package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.0.tar.gz
sha256=36577b55f4a4b1c64682c387de7abea932d0fd42fc0cd5406927dca344f53587
doc/src/funind_plugin/gen_principle.ml.html
Source file gen_principle.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names open Indfun_common module RelDecl = Context.Rel.Declaration let observe_tac s = New.observe_tac ~header:(Pp.str "observation") (fun _ _ -> Pp.str s) (* Construct a fixpoint as a Glob_term and not as a constr *) let rec abstract_glob_constr c = function | [] -> c | Constrexpr.CLocalDef (x, b, t) :: bl -> Constrexpr_ops.mkLetInC (x, b, t, abstract_glob_constr c bl) | Constrexpr.CLocalAssum (idl, k, t) :: bl -> List.fold_right (fun x b -> Constrexpr_ops.mkLambdaC ([x], k, t, b)) idl (abstract_glob_constr c bl) | Constrexpr.CLocalPattern _ :: bl -> assert false let interp_casted_constr_with_implicits env sigma impls c = Constrintern.intern_gen Pretyping.WithoutTypeConstraint env sigma ~impls c let build_newrecursive lnameargsardef = let env0 = Global.env () in let sigma = Evd.from_env env0 in let rec_sign, rec_impls = List.fold_left (fun (env, impls) {Vernacexpr.fname = {CAst.v = recname}; binders; rtype} -> let arityc = Constrexpr_ops.mkCProdN binders rtype in let arity, _ctx = Constrintern.interp_type env0 sigma arityc in let evd = Evd.from_env env0 in let evd, (_, (_, impls')) = Constrintern.interp_context_evars ~program_mode:false env evd binders in let impl = Constrintern.compute_internalization_data env0 evd recname Constrintern.Recursive arity impls' in let open Context.Named.Declaration in let r = Sorts.Relevant in (* TODO relevance *) ( EConstr.push_named (LocalAssum (Context.make_annot recname r, arity)) env , Id.Map.add recname impl impls )) (env0, Constrintern.empty_internalization_env) lnameargsardef in let recdef = (* Declare local notations *) let f {Vernacexpr.binders; body_def} = match body_def with | Some body_def -> let def = abstract_glob_constr body_def binders in interp_casted_constr_with_implicits rec_sign sigma rec_impls def | None -> CErrors.user_err (Pp.str "Body of Function must be given.") in Vernacstate.System.protect (List.map f) lnameargsardef in (recdef, rec_impls) (* Checks whether or not the mutual bloc is recursive *) let is_rec names = let open Glob_term in let names = List.fold_right Id.Set.add names Id.Set.empty in let check_id id names = Id.Set.mem id names in let rec lookup names gt = match DAst.get gt with | GVar id -> check_id id names | GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ | GInt _ | GFloat _ -> false | GCast (b, _, _) -> lookup names b | GRec _ -> CErrors.user_err (Pp.str "GRec not handled") | GIf (b, _, lhs, rhs) -> lookup names b || lookup names lhs || lookup names rhs | GProd (na, _, t, b) | GLambda (na, _, t, b) -> lookup names t || lookup (Nameops.Name.fold_right Id.Set.remove na names) b | GLetIn (na, b, t, c) -> lookup names b || Option.cata (lookup names) true t || lookup (Nameops.Name.fold_right Id.Set.remove na names) c | GLetTuple (nal, _, t, b) -> lookup names t || lookup (List.fold_left (fun acc na -> Nameops.Name.fold_right Id.Set.remove na acc) names nal) b | GApp (c, args) | GProj (_, args, c) -> List.exists (lookup names) (c :: args) | GArray (_u, t, def, ty) -> Array.exists (lookup names) t || lookup names def || lookup names ty | GCases (_, _, el, brl) -> List.exists (fun (e, _) -> lookup names e) el || List.exists (lookup_br names) brl and lookup_br names {CAst.v = idl, _, rt} = let new_names = List.fold_right Id.Set.remove idl names in lookup new_names rt in lookup names let rec rebuild_bl aux bl typ = let open Constrexpr in match (bl, typ) with | [], _ -> (List.rev aux, typ) | CLocalAssum (nal, bk, _) :: bl', typ -> rebuild_nal aux bk bl' nal typ | CLocalDef (na, _, _) :: bl', {CAst.v = CLetIn (_, nat, ty, typ')} -> rebuild_bl (Constrexpr.CLocalDef (na, nat, ty) :: aux) bl' typ' | _ -> assert false and rebuild_nal aux bk bl' nal typ = let open Constrexpr in match (nal, typ) with | _, {CAst.v = CProdN ([], typ)} -> rebuild_nal aux bk bl' nal typ | [], _ -> rebuild_bl aux bl' typ | ( na :: nal , {CAst.v = CProdN (CLocalAssum (na' :: nal', bk', nal't) :: rest, typ')} ) -> if Name.equal na.CAst.v na'.CAst.v || Name.is_anonymous na'.CAst.v then let assum = CLocalAssum ([na], bk, nal't) in let new_rest = if nal' = [] then rest else CLocalAssum (nal', bk', nal't) :: rest in rebuild_nal (assum :: aux) bk bl' nal (CAst.make @@ CProdN (new_rest, typ')) else let assum = CLocalAssum ([na'], bk, nal't) in let new_rest = if nal' = [] then rest else CLocalAssum (nal', bk', nal't) :: rest in rebuild_nal (assum :: aux) bk bl' (na :: nal) (CAst.make @@ CProdN (new_rest, typ')) | _ -> assert false let rebuild_bl aux bl typ = rebuild_bl aux bl typ let recompute_binder_list fixpoint_exprl = let fixl = List.map (fun fix -> Vernacexpr. { fix with rec_order = ComFixpoint.adjust_rec_order ~structonly:false fix.binders fix.rec_order }) fixpoint_exprl in let (_, _, _, typel), _, ctx, _ = ComFixpoint.interp_fixpoint ~check_recursivity:false ~cofix:false fixl in let constr_expr_typel = with_full_print (List.map (fun c -> Constrextern.extern_constr (Global.env ()) (Evd.from_ctx ctx) (EConstr.of_constr c))) typel in let fixpoint_exprl_with_new_bl = List.map2 (fun ({Vernacexpr.binders} as fp) fix_typ -> let binders, rtype = rebuild_bl [] binders fix_typ in {fp with Vernacexpr.binders; rtype}) fixpoint_exprl constr_expr_typel in fixpoint_exprl_with_new_bl let rec local_binders_length = function (* Assume that no `{ ... } contexts occur *) | [] -> 0 | Constrexpr.CLocalDef _ :: bl -> 1 + local_binders_length bl | Constrexpr.CLocalAssum (idl, _, _) :: bl -> List.length idl + local_binders_length bl | Constrexpr.CLocalPattern _ :: bl -> assert false let prepare_body {Vernacexpr.binders} rt = let n = local_binders_length binders in (* Pp.msgnl (str "nb lambda to chop : " ++ str (string_of_int n) ++ fnl () ++Printer.pr_glob_constr rt); *) let fun_args, rt' = chop_rlambda_n n rt in (fun_args, rt') let build_functional_principle env (sigma : Evd.evar_map) old_princ_type sorts funs _i proof_tac hook = (* First we get the type of the old graph principle *) let mutr_nparams = (Tactics.compute_elim_sig sigma (EConstr.of_constr old_princ_type)) .Tactics.nparams in let new_principle_type = Functional_principles_types.compute_new_princ_type_from_rel (Global.env ()) (Array.map Constr.mkConstU funs) sorts old_princ_type in let sigma, _ = Typing.type_of ~refresh:true env sigma (EConstr.of_constr new_principle_type) in let map (c, u) = EConstr.mkConstU (c, EConstr.EInstance.make u) in let ftac = proof_tac (Array.map map funs) mutr_nparams in let uctx = Evd.evar_universe_context sigma in let typ = EConstr.of_constr new_principle_type in let body, typ, univs, _safe, _uctx = Declare.build_by_tactic env ~uctx ~poly:false ~typ ftac in (* uctx was ignored before *) let hook = Declare.Hook.make (hook new_principle_type) in (body, typ, univs, hook, sigma) let change_property_sort evd toSort princ princName = let open Context.Rel.Declaration in let princ = EConstr.of_constr princ in let princ_info = Tactics.compute_elim_sig evd princ in let change_sort_in_predicate decl = LocalAssum ( get_annot decl , let args, ty = Term.decompose_prod (EConstr.Unsafe.to_constr (get_type decl)) in let s = Constr.destSort ty in Global.add_constraints (UnivSubst.enforce_leq_sort toSort s Univ.Constraints.empty); Term.compose_prod args (Constr.mkSort toSort) ) in let evd, princName_as_constr = Evd.fresh_global (Global.env ()) evd (Option.get (Constrintern.locate_reference (Libnames.qualid_of_ident princName))) in let init = let nargs = princ_info.Tactics.nparams + List.length princ_info.Tactics.predicates in Constr.mkApp ( EConstr.Unsafe.to_constr princName_as_constr , Array.init nargs (fun i -> Constr.mkRel (nargs - i)) ) in ( evd , Term.it_mkLambda_or_LetIn (Term.it_mkLambda_or_LetIn init (List.map change_sort_in_predicate princ_info.Tactics.predicates)) (List.map (fun d -> Termops.map_rel_decl EConstr.Unsafe.to_constr d) princ_info.Tactics.params) ) let generate_functional_principle (evd : Evd.evar_map ref) old_princ_type sorts new_princ_name funs i proof_tac = try let f = funs.