESS_ON tac hyps end let tryAllHypsAndConcl tac = Proofview.Goal.enter begin fun gl -> tclFIRST_PROGRESS_ON tac (fullGoal gl) end let onClause tac cl = Proofview.Goal.enter begin fun gl -> let hyps = Tacmach.pf_ids_of_hyps gl in tclMAP tac (Locusops.simple_clause_of (fun () -> hyps) cl) end let fullGoal gl = None :: List.map Option.make (Tacmach.pf_ids_of_hyps gl) let onAllHyps tac = Proofview.Goal.enter begin fun gl -> tclMAP tac (Tacmach.pf_ids_of_hyps gl) end let onAllHypsAndConcl tac = Proofview.Goal.enter begin fun gl -> tclMAP tac (fullGoal gl) end let elimination_sort_of_goal gl = (* Retyping will expand evars anyway. *) let c = Proofview.Goal.concl gl in pf_apply Retyping.get_sort_family_of gl c let elimination_sort_of_hyp id gl = (* Retyping will expand evars anyway. *) let c = pf_get_hyp_typ id gl in pf_apply Retyping.get_sort_family_of gl c let elimination_sort_of_clause id gl = match id with | None -> elimination_sort_of_goal gl | Some id -> elimination_sort_of_hyp id gl let pf_constr_of_global ref = Proofview.tclEVARMAP >>= fun sigma -> Proofview.tclENV >>= fun env -> let (sigma, c) = Evd.fresh_global env sigma ref in Proofview.Unsafe.tclEVARS sigma <*> Proofview.tclUNIT c let tclTYPEOFTHEN ?refresh c tac = Proofview.Goal.enter (fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let (sigma, t) = Typing.type_of ?refresh env sigma c in Proofview.Unsafe.tclEVARS sigma <*> tac sigma t) let tclSELECT = Goal_select.tclSELECT
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>