(i) in let sigma, type_sort = Evd.fresh_sort_in_family !evd Sorts.InType in evd := sigma; let new_sorts = match sorts with | None -> Array.make (Array.length funs) type_sort | Some a -> a in let base_new_princ_name, new_princ_name = match new_princ_name with | Some id -> (id, id) | None -> let id_of_f = Label.to_id (Constant.label (fst f)) in (id_of_f, Indrec.make_elimination_ident id_of_f (Sorts.family type_sort)) in let names = ref [new_princ_name] in let hook new_principle_type _ = if Option.is_empty sorts then ( (* let id_of_f = Label.to_id (con_label f) in *) let register_with_sort fam_sort = let evd' = Evd.from_env (Global.env ()) in let evd', s = Evd.fresh_sort_in_family evd' fam_sort in let name = Indrec.make_elimination_ident base_new_princ_name fam_sort in let evd', value = change_property_sort evd' s new_principle_type new_princ_name in let evd' = fst (Typing.type_of ~refresh:true (Global.env ()) evd' (EConstr.of_constr value)) in (* Pp.msgnl (str "new principle := " ++ pr_lconstr value); *) let univs = Evd.univ_entry ~poly:false evd' in let ce = Declare.definition_entry ~univs value in ignore (Declare.declare_constant ~name ~kind:Decls.(IsDefinition Scheme) (Declare.DefinitionEntry ce)); Declare.definition_message name; names := name :: !names in register_with_sort Sorts.InProp; register_with_sort Sorts.InSet ) in let body, types, univs, hook, sigma0 = build_functional_principle (Global.env ()) !evd old_princ_type new_sorts funs i proof_tac hook in evd := sigma0; (* Pr 1278 : Don't forget to close the goal if an error is raised !!!! *) let uctx = Evd.evar_universe_context sigma in let entry = Declare.definition_entry ~univs ?types body in let (_ : Names.GlobRef.t) = Declare.declare_entry ~name:new_princ_name ~hook ~kind:Decls.(IsProof Theorem) ~impargs:[] ~uctx entry in () with e when CErrors.noncritical e -> raise (Defining_principle e) let generate_principle (evd : Evd.evar_map ref) pconstants on_error is_general do_built fix_rec_l recdefs (continue_proof : int -> Names.Constant.t array -> EConstr.constr array -> int -> unit Proofview.tactic) : unit = let names = List.map (function {Vernacexpr.fname = {CAst.v = name}} -> name) fix_rec_l in let fun_bodies = List.map2 prepare_body fix_rec_l recdefs in let funs_args = List.map fst fun_bodies in let funs_types = List.map (function {Vernacexpr.rtype} -> rtype) fix_rec_l in try (* We then register the Inductive graphs of the functions *) Glob_term_to_relation.build_inductive !evd pconstants funs_args funs_types recdefs; if do_built then begin (*i The next call to mk_rel_id is valid since we have just construct the graph Ensures by : do_built i*) let f_R_mut = Libnames.qualid_of_ident @@ mk_rel_id (List.nth names 0) in let ind_kn = fst (locate_with_msg Pp.(Libnames.pr_qualid f_R_mut ++ str ": Not an inductive type!") locate_ind f_R_mut) in let fname_kn {Vernacexpr.fname} = let f_ref = Libnames.qualid_of_ident ?loc:fname.CAst.loc fname.CAst.v in locate_with_msg Pp.(Libnames.pr_qualid f_ref ++ str ": Not an inductive type!") locate_constant f_ref in let funs_kn = Array.of_list (List.map fname_kn fix_rec_l) in let _ = List.map_i (fun i _x -> let env = Global.env () in let princ = Indrec.lookup_eliminator env (ind_kn, i) Sorts.InProp in let evd = ref (Evd.from_env env) in let evd', uprinc = Evd.fresh_global env !evd princ in let _ = evd := evd' in let sigma, princ_type = Typing.type_of ~refresh:true env !evd uprinc in evd := sigma; let princ_type = EConstr.Unsafe.to_constr princ_type in generate_functional_principle evd princ_type None None (Array.of_list pconstants) (* funs_kn *) i (continue_proof 0 [|funs_kn.(i)|])) 0 fix_rec_l in Array.iter (add_Function is_general) funs_kn; () end with e when CErrors.noncritical e -> on_error names e let register_struct is_rec fixpoint_exprl = let open EConstr in match fixpoint_exprl with | [{Vernacexpr.fname; univs; binders; rtype; body_def}] when not is_rec -> let body = match body_def with | Some body -> body | None -> CErrors.user_err Pp.(str "Body of Function must be given.") in ComDefinition.do_definition ~name:fname.CAst.v ~poly:false ~kind:Decls.Definition univs binders None body (Some rtype); let evd, rev_pconstants = List.fold_left (fun (evd, l) {Vernacexpr.fname} -> let evd, c = Evd.fresh_global (Global.env ()) evd (Option.get (Constrintern.locate_reference (Libnames.qualid_of_ident fname.CAst.v))) in let cst, u = destConst evd c in let u = EInstance.kind evd u in (evd, (cst, u) :: l)) (Evd.from_env (Global.env ()), []) fixpoint_exprl in (None, evd, List.rev rev_pconstants) | _ -> ComFixpoint.do_fixpoint ~poly:false fixpoint_exprl; let evd, rev_pconstants = List.fold_left (fun (evd, l) {Vernacexpr.fname} -> let evd, c = Evd.fresh_global (Global.env ()) evd (Option.get (Constrintern.locate_reference (Libnames.qualid_of_ident fname.CAst.v))) in let cst, u = destConst evd c in let u = EInstance.kind evd u in (evd, (cst, u) :: l)) (Evd.from_env (Global.env ()), []) fixpoint_exprl in (None, evd, List.rev rev_pconstants) let generate_correction_proof_wf f_ref tcc_lemma_ref is_mes functional_ref eq_ref rec_arg_num rec_arg_type relation (_ : int) (_ : Names.Constant.t array) (_ : EConstr.constr array) (_ : int) : unit Proofview.tactic = Functional_principles_proofs.prove_principle_for_gen (f_ref, functional_ref, eq_ref) tcc_lemma_ref is_mes rec_arg_num rec_arg_type relation (* [generate_type g_to_f f graph i] build the completeness (resp. correctness) lemma type if [g_to_f = true] (resp. g_to_f = false) where [graph] is the graph of [f] and is the [i]th function in the block. [generate_type true f i] returns \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res, graph\ x_1\ldots x_n\ res \rightarrow res = fv \] decomposed as the context and the conclusion [generate_type false f i] returns \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res, res = fv \rightarrow graph\ x_1\ldots x_n\ res\] decomposed as the context and the conclusion *) let generate_type evd g_to_f f graph = let open Context.Rel.Declaration in let open EConstr in let open EConstr.Vars in (*i we deduce the number of arguments of the function and its returned type from the graph i*) let evd', graph = Evd.fresh_global (Global.env ()) !evd (GlobRef.IndRef (fst (destInd !evd graph))) in evd := evd'; let sigma, graph_arity = Typing.type_of (Global.env ()) !evd graph in evd := sigma; let ctxt, _ = decompose_prod_assum !evd graph_arity in let fun_ctxt, res_type = match ctxt with | [] | [_] -> CErrors.anomaly (Pp.str "Not a valid context.") | decl :: fun_ctxt -> (fun_ctxt, RelDecl.get_type decl) in let rec args_from_decl i accu = function | [] -> accu | LocalDef _ :: l -> args_from_decl (succ i) accu l | _ :: l -> let t = mkRel i in args_from_decl (succ i) (t :: accu) l in (*i We need to name the vars [res] and [fv] i*) let filter decl = match RelDecl.get_name decl with Name id -> Some id | Anonymous -> None in let named_ctxt = Id.Set.of_list (List.map_filter filter fun_ctxt) in let res_id = Namegen.next_ident_away_in_goal (Global.env ()) (Id.of_string "_res") named_ctxt in let fv_id = Namegen.next_ident_away_in_goal (Global.env ()) (Id.of_string "fv") (Id.Set.add res_id named_ctxt) in (*i we can then type the argument to be applied to the function [f] i*) let args_as_rels = Array.of_list (args_from_decl 1 [] fun_ctxt) in (*i the hypothesis [res = fv] can then be computed We will need to lift it by one in order to use it as a conclusion i*) let make_eq = make_eq () in let res_eq_f_of_args = mkApp (make_eq, [|lift 2 res_type; mkRel 1; mkRel 2|]) in (*i The hypothesis [graph\ x_1\ldots x_n\ res] can then be computed We will need to lift it by one in order to use it as a conclusion i*) let args_and_res_as_rels = Array.of_list (args_from_decl 3 [] fun_ctxt) in let args_and_res_as_rels = Array.append args_and_res_as_rels [|mkRel 1|] in let graph_applied = mkApp (graph, args_and_res_as_rels) in (*i The [pre_context] is the defined to be the context corresponding to \[\forall (x_1:t_1)\ldots(x_n:t_n), let fv := f x_1\ldots x_n in, forall res, \] i*) let pre_ctxt = LocalAssum (Context.make_annot (Name res_id) Sorts.Relevant, lift 1 res_type) :: LocalDef ( Context.make_annot (Name fv_id) Sorts.Relevant , mkApp (f, args_as_rels) , res_type ) :: fun_ctxt in (*i and we can return the solution depending on which lemma type we are defining i*) if g_to_f then ( LocalAssum (Context.make_annot Anonymous Sorts.Relevant, graph_applied) :: pre_ctxt , lift 1 res_eq_f_of_args , graph ) else ( LocalAssum (Context.make_annot Anonymous Sorts.Relevant, res_eq_f_of_args) :: pre_ctxt , lift 1 graph_applied , graph ) (** [find_induction_principle f] searches and returns the [body] and the [type] of [f_rect] WARNING: while convertible, [type_of body] and [type] can be non equal *) let find_induction_principle evd f = let f_as_constant, _u = match EConstr.kind !evd f with | Constr.Const c' -> c' | _ -> CErrors.user_err Pp.(str "Must be used with a function") in match find_Function_infos f_as_constant with | None -> raise Not_found | Some infos -> ( match infos.rect_lemma with | None -> raise Not_found | Some rect_lemma -> let evd', rect_lemma = Evd.fresh_global (Global.env ()) !evd (GlobRef.ConstRef rect_lemma) in let evd', typ = Typing.type_of ~refresh:true (Global.env ()) evd' rect_lemma in evd := evd'; (rect_lemma, typ) ) (* [prove_fun_correct funs_constr graphs_constr schemes lemmas_types_infos i ] is the tactic used to prove correctness lemma. [funs_constr], [graphs_constr] [schemes] [lemmas_types_infos] are the mutually recursive functions (resp. graphs of the functions and principles and correctness lemma types) to prove correct. [i] is the indice of the function to prove correct The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is it looks like~: [\forall (x_1:t_1)\ldots(x_n:t_n), forall res, res = f x_1\ldots x_n in, \rightarrow graph\ x_1\ldots x_n\ res] The sketch of the proof is the following one~: \begin{enumerate} \item intros until $x_n$ \item $functional\ induction\ (f.(i)\ x_1\ldots x_n)$ using schemes.(i) \item for each generated branch intro [res] and [hres :res = f x_1\ldots x_n], rewrite [hres] and the apply the corresponding constructor of the corresponding graph inductive. \end{enumerate} *) let rec generate_fresh_id x avoid i = if i == 0 then [] else let id = Namegen.next_ident_away_in_goal (Global.env ()) x (Id.Set.of_list avoid) in id :: generate_fresh_id x (id :: avoid) (pred i) let prove_fun_correct evd graphs_constr schemes lemmas_types_infos i : unit Proofview.tactic = let open Constr in let open EConstr in let open Context.Rel.Declaration in let open Tacmach in let open Tactics in let open Tacticals in Proofview.Goal.enter (fun g -> (* first of all we recreate the lemmas types to be used as predicates of the induction principle that is~: \[fun (x_1:t_1)\ldots(x_n:t_n)=> fun fv => fun res => res = fv \rightarrow graph\ x_1\ldots x_n\ res\] *) (* we the get the definition of the graphs block *) let graph_ind, u = destInd evd graphs_constr.(i) in let kn = fst graph_ind in let mib, _ = Global.lookup_inductive graph_ind in (* and the principle to use in this lemma in $\zeta$ normal form *) let f_principle, princ_type = schemes.(i) in let princ_type = Reductionops.nf_zeta (Global.env ()) evd princ_type in let princ_infos = Tactics.compute_elim_sig evd princ_type in (* The number of args of the function is then easily computable *) let nb_fun_args = Termops.nb_prod (Proofview.Goal.sigma g) (Proofview.Goal.concl g) - 2 in let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in let ids = args_names @ pf_ids_of_hyps g in (* Since we cannot ensure that the functional principle is defined in the environment and due to the bug #1174, we will need to pose the principle using a name *) let principle_id = Namegen.next_ident_away_in_goal (Global.env ()) (Id.of_string "princ") (Id.Set.of_list ids) in let ids = principle_id :: ids in (* We get the branches of the principle *) let branches = List.rev princ_infos.Tactics.branches in (* and built the intro pattern for each of them *) let intro_pats = List.map (fun decl -> List.map (fun id -> CAst.make @@ Tactypes.IntroNaming (Namegen.IntroIdentifier id)) (generate_fresh_id (Id.of_string "y") ids (List.length (fst (decompose_prod_assum evd (RelDecl.get_type decl)))))) branches in (* before building the full intro pattern for the principle *) let eq_ind = make_eq () in let eq_construct = mkConstructUi (destInd evd eq_ind, 1) in (* The next to referencies will be used to find out which constructor to apply in each branch *) let ind_number = ref 0 and min_constr_number = ref 0 in (* The tactic to prove the ith branch of the principle *) let prove_branch i pat = (* We get the identifiers of this branch *) let pre_args = List.fold_right (fun {CAst.v = pat} acc -> match pat with | Tactypes.IntroNaming (Namegen.IntroIdentifier id) -> id :: acc | _ -> CErrors.anomaly (Pp.str "Not an identifier.")) pat [] in (* and get the real args of the branch by unfolding the defined constant *) (* We can then recompute the arguments of the constructor. For each [hid] introduced by this branch, if [hid] has type $forall res, res=fv -> graph.(j)\ x_1\ x_n res$ the corresponding arguments of the constructor are [ fv (hid fv (refl_equal fv)) ]. If [hid] has another type the corresponding argument of the constructor is [hid] *) let constructor_args g = List.fold_right (fun hid acc -> let type_of_hid = pf_get_hyp_typ hid g in let sigma = Proofview.Goal.sigma g in match EConstr.kind sigma type_of_hid with | Prod (_, _, t') -> ( match EConstr.kind sigma t' with | Prod (_, t'', t''') -> ( match (EConstr.kind sigma t'', EConstr.kind sigma t''') with | App (eq, args), App (graph', _) when EConstr.eq_constr sigma eq eq_ind && Array.exists (EConstr.eq_constr_nounivs sigma graph') graphs_constr -> args.(2) :: mkApp ( mkVar hid , [| args.(2) ; mkApp (eq_construct, [|args.(0); args.(2)|]) |] ) :: acc | _ -> mkVar hid :: acc ) | _ -> mkVar hid :: acc ) | _ -> mkVar hid :: acc) pre_args [] in (* in fact we must also add the parameters to the constructor args *) let constructor_args g = let params_id = fst (List.chop princ_infos.Tactics.nparams args_names) in List.map mkVar params_id @ constructor_args g in (* We then get the constructor corresponding to this branch and modifies the references has needed i.e. if the constructor is the last one of the current inductive then add one the number of the inductive to take and add the number of constructor of the previous graph to the minimal constructor number *) let constructor = let constructor_num = i - !min_constr_number in let length = Array.length mib.Declarations.mind_packets.(!ind_number) .Declarations.mind_consnames in if constructor_num <= length then ((kn, !ind_number), constructor_num) else begin incr ind_number; min_constr_number := !min_constr_number + length; ((kn, !ind_number), 1) end in (* we can then build the final proof term *) let app_constructor g = applist (mkConstructU (constructor, u), constructor_args g) in (* an apply the tactic *) let res, hres = match generate_fresh_id (Id.of_string "z") ids (* @this_branche_ids *) 2 with | [res; hres] -> (res, hres) | _ -> assert false in (* observe (str "constructor := " ++ Printer.pr_lconstr_env (pf_env g) app_constructor); *) tclTHENLIST [ observe_tac "h_intro_patterns " (match pat with [] -> tclIDTAC | _ -> intro_patterns false pat) ; (* unfolding of all the defined variables introduced by this branch *) (* observe_tac "unfolding" pre_tac; *) (* $zeta$ normalizing of the conclusion *) reduce (Genredexpr.Cbv { Redops.all_flags with Genredexpr.rDelta = false ; Genredexpr.rConst = [] }) Locusops.onConcl ; observe_tac "toto " (Proofview.tclUNIT ()) ; (* introducing the result of the graph and the equality hypothesis *) observe_tac "introducing" (tclMAP Simple.intro [res; hres]) ; (* replacing [res] with its value *) observe_tac "rewriting res value" (Equality.rewriteLR (mkVar hres)) ; (* Conclusion *) observe_tac "exact" (Proofview.Goal.enter (fun g -> exact_check (app_constructor g))) ] in (* end of branche proof *) let lemmas = Array.map (fun (_, (ctxt, concl)) -> match ctxt with | [] | [_] | [_; _] -> CErrors.anomaly (Pp.str "bad context.") | hres :: res :: decl :: ctxt -> let res = EConstr.it_mkLambda_or_LetIn (EConstr.it_mkProd_or_LetIn concl [hres; res]) ( LocalAssum (RelDecl.get_annot decl, RelDecl.get_type decl) :: ctxt ) in res) lemmas_types_infos in let param_names = fst (List.chop princ_infos.nparams args_names) in let params = List.map mkVar param_names in let lemmas = Array.to_list (Array.map (fun c -> applist (c, params)) lemmas) in (* The bindings of the principle that is the params of the principle and the different lemma types *) let bindings = let params_bindings, avoid = List.fold_left2 (fun (bindings, avoid) decl p -> let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in (p :: bindings, id :: avoid)) ([], pf_ids_of_hyps g) princ_infos.params (List.rev params) in let lemmas_bindings = List.rev (fst (List.fold_left2 (fun (bindings, avoid) decl p -> let id = Namegen.next_ident_away (Nameops.Name.get_id (RelDecl.get_name decl)) (Id.Set.of_list avoid) in ( Reductionops.nf_zeta (Proofview.Goal.env g) (Proofview.Goal.sigma g) p :: bindings , id :: avoid )) ([], avoid) princ_infos.predicates lemmas)) in params_bindings @ lemmas_bindings in tclTHENLIST [ observe_tac "principle" (assert_by (Name principle_id) princ_type (exact_check f_principle)) ; observe_tac "intro args_names" (tclMAP Simple.intro args_names) ; (* observe_tac "titi" (pose_proof (Name (Id.of_string "__")) (Reductionops.nf_beta Evd.empty ((mkApp (mkVar principle_id,Array.of_list bindings))))); *) observe_tac "idtac" tclIDTAC ; tclTHENS (observe_tac "functional_induction" (Proofview.Goal.enter (fun gl -> let term = mkApp (mkVar principle_id, Array.of_list bindings) in tclTYPEOFTHEN ~refresh:true term (fun _ _ -> apply term)))) (List.map_i (fun i pat -> observe_tac ("proving branch " ^ string_of_int i) (prove_branch i pat)) 1 intro_pats) ]) (* [prove_fun_complete funs graphs schemes lemmas_types_infos i] is the tactic used to prove completeness lemma. [funcs], [graphs] [schemes] [lemmas_types_infos] are the mutually recursive functions (resp. definitions of the graphs of the functions, principles and correctness lemma types) to prove correct. [i] is the indice of the function to prove complete The lemma to prove if suppose to have been generated by [generate_type] (in $\zeta$ normal form that is it looks like~: [\forall (x_1:t_1)\ldots(x_n:t_n), forall res, graph\ x_1\ldots x_n\ res, \rightarrow res = f x_1\ldots x_n in] The sketch of the proof is the following one~: \begin{enumerate} \item intros until $H:graph\ x_1\ldots x_n\ res$ \item $elim\ H$ using schemes.(i) \item for each generated branch, intro the news hyptohesis, for each such hyptohesis [h], if [h] has type [x=?] with [x] a variable, then subst [x], if [h] has type [t=?] with [t] not a variable then rewrite [t] in the subterms, else if [h] is a match then destruct it, else do just introduce it, after all intros, the conclusion should be a reflexive equality. \end{enumerate} *) let thin = Tactics.clear (* [intros_with_rewrite] do the intros in each branch and treat each new hypothesis (unfolding, substituting, destructing cases \ldots) *) let tauto = let open Ltac_plugin in let dp = List.map Id.of_string ["Tauto"; "Init"; "Coq"] in let mp = ModPath.MPfile (DirPath.make dp) in let kn = KerName.make mp (Label.make "tauto") in Proofview.tclBIND (Proofview.tclUNIT ()) (fun () -> let body = Tacenv.interp_ltac kn in Tacinterp.eval_tactic body) (* [generalize_dependent_of x hyp g] generalize every hypothesis which depends of [x] but [hyp] *) let generalize_dependent_of x hyp = let open Context.Named.Declaration in let open Tacticals in Proofview.Goal.enter (fun g -> tclMAP (function | LocalAssum ({Context.binder_name = id}, t) when (not (Id.equal id hyp)) && Termops.occur_var (Proofview.Goal.env g) (Proofview.Goal.sigma g) x t -> tclTHEN (Tactics.generalize [EConstr.mkVar id]) (thin [id]) | _ -> Proofview.tclUNIT ()) (Proofview.Goal.hyps g)) let rec intros_with_rewrite () = observe_tac "intros_with_rewrite" (intros_with_rewrite_aux ()) and intros_with_rewrite_aux () : unit Proofview.tactic = let open Constr in let open EConstr in let open Tacmach in let open Tactics in let open Tacticals in Proofview.Goal.enter (fun g -> let eq_ind = make_eq () in let sigma = Proofview.Goal.sigma g in match EConstr.kind sigma (Proofview.Goal.concl g) with | Prod (_, t, t') -> ( match EConstr.kind sigma t with | App (eq, args) when EConstr.eq_constr sigma eq eq_ind -> if Reductionops.is_conv (Proofview.Goal.env g) (Proofview.Goal.sigma g) args.(1) args.(2) then let id = pf_get_new_id (Id.of_string "y") g in tclTHENLIST [Simple.intro id; thin [id]; intros_with_rewrite ()] else if isVar sigma args.(1) && Environ.evaluable_named (destVar sigma args.(1)) (Proofview.Goal.env g) then tclTHENLIST [ unfold_in_concl [ ( Locus.AllOccurrences , Tacred.EvalVarRef (destVar sigma args.(1)) ) ] ; tclMAP (fun id -> tclTRY (unfold_in_hyp [ ( Locus.AllOccurrences , Tacred.EvalVarRef (destVar sigma args.(1)) ) ] (destVar sigma args.(1), Locus.InHyp))) (pf_ids_of_hyps g) ; intros_with_rewrite () ] else if isVar sigma args.(2) && Environ.evaluable_named (destVar sigma args.(2)) (Proofview.Goal.env g) then tclTHENLIST [ unfold_in_concl [ ( Locus.AllOccurrences , Tacred.EvalVarRef (destVar sigma args.(2)) ) ] ; tclMAP (fun id -> tclTRY (unfold_in_hyp [ ( Locus.AllOccurrences , Tacred.EvalVarRef (destVar sigma args.(2)) ) ] (destVar sigma args.(2), Locus.InHyp))) (pf_ids_of_hyps g) ; intros_with_rewrite () ] else if isVar sigma args.(1) then let id = pf_get_new_id (Id.of_string "y") g in tclTHENLIST [ Simple.intro id ; generalize_dependent_of (destVar sigma args.(1)) id ; tclTRY (Equality.rewriteLR (mkVar id)) ; intros_with_rewrite () ] else if isVar sigma args.(2) then let id = pf_get_new_id (Id.of_string "y") g in tclTHENLIST [ Simple.intro id ; generalize_dependent_of (destVar sigma args.(2)) id ; tclTRY (Equality.rewriteRL (mkVar id)) ; intros_with_rewrite () ] else let id = pf_get_new_id (Id.of_string "y") g in tclTHENLIST [ Simple.intro id ; tclTRY (Equality.rewriteLR (mkVar id)) ; intros_with_rewrite () ] | Ind _ when EConstr.eq_constr sigma t (EConstr.of_constr ( UnivGen.constr_of_monomorphic_global (Global.env ()) @@ Coqlib.lib_ref "core.False.type" )) -> tauto | Case (_, _, _, _, _, v, _) -> tclTHENLIST [simplest_case v; intros_with_rewrite ()] | LetIn _ -> tclTHENLIST [ reduce (Genredexpr.Cbv {Redops.all_flags with Genredexpr.rDelta = false}) Locusops.onConcl ; intros_with_rewrite () ] | _ -> let id = pf_get_new_id (Id.of_string "y") g in tclTHENLIST [Simple.intro id; intros_with_rewrite ()] ) | LetIn _ -> tclTHENLIST [ reduce (Genredexpr.Cbv {Redops.all_flags with Genredexpr.rDelta = false}) Locusops.onConcl ; intros_with_rewrite () ] | _ -> Proofview.tclUNIT ()) let rec reflexivity_with_destruct_cases () = let open Constr in let open EConstr in let open Tacmach in let open Tactics in let open Tacticals in Proofview.Goal.enter (fun g -> let destruct_case () = try match EConstr.kind (Proofview.Goal.sigma g) (snd (destApp (Proofview.Goal.sigma g) (Proofview.Goal.concl g))).( 2) with | Case (_, _, _, _, _, v, _) -> tclTHENLIST [ simplest_case v ; intros ; observe_tac "reflexivity_with_destruct_cases" (reflexivity_with_destruct_cases ()) ] | _ -> reflexivity with e when CErrors.noncritical e -> reflexivity in let eq_ind = make_eq () in let my_inj_flags = Some { Equality.keep_proof_equalities = false ; injection_pattern_l2r_order = false (* probably does not matter; except maybe with dependent hyps *) } in let discr_inject = onAllHypsAndConcl (fun sc -> match sc with | None -> Proofview.tclUNIT () | Some id -> Proofview.Goal.enter (fun g -> match EConstr.kind (Proofview.Goal.sigma g) (pf_get_hyp_typ id g) with | App (eq, [|_; t1; t2|]) when EConstr.eq_constr (Proofview.Goal.sigma g) eq eq_ind -> if Equality.discriminable (Proofview.Goal.env g) (Proofview.Goal.sigma g) t1 t2 then Equality.discrHyp id else if Equality.injectable (Proofview.Goal.env g) (Proofview.Goal.sigma g) ~keep_proofs:None t1 t2 then tclTHENLIST [ Equality.injHyp my_inj_flags ~injection_in_context:false None id ; thin [id] ; intros_with_rewrite () ] else Proofview.tclUNIT () | _ -> Proofview.tclUNIT ())) in tclFIRST [ observe_tac "reflexivity_with_destruct_cases : reflexivity" reflexivity ; observe_tac "reflexivity_with_destruct_cases : destruct_case" (destruct_case ()) ; (* We reach this point ONLY if the same value is matched (at least) two times along binding path. In this case, either we have a discriminable hypothesis and we are done, either at least an injectable one and we do the injection before continuing *) observe_tac "reflexivity_with_destruct_cases : others" (tclTHEN (tclPROGRESS discr_inject) (reflexivity_with_destruct_cases ())) ]) let prove_fun_complete funcs graphs schemes lemmas_types_infos i : unit Proofview.tactic = let open EConstr in let open Tacmach in let open Tactics in let open Tacticals in Proofview.Goal.enter (fun g -> (* We compute the types of the different mutually recursive lemmas in $\zeta$ normal form *) let lemmas = Array.map (fun (_, (ctxt, concl)) -> Reductionops.nf_zeta (Proofview.Goal.env g) (Proofview.Goal.sigma g) (EConstr.it_mkLambda_or_LetIn concl ctxt)) lemmas_types_infos in (* We get the constant and the principle corresponding to this lemma *) let f = funcs.(i) in let graph_principle = Reductionops.nf_zeta (Proofview.Goal.env g) (Proofview.Goal.sigma g) (EConstr.of_constr schemes.(i)) in tclTYPEOFTHEN graph_principle (fun sigma princ_type -> let princ_infos = Tactics.compute_elim_sig sigma princ_type in (* Then we get the number of argument of the function and compute a fresh name for each of them *) let nb_fun_args = Termops.nb_prod sigma (Proofview.Goal.concl g) - 2 in let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in let ids = args_names @ pf_ids_of_hyps g in (* and fresh names for res H and the principle (cf bug bug #1174) *) let res, hres, graph_principle_id = match generate_fresh_id (Id.of_string "z") ids 3 with | [res; hres; graph_principle_id] -> (res, hres, graph_principle_id) | _ -> assert false in let ids = res :: hres :: graph_principle_id :: ids in (* we also compute fresh names for each hyptohesis of each branch of the principle *) let branches = List.rev princ_infos.branches in let intro_pats = List.map (fun decl -> List.map (fun id -> id) (generate_fresh_id (Id.of_string "y") ids (Termops.nb_prod (Proofview.Goal.sigma g) (RelDecl.get_type decl)))) branches in (* We will need to change the function by its body using [f_equation] if it is recursive (that is the graph is infinite or unfold if the graph is finite *) let rewrite_tac j ids : unit Proofview.tactic = let graph_def = graphs.(j) in let infos = match find_Function_infos (fst (destConst (Proofview.Goal.sigma g) funcs.(j))) with | None -> CErrors.user_err Pp.(str "No graph found") | Some infos -> infos in if infos.is_general || Rtree.is_infinite Declareops.eq_recarg graph_def.Declarations.mind_recargs then let eq_lemma = try Option.get infos.equation_lemma with Option.IsNone -> CErrors.anomaly (Pp.str "Cannot find equation lemma.") in tclTHENLIST [ tclMAP Simple.intro ids ; Equality.rewriteLR (mkConst eq_lemma) ; (* Don't forget to $\zeta$ normlize the term since the principles have been $\zeta$-normalized *) reduce (Genredexpr.Cbv {Redops.all_flags with Genredexpr.rDelta = false}) Locusops.onConcl ; generalize (List.map mkVar ids) ; thin ids ] else unfold_in_concl [ ( Locus.AllOccurrences , Tacred.EvalConstRef (fst (destConst (Proofview.Goal.sigma g) f)) ) ] in (* The proof of each branche itself *) let ind_number = ref 0 in let min_constr_number = ref 0 in let prove_branch i this_branche_ids = (* we fist compute the inductive corresponding to the branch *) let this_ind_number = let constructor_num = i - !min_constr_number in let length = Array.length graphs.(!ind_number).Declarations.mind_consnames in if constructor_num <= length then !ind_number else begin incr ind_number; min_constr_number := !min_constr_number + length; !ind_number end in tclTHENLIST [ (* we expand the definition of the function *) observe_tac "rewrite_tac" (rewrite_tac this_ind_number this_branche_ids) ; (* introduce hypothesis with some rewrite *) observe_tac "intros_with_rewrite (all)" (intros_with_rewrite ()) ; (* The proof is (almost) complete *) observe_tac "reflexivity" (reflexivity_with_destruct_cases ()) ] in let params_names = fst (List.chop princ_infos.nparams args_names) in let open EConstr in let params = List.map mkVar params_names in tclTHENLIST [ tclMAP Simple.intro (args_names @ [res; hres]) ; observe_tac "h_generalize" (generalize [ mkApp ( applist (graph_principle, params) , Array.map (fun c -> applist (c, params)) lemmas ) ]) ; Simple.intro graph_principle_id ; observe_tac "" (tclTHENS (observe_tac "elim" (elim false None (mkVar hres, Tactypes.NoBindings) (Some (mkVar graph_principle_id, Tactypes.NoBindings)))) (List.map_i (fun i pat -> observe_tac "prove_branch" (prove_branch i pat)) 1 intro_pats)) ])) exception No_graph_found let get_funs_constant mp = let open Constr in let exception Not_Rec in let get_funs_constant const e : (Names.Constant.t * int) array = match Constr.kind (Term.strip_lam e) with | Fix (_, (na, _, _)) -> Array.mapi (fun i na -> match na.Context.binder_name with | Name id -> let const = Constant.make2 mp (Label.of_id id) in (const, i) | Anonymous -> CErrors.anomaly (Pp.str "Anonymous fix.")) na | _ -> [|(const, 0)|] in function | const -> let find_constant_body const = match Global.body_of_constant Library.indirect_accessor const with | Some (body, _, _) -> let body = Tacred.cbv_norm_flags (CClosure.RedFlags.mkflags [CClosure.RedFlags.fZETA]) (Global.env ()) (Evd.from_env (Global.env ())) (EConstr.of_constr body) in let body = EConstr.Unsafe.to_constr body in body | None -> CErrors.user_err Pp.(str "Cannot define a principle over an axiom ") in let f = find_constant_body const in let l_const = get_funs_constant const f in (* We need to check that all the functions found are in the same block to prevent Reset strange thing *) let l_bodies = List.map find_constant_body (Array.to_list (Array.map fst l_const)) in let l_params, _l_fixes = List.split (List.map Term.decompose_lam l_bodies) in (* all the parameters must be equal*) let _check_params = let first_params = List.hd l_params in List.iter (fun params -> if not (List.equal (fun (n1, c1) (n2, c2) -> Context.eq_annot Name.equal n1 n2 && Constr.equal c1 c2) first_params params) then CErrors.user_err Pp.(str "Not a mutal recursive block")) l_params in (* The bodies has to be very similar *) let _check_bodies = try let extract_info is_first body = match Constr.kind body with | Fix ((idxs, _), (na, ta, ca)) -> (idxs, na, ta, ca) | _ -> if is_first && Int.equal (List.length l_bodies) 1 then raise Not_Rec else CErrors.user_err Pp.(str "Not a mutal recursive block") in let first_infos = extract_info true (List.hd l_bodies) in let check body = (* Hope this is correct *) let eq_infos (ia1, na1, ta1, ca1) (ia2, na2, ta2, ca2) = Array.equal Int.equal ia1 ia2 && Array.equal (Context.eq_annot Name.equal) na1 na2 && Array.equal Constr.equal ta1 ta2 && Array.equal Constr.equal ca1 ca2 in if not (eq_infos first_infos (extract_info false body)) then CErrors.user_err Pp.(str "Not a mutal recursive block") in List.iter check l_bodies with Not_Rec -> () in l_const let make_scheme evd (fas : (Constr.pconstant * Sorts.family) list) : _ list = let exception Found_type of int in let env = Global.env () in let funs = List.map fst fas in let first_fun = List.hd funs in let funs_mp = KerName.modpath (Constant.canonical (fst first_fun)) in let first_fun_kn = match find_Function_infos (fst first_fun) with | None -> raise No_graph_found | Some finfos -> fst finfos.graph_ind in let this_block_funs_indexes = get_funs_constant funs_mp (fst first_fun) in let this_block_funs = Array.map (fun (c, _) -> (c, snd first_fun)) this_block_funs_indexes in let prop_sort = Sorts.InProp in let funs_indexes = let this_block_funs_indexes = Array.to_list this_block_funs_indexes in let eq c1 c2 = Environ.QConstant.equal env c1 c2 in List.map (function cst -> List.assoc_f eq (fst cst) this_block_funs_indexes) funs in let ind_list = List.map (fun idx -> let ind = (first_fun_kn, idx) in ((ind, snd first_fun), true, prop_sort)) funs_indexes in let sigma, schemes = Indrec.build_mutual_induction_scheme env !evd ind_list in let _ = evd := sigma in let l_schemes = List.map ( EConstr.of_constr %> Retyping.get_type_of env sigma %> EConstr.Unsafe.to_constr ) schemes in let i = ref (-1) in let sorts = List.rev_map (fun (_, x) -> let sigma, fs = Evd.fresh_sort_in_family !evd x in evd := sigma; fs) fas in (* We create the first principle by tactic *) let first_type, other_princ_types = match l_schemes with | s :: l_schemes -> (s, l_schemes) | _ -> CErrors.anomaly (Pp.str "") in let opaque = let finfos = match find_Function_infos (fst first_fun) with | None -> raise Not_found | Some finfos -> finfos in match finfos.equation_lemma with | None -> Vernacexpr.Transparent (* non recursive definition *) | Some equation -> if Declareops.is_opaque (Global.lookup_constant equation) then Vernacexpr.Opaque else Vernacexpr.Transparent in let body, typ, univs, _hook, sigma0 = try build_functional_principle (Global.env ()) !evd first_type (Array.of_list sorts) this_block_funs 0 (Functional_principles_proofs.prove_princ_for_struct evd false 0 (Array.of_list (List.map fst funs))) (fun _ _ -> ()) with e when CErrors.noncritical e -> raise (Defining_principle e) in evd := sigma0; incr i; (* The others are just deduced *) if List.is_empty other_princ_types then [(body, typ, univs, opaque)] else let other_fun_princ_types = let funs = Array.map Constr.mkConstU this_block_funs in let sorts = Array.of_list sorts in List.map (Functional_principles_types.compute_new_princ_type_from_rel (Global.env ()) funs sorts) other_princ_types in let first_princ_body = body in let ctxt, fix = Term.decompose_lam_assum first_princ_body in (* the principle has for forall ...., fix .*) let (idxs, _), ((_, ta, _) as decl) = Constr.destFix fix in let other_result = List.map (* we can now compute the other principles *) (fun scheme_type -> incr i; observe (Printer.pr_lconstr_env env sigma scheme_type); let type_concl = Term.strip_prod_assum scheme_type in let applied_f = List.hd (List.rev (snd (Constr.decompose_app type_concl))) in let f = fst (Constr.decompose_app applied_f) in try (* we search the number of the function in the fix block (name of the function) *) Array.iteri (fun j t -> let t = Term.strip_prod_assum t in let applied_g = List.hd (List.rev (snd (Constr.decompose_app t))) in let g = fst (Constr.decompose_app applied_g) in if Constr.equal f g then raise (Found_type j); observe Pp.( Printer.pr_lconstr_env env sigma f ++ str " <> " ++ Printer.pr_lconstr_env env sigma g)) ta; (* If we reach this point, the two principle are not mutually recursive We fall back to the previous method *) let body, typ, univs, _hook, sigma0 = build_functional_principle (Global.env ()) !evd (List.nth other_princ_types (!i - 1)) (Array.of_list sorts) this_block_funs !i (Functional_principles_proofs.prove_princ_for_struct evd false !i (Array.of_list (List.map fst funs))) (fun _ _ -> ()) in evd := sigma0; (body, typ, univs, opaque) with Found_type i -> let princ_body = Termops.it_mkLambda_or_LetIn (Constr.mkFix ((idxs, i), decl)) ctxt in (princ_body, Some scheme_type, univs, opaque)) other_fun_princ_types in (body, typ, univs, opaque) :: other_result (* [derive_correctness funs graphs] create correctness and completeness lemmas for each function in [funs] w.r.t. [graphs] *) let derive_correctness (funs : Constr.pconstant list) (graphs : inductive list) = let open EConstr in assert (funs <> []); assert (graphs <> []); let funs = Array.of_list funs and graphs = Array.of_list graphs in let map (c, u) = mkConstU (c, EInstance.make u) in let funs_constr = Array.map map funs in (* XXX STATE Why do we need this... why is the toplevel protection not enough *) funind_purify (fun () -> let env = Global.env () in let evd = ref (Evd.from_env env) in let graphs_constr = Array.map mkInd graphs in let lemmas_types_infos = Util.Array.map2_i (fun i f_constr graph -> let type_of_lemma_ctxt, type_of_lemma_concl, graph = generate_type evd false f_constr graph in let type_info = (type_of_lemma_ctxt, type_of_lemma_concl) in graphs_constr.(i) <- graph; let type_of_lemma = EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt in let sigma, _ = Typing.type_of (Global.env ()) !evd type_of_lemma in evd := sigma; let type_of_lemma = Reductionops.nf_zeta (Global.env ()) !evd type_of_lemma in observe Pp.( str "type_of_lemma := " ++ Printer.pr_leconstr_env (Global.env ()) !evd type_of_lemma); (type_of_lemma, type_info)) funs_constr graphs_constr in let schemes = (* The functional induction schemes are computed and not saved if there is more that one function if the block contains only one function we can safely reuse [f_rect] *) try if not (Int.equal (Array.length funs_constr) 1) then raise Not_found; [|find_induction_principle evd funs_constr.(0)|] with Not_found -> Array.of_list (List.map (fun (body, typ, _opaque, _univs) -> (EConstr.of_constr body, EConstr.of_constr (Option.get typ))) (make_scheme evd (Array.map_to_list (fun const -> (const, Sorts.InType)) funs))) in let proving_tac = prove_fun_correct !evd graphs_constr schemes lemmas_types_infos in Array.iteri (fun i f_as_constant -> let f_id = Label.to_id (Constant.label (fst f_as_constant)) in (*i The next call to mk_correct_id is valid since we are constructing the lemma Ensures by: obvious i*) let lem_id = mk_correct_id f_id in let typ, _ = lemmas_types_infos.(i) in let info = Declare.Info.make () in let cinfo = Declare.CInfo.make ~name:lem_id ~typ () in let lemma = Declare.Proof.start ~cinfo ~info !evd in let lemma = fst @@ Declare.Proof.by (proving_tac i) lemma in let (_ : _ list) = Declare.Proof.save_regular ~proof:lemma ~opaque:Vernacexpr.Transparent ~idopt:None in let finfo = match find_Function_infos (fst f_as_constant) with | None -> raise Not_found | Some finfo -> finfo in (* let lem_cst = fst (destConst (Constrintern.global_reference lem_id)) in *) let _, lem_cst_constr = Evd.fresh_global (Global.env ()) !evd (Option.get (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id))) in let lem_cst, _ = EConstr.destConst !evd lem_cst_constr in update_Function {finfo with correctness_lemma = Some lem_cst}) funs; let lemmas_types_infos = Util.Array.map2_i (fun i f_constr graph -> let type_of_lemma_ctxt, type_of_lemma_concl, graph = generate_type evd true f_constr graph in let type_info = (type_of_lemma_ctxt, type_of_lemma_concl) in graphs_constr.(i) <- graph; let type_of_lemma = EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt in let type_of_lemma = Reductionops.nf_zeta env !evd type_of_lemma in observe Pp.( str "type_of_lemma := " ++ Printer.pr_leconstr_env env !evd type_of_lemma); (type_of_lemma, type_info)) funs_constr graphs_constr in let ((kn, _) as graph_ind), u = destInd !evd graphs_constr.(0) in let mib, _mip = Global.lookup_inductive graph_ind in let sigma, scheme = Indrec.build_mutual_induction_scheme (Global.env ()) !evd (Array.to_list (Array.mapi (fun i _ -> (((kn, i), EInstance.kind !evd u), true, Sorts.InType)) mib.Declarations.mind_packets)) in let schemes = Array.of_list scheme in let proving_tac = prove_fun_complete funs_constr mib.Declarations.mind_packets schemes lemmas_types_infos in Array.iteri (fun i f_as_constant -> let f_id = Label.to_id (Constant.label (fst f_as_constant)) in (*i The next call to mk_complete_id is valid since we are constructing the lemma Ensures by: obvious i*) let lem_id = mk_complete_id f_id in let info = Declare.Info.make () in let cinfo = Declare.CInfo.make ~name:lem_id ~typ:(fst lemmas_types_infos.(i)) () in let lemma = Declare.Proof.start ~cinfo sigma ~info in let lemma = fst (Declare.Proof.by (observe_tac ("prove completeness (" ^ Id.to_string f_id ^ ")") (proving_tac i)) lemma) in let (_ : _ list) = Declare.Proof.save_regular ~proof:lemma ~opaque:Vernacexpr.Transparent ~idopt:None in let finfo = match find_Function_infos (fst f_as_constant) with | None -> raise Not_found | Some finfo -> finfo in let _, lem_cst_constr = Evd.fresh_global (Global.env ()) !evd (Option.get (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id))) in let lem_cst, _ = destConst !evd lem_cst_constr in update_Function {finfo with completeness_lemma = Some lem_cst}) funs) () let warn_funind_cannot_build_inversion = CWarnings.create ~name:"funind-cannot-build-inversion" ~category:"funind" Pp.( fun e' -> strbrk "Cannot build inversion information" ++ if do_observe () then fnl () ++ CErrors.print e' else mt ()) let derive_inversion fix_names = try let evd' = Evd.from_env (Global.env ()) in (* we first transform the fix_names identifier into their corresponding constant *) let evd', fix_names_as_constant = List.fold_right (fun id (evd, l) -> let evd, c = Evd.fresh_global (Global.env ()) evd (Option.get (Constrintern.locate_reference (Libnames.qualid_of_ident id))) in let cst, u = EConstr.destConst evd c in (evd, (cst, EConstr.EInstance.kind evd u) :: l)) fix_names (evd', []) in (* Then we check that the graphs have been defined If one of the graphs haven't been defined we do nothing *) List.iter (fun c -> ignore (find_Function_infos (fst c))) fix_names_as_constant; try let _evd', lind = List.fold_right (fun id (evd, l) -> let evd, id = Evd.fresh_global (Global.env ()) evd (Option.get (Constrintern.locate_reference (Libnames.qualid_of_ident (mk_rel_id id)))) in (evd, fst (EConstr.destInd evd id) :: l)) fix_names (evd', []) in derive_correctness fix_names_as_constant lind with e when CErrors.noncritical e -> warn_funind_cannot_build_inversion e with e when CErrors.noncritical e -> warn_funind_cannot_build_inversion e let register_wf interactive_proof ?(is_mes = false) fname rec_impls wf_rel_expr wf_arg using_lemmas args ret_type body pre_hook = let type_of_f = Constrexpr_ops.mkCProdN args ret_type in let rec_arg_num = let names = List.map CAst.(with_val (fun x -> x)) (Constrexpr_ops.names_of_local_assums args) in List.index Name.equal (Name wf_arg) names in let unbounded_eq = let f_app_args = CAst.make @@ Constrexpr.CAppExpl ( (Libnames.qualid_of_ident fname, None) , List.map (function | {CAst.v = Anonymous} -> assert false | {CAst.v = Name e} -> Constrexpr_ops.mkIdentC e) (Constrexpr_ops.names_of_local_assums args) ) in CAst.make @@ Constrexpr.CApp ( Constrexpr_ops.mkRefC (Libnames.qualid_of_string "Logic.eq") , [(f_app_args, None); (body, None)] ) in let eq = Constrexpr_ops.mkCProdN args unbounded_eq in let hook ((f_ref, _) as fconst) tcc_lemma_ref (functional_ref, _) (eq_ref, _) rec_arg_num rec_arg_type _nb_args relation = try pre_hook [fconst] (generate_correction_proof_wf f_ref tcc_lemma_ref is_mes functional_ref eq_ref rec_arg_num rec_arg_type relation); derive_inversion [fname] with e when CErrors.noncritical e -> (* No proof done *) () in Recdef.recursive_definition ~interactive_proof ~is_mes fname rec_impls type_of_f wf_rel_expr rec_arg_num eq hook using_lemmas let register_mes interactive_proof fname rec_impls wf_mes_expr wf_rel_expr_opt wf_arg using_lemmas args ret_type body = let wf_arg_type, wf_arg = match wf_arg with | None -> ( match args with | [Constrexpr.CLocalAssum ([{CAst.v = Name x}], _k, t)] -> (t, x) | _ -> CErrors.user_err (Pp.str "Recursive argument must be specified") ) | Some wf_args -> ( try match List.find (function | Constrexpr.CLocalAssum (l, _k, t) -> List.exists (function | {CAst.v = Name id} -> Id.equal id wf_args | _ -> false) l | _ -> false) args with | Constrexpr.CLocalAssum (_, _k, t) -> (t, wf_args) | _ -> assert false with Not_found -> assert false ) in let wf_rel_from_mes, is_mes = match wf_rel_expr_opt with | None -> let ltof = let make_dir l = DirPath.make (List.rev_map Id.of_string l) in Libnames.qualid_of_path (Libnames.make_path (make_dir ["Arith"; "Wf_nat"]) (Id.of_string "ltof")) in let fun_from_mes = let applied_mes = Constrexpr_ops.mkAppC (wf_mes_expr, [Constrexpr_ops.mkIdentC wf_arg]) in Constrexpr_ops.mkLambdaC ( [CAst.make @@ Name wf_arg] , Constrexpr_ops.default_binder_kind , wf_arg_type , applied_mes ) in let wf_rel_from_mes = Constrexpr_ops.mkAppC (Constrexpr_ops.mkRefC ltof, [wf_arg_type; fun_from_mes]) in (wf_rel_from_mes, true) | Some wf_rel_expr -> let wf_rel_with_mes = let a = Names.Id.of_string "___a" in let b = Names.Id.of_string "___b" in Constrexpr_ops.mkLambdaC ( [CAst.make @@ Name a; CAst.make @@ Name b] , Constrexpr.Default Glob_term.Explicit , wf_arg_type , Constrexpr_ops.mkAppC ( wf_rel_expr , [ Constrexpr_ops.mkAppC (wf_mes_expr, [Constrexpr_ops.mkIdentC a]) ; Constrexpr_ops.mkAppC (wf_mes_expr, [Constrexpr_ops.mkIdentC b]) ] ) ) in (wf_rel_with_mes, false) in register_wf interactive_proof ~is_mes fname rec_impls wf_rel_from_mes wf_arg using_lemmas args ret_type body let do_generate_principle_aux pconstants on_error register_built interactive_proof fixpoint_exprl : Declare.Proof.t option = List.iter (fun {Vernacexpr.notations} -> if not (List.is_empty notations) then CErrors.user_err (Pp.str "Function does not support notations for now")) fixpoint_exprl; let lemma, _is_struct = match fixpoint_exprl with | [ ( { Vernacexpr.rec_order = Some {CAst.v = Constrexpr.CWfRec (wf_x, wf_rel)} } as fixpoint_expr ) ] -> let ( {Vernacexpr.fname; univs = _; binders; rtype; body_def} as fixpoint_expr ) = match recompute_binder_list [fixpoint_expr] with | [e] -> e | _ -> assert false in let fixpoint_exprl = [fixpoint_expr] in let body = match body_def with | Some body -> body | None -> CErrors.user_err (Pp.str "Body of Function must be given.") in let recdefs, rec_impls = build_newrecursive fixpoint_exprl in let using_lemmas = [] in let pre_hook pconstants = generate_principle (ref (Evd.from_env (Global.env ()))) pconstants on_error true register_built fixpoint_exprl recdefs in if register_built then ( register_wf interactive_proof fname.CAst.v rec_impls wf_rel wf_x.CAst.v using_lemmas binders rtype body pre_hook , false ) else (None, false) | [ ( { Vernacexpr.rec_order = Some {CAst.v = Constrexpr.CMeasureRec (wf_x, wf_mes, wf_rel_opt)} } as fixpoint_expr ) ] -> let ( {Vernacexpr.fname; univs = _; binders; rtype; body_def} as fixpoint_expr ) = match recompute_binder_list [fixpoint_expr] with | [e] -> e | _ -> assert false in let fixpoint_exprl = [fixpoint_expr] in let recdefs, rec_impls = build_newrecursive fixpoint_exprl in let using_lemmas = [] in let body = match body_def with | Some body -> body | None -> CErrors.user_err Pp.(str "Body of Function must be given.") in let pre_hook pconstants = generate_principle (ref (Evd.from_env (Global.env ()))) pconstants on_error true register_built fixpoint_exprl recdefs in if register_built then ( register_mes interactive_proof fname.CAst.v rec_impls wf_mes wf_rel_opt (Option.map (fun x -> x.CAst.v) wf_x) using_lemmas binders rtype body pre_hook , true ) else (None, true) | _ -> List.iter (function | {Vernacexpr.rec_order} -> ( match rec_order with | Some {CAst.v = Constrexpr.CMeasureRec _ | Constrexpr.CWfRec _} -> CErrors.user_err (Pp.str "Cannot use mutual definition with well-founded recursion \ or measure") | _ -> () )) fixpoint_exprl; let fixpoint_exprl = recompute_binder_list fixpoint_exprl in let fix_names = List.map (function {Vernacexpr.fname} -> fname.CAst.v) fixpoint_exprl in (* ok all the expressions are structural *) let recdefs, _rec_impls = build_newrecursive fixpoint_exprl in let is_rec = List.exists (is_rec fix_names) recdefs in let lemma, evd, pconstants = if register_built then register_struct is_rec fixpoint_exprl else (None, Evd.from_env (Global.env ()), pconstants) in let evd = ref evd in generate_principle (ref !evd) pconstants on_error false register_built fixpoint_exprl recdefs (Functional_principles_proofs.prove_princ_for_struct evd interactive_proof); if register_built then derive_inversion fix_names; (lemma, true) in lemma let warn_cannot_define_graph = CWarnings.create ~name:"funind-cannot-define-graph" ~category:"funind" (fun (names, error) -> Pp.(strbrk "Cannot define graph(s) for " ++ hv 1 names ++ error)) let warn_cannot_define_principle = CWarnings.create ~name:"funind-cannot-define-principle" ~category:"funind" (fun (names, error) -> Pp.( strbrk "Cannot define induction principle(s) for " ++ hv 1 names ++ error)) let warning_error names e = let e_explain e = match e with | ToShow e -> Pp.(spc () ++ CErrors.print e) | _ -> if do_observe () then Pp.(spc () ++ CErrors.print e) else Pp.mt () in match e with | Building_graph e -> let names = Pp.(prlist_with_sep (fun _ -> str "," ++ spc ()) Ppconstr.pr_id names) in warn_cannot_define_graph (names, e_explain e) | Defining_principle e -> let names = Pp.(prlist_with_sep (fun _ -> str "," ++ spc ()) Ppconstr.pr_id names) in warn_cannot_define_principle (names, e_explain e) | _ -> raise e let error_error names e = let e_explain e = match e with | ToShow e -> Pp.(spc () ++ CErrors.print e) | _ -> if do_observe () then Pp.(spc () ++ CErrors.print e) else Pp.mt () in match e with | Building_graph e -> CErrors.user_err Pp.( str "Cannot define graph(s) for " ++ hv 1 (prlist_with_sep (fun _ -> str "," ++ spc ()) Ppconstr.pr_id names) ++ e_explain e) | _ -> raise e (* [chop_n_arrow n t] chops the [n] first arrows in [t] Acts on Constrexpr.constr_expr *) let rec chop_n_arrow n t = let exception Stop of Constrexpr.constr_expr in let open Constrexpr in if n <= 0 then t (* If we have already removed all the arrows then return the type *) else (* If not we check the form of [t] *) match t.CAst.v with | Constrexpr.CProdN (nal_ta', t') -> ( try (* If we have a forall, two results are possible : either we need to discard more than the number of arrows contained in this product declaration then we just recall [chop_n_arrow] on the remaining number of arrow to chop and [t'] we discard it and recall [chop_n_arrow], either this product contains more arrows than the number we need to chop and then we return the new type *) let new_n = let rec aux (n : int) = function | [] -> n | CLocalAssum (nal, k, t'') :: nal_ta' -> let nal_l = List.length nal in if n >= nal_l then aux (n - nal_l) nal_ta' else let new_t' = CAst.make @@ Constrexpr.CProdN ( CLocalAssum (snd (List.chop n nal), k, t'') :: nal_ta' , t' ) in raise (Stop new_t') | _ -> CErrors.anomaly (Pp.str "Not enough products.") in aux n nal_ta' in chop_n_arrow new_n t' with Stop t -> t ) | _ -> CErrors.anomaly (Pp.str "Not enough products.") let rec add_args id new_args = let open Libnames in let open Constrexpr in CAst.map (function | CRef (qid, _) as b -> if qualid_is_ident qid && Id.equal (qualid_basename qid) id then CAppExpl ((qid, None), new_args) else b | CFix _ | CCoFix _ -> CErrors.anomaly ~label:"add_args " (Pp.str "todo.") | CProdN (nal, b1) -> CProdN ( List.map (function | CLocalAssum (nal, k, b2) -> CLocalAssum (nal, k, add_args id new_args b2) | CLocalDef (na, b1, t) -> CLocalDef ( na , add_args id new_args b1 , Option.map (add_args id new_args) t ) | CLocalPattern _ -> CErrors.user_err (Pp.str "pattern with quote not allowed here.")) nal , add_args id new_args b1 ) | CLambdaN (nal, b1) -> CLambdaN ( List.map (function | CLocalAssum (nal, k, b2) -> CLocalAssum (nal, k, add_args id new_args b2) | CLocalDef (na, b1, t) -> CLocalDef ( na , add_args id new_args b1 , Option.map (add_args id new_args) t ) | CLocalPattern _ -> CErrors.user_err (Pp.str "pattern with quote not allowed here.")) nal , add_args id new_args b1 ) | CLetIn (na, b1, t, b2) -> CLetIn ( na , add_args id new_args b1 , Option.map (add_args id new_args) t , add_args id new_args b2 ) | CAppExpl ((qid, us), exprl) -> if qualid_is_ident qid && Id.equal (qualid_basename qid) id then CAppExpl ((qid, us), new_args @ List.map (add_args id new_args) exprl) else CAppExpl ((qid, us), List.map (add_args id new_args) exprl) | CApp (b, bl) -> CApp ( add_args id new_args b , List.map (fun (e, o) -> (add_args id new_args e, o)) bl ) | CProj (expl, f, bl, b) -> CProj (expl, f , List.map (fun (e, o) -> (add_args id new_args e, o)) bl , add_args id new_args b) | CCases (sty, b_option, cel, cal) -> CCases ( sty , Option.map (add_args id new_args) b_option , List.map (fun (b, na, b_option) -> (add_args id new_args b, na, b_option)) cel , List.map CAst.(map (fun (cpl, e) -> (cpl, add_args id new_args e))) cal ) | CLetTuple (nal, (na, b_option), b1, b2) -> CLetTuple ( nal , (na, Option.map (add_args id new_args) b_option) , add_args id new_args b1 , add_args id new_args b2 ) | CIf (b1, (na, b_option), b2, b3) -> CIf ( add_args id new_args b1 , (na, Option.map (add_args id new_args) b_option) , add_args id new_args b2 , add_args id new_args b3 ) | (CHole _ | CPatVar _ | CEvar _ | CPrim _ | CSort _) as b -> b | CCast (b1, k, b2) -> CCast (add_args id new_args b1, k, add_args id new_args b2) | CRecord pars -> CRecord (List.map (fun (e, o) -> (e, add_args id new_args o)) pars) | CNotation _ -> CErrors.anomaly ~label:"add_args " (Pp.str "CNotation.") | CGeneralization _ -> CErrors.anomaly ~label:"add_args " (Pp.str "CGeneralization.") | CDelimiters _ -> CErrors.anomaly ~label:"add_args " (Pp.str "CDelimiters.") | CArray _ -> CErrors.anomaly ~label:"add_args " (Pp.str "CArray.")) let rec get_args b t : Constrexpr.local_binder_expr list * Constrexpr.constr_expr * Constrexpr.constr_expr = let open Constrexpr in match b.CAst.v with | Constrexpr.CLambdaN ((CLocalAssum (nal, k, ta) as d) :: rest, b') -> let n = List.length nal in let nal_tas, b'', t'' = get_args (CAst.make ?loc:b.CAst.loc @@ Constrexpr.CLambdaN (rest, b')) (chop_n_arrow n t) in (d :: nal_tas, b'', t'') | Constrexpr.CLambdaN ([], b) -> ([], b, t) | _ -> ([], b, t) let make_graph (f_ref : GlobRef.t) = let open Constrexpr in let env = Global.env () in let sigma = Evd.from_env env in let c, c_body = match f_ref with | GlobRef.ConstRef c -> if Environ.mem_constant c (Global.env ()) then (c, Global.lookup_constant c) else CErrors.user_err Pp.( str "Cannot find " ++ Printer.pr_leconstr_env env sigma (EConstr.mkConst c)) | _ -> CErrors.user_err Pp.(str "Not a function reference") in match Global.body_of_constant_body Library.indirect_accessor c_body with | None -> CErrors.user_err (Pp.str "Cannot build a graph over an axiom!") | Some (body, _, _) -> let env = Global.env () in let extern_body, extern_type = with_full_print (fun () -> ( Constrextern.extern_constr env sigma (EConstr.of_constr body) , Constrextern.extern_type env sigma (EConstr.of_constr (*FIXME*) c_body.Declarations.const_type) )) () in let nal_tas, b, t = get_args extern_body extern_type in let expr_list = match b.CAst.v with | Constrexpr.CFix (l_id, fixexprl) -> let l = List.map (fun (id, recexp, bl, t, b) -> let {CAst.loc; v = rec_id} = match Option.get recexp with | {CAst.v = CStructRec id} -> id | {CAst.v = CWfRec (id, _)} -> id | {CAst.v = CMeasureRec (oid, _, _)} -> Option.get oid in let new_args = List.flatten (List.map (function | Constrexpr.CLocalDef (na, _, _) -> [] | Constrexpr.CLocalAssum (nal, _, _) -> List.map (fun {CAst.loc; v = n} -> CAst.make ?loc @@ CRef ( Libnames.qualid_of_ident ?loc @@ Nameops.Name.get_id n , None )) nal | Constrexpr.CLocalPattern _ -> assert false) nal_tas) in let b' = add_args id.CAst.v new_args b in { Vernacexpr.fname = id ; univs = None ; rec_order = Some (CAst.make (CStructRec (CAst.make rec_id))) ; binders = nal_tas @ bl ; rtype = t ; body_def = Some b' ; notations = [] }) fixexprl in l | _ -> let fname = CAst.make (Label.to_id (Constant.label c)) in [ { Vernacexpr.fname ; univs = None ; rec_order = None ; binders = nal_tas ; rtype = t ; body_def = Some b ; notations = [] } ] in let mp = Constant.modpath c in let pstate = do_generate_principle_aux [(c, Univ.Instance.empty)] error_error false false expr_list in assert (Option.is_empty pstate); (* We register the infos *) List.iter (fun {Vernacexpr.fname = {CAst.v = id}} -> add_Function false (Constant.make2 mp (Label.of_id id))) expr_list (* *************** statically typed entrypoints ************************* *) let do_generate_principle_interactive fixl : Declare.Proof.t = match do_generate_principle_aux [] warning_error true true fixl with | Some lemma -> lemma | None -> CErrors.anomaly (Pp.str "indfun: leaving no open proof in interactive mode") let do_generate_principle fixl : unit = match do_generate_principle_aux [] warning_error true false fixl with | Some _lemma -> CErrors.anomaly (Pp.str "indfun: leaving a goal open in non-interactive mode") | None -> () let build_scheme fas = let evd = ref (Evd.from_env (Global.env ())) in let pconstants = List.map (fun (_, f, sort) -> let f_as_constant = try Smartlocate.global_with_alias f with Not_found -> CErrors.user_err Pp.(str "Cannot find " ++ Libnames.pr_qualid f ++ str ".") in let evd', f = Evd.fresh_global (Global.env ()) !evd f_as_constant in let _ = evd := evd' in let sigma, _ = Typing.type_of ~refresh:true (Global.env ()) !evd f in evd := sigma; let c, u = try EConstr.destConst !evd f with Constr.DestKO -> CErrors.user_err Pp.( Printer.pr_econstr_env (Global.env ()) !evd f ++ spc () ++ str "should be the named of a globally defined function") in ((c, EConstr.EInstance.kind !evd u), sort)) fas in let bodies_types = make_scheme evd pconstants in List.iter2 (fun (princ_id, _, _) (body, types, univs, opaque) -> let (_ : Constant.t) = let opaque = if opaque = Vernacexpr.Opaque then true else false in let def_entry = Declare.definition_entry ~univs ~opaque ?types body in Declare.declare_constant ~name:princ_id ~kind:Decls.(IsProof Theorem) (Declare.DefinitionEntry def_entry) in Declare.definition_message princ_id) fas bodies_types let build_case_scheme fa = let env = Global.env () and sigma = Evd.from_env (Global.env ()) in (* let id_to_constr id = *) (* Constrintern.global_reference id *) (* in *) let funs = let _, f, _ = fa in try let open GlobRef in match Smartlocate.global_with_alias f with | ConstRef c -> c | IndRef _ | ConstructRef _ | VarRef _ -> assert false with Not_found -> CErrors.user_err Pp.(str "Cannot find " ++ Libnames.pr_qualid f ++ str ".") in let sigma, (_, u) = Evd.fresh_constant_instance env sigma funs in let first_fun = funs in let funs_mp = Constant.modpath first_fun in let first_fun_kn = match find_Function_infos first_fun with | None -> raise No_graph_found | Some finfos -> fst finfos.graph_ind in let this_block_funs_indexes = get_funs_constant funs_mp first_fun in let this_block_funs = Array.map (fun (c, _) -> (c, u)) this_block_funs_indexes in let prop_sort = Sorts.InProp in let funs_indexes = let this_block_funs_indexes = Array.to_list this_block_funs_indexes in let eq c1 c2 = Environ.QConstant.equal env c1 c2 in List.assoc_f eq funs this_block_funs_indexes in let ind, sf = let ind = (first_fun_kn, funs_indexes) in ((ind, Univ.Instance.empty) (*FIXME*), prop_sort) in let sigma, scheme, scheme_type = Indrec.build_case_analysis_scheme_default env sigma ind sf in let sorts = (fun (_, _, x) -> fst @@ UnivGen.fresh_sort_in_family x) fa in let princ_name = (fun (x, _, _) -> x) fa in let (_ : unit) = (* Pp.msgnl (str "Generating " ++ Ppconstr.pr_id princ_name ++str " with " ++ pr_lconstr scheme_type ++ str " and " ++ (fun a -> prlist_with_sep spc (fun c -> pr_lconstr (mkConst c)) (Array.to_list a)) this_block_funs ); *) generate_functional_principle (ref (Evd.from_env (Global.env ()))) scheme_type (Some [|sorts|]) (Some princ_name) this_block_funs 0 (Functional_principles_proofs.prove_princ_for_struct (ref (Evd.from_env (Global.env ()))) false 0 [|funs|]) in ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>