package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.0.tar.gz
sha256=36577b55f4a4b1c64682c387de7abea932d0fd42fc0cd5406927dca344f53587
doc/src/funind_plugin/indfun_common.ml.html
Source file indfun_common.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
open Names open Pp open Constr open Libnames let mk_prefix pre id = Id.of_string (pre ^ Id.to_string id) let mk_rel_id = mk_prefix "R_" let mk_correct_id id = Nameops.add_suffix (mk_rel_id id) "_correct" let mk_complete_id id = Nameops.add_suffix (mk_rel_id id) "_complete" let mk_equation_id id = Nameops.add_suffix id "_equation" let fresh_id avoid s = Namegen.next_ident_away_in_goal (Global.env ()) (Id.of_string s) (Id.Set.of_list avoid) let fresh_name avoid s = Name (fresh_id avoid s) let get_name avoid ?(default = "H") = function | Anonymous -> fresh_name avoid default | Name n -> Name n let array_get_start a = Array.init (Array.length a - 1) (fun i -> a.(i)) let locate qid = Nametab.locate qid let locate_ind ref = match locate ref with GlobRef.IndRef x -> x | _ -> raise Not_found let locate_constant ref = match locate ref with GlobRef.ConstRef x -> x | _ -> raise Not_found let locate_with_msg msg f x = try f x with Not_found -> CErrors.user_err msg let filter_map filter f = let rec it = function | [] -> [] | e :: l -> if filter e then f e :: it l else it l in it let chop_rlambda_n = let rec chop_lambda_n acc n rt = if n == 0 then (List.rev acc, rt) else match DAst.get rt with | Glob_term.GLambda (name, k, t, b) -> chop_lambda_n ((name, t, None) :: acc) (n - 1) b | Glob_term.GLetIn (name, v, t, b) -> chop_lambda_n ((name, v, t) :: acc) (n - 1) b | _ -> CErrors.user_err (str "chop_rlambda_n: Not enough Lambdas") in chop_lambda_n [] let chop_rprod_n = let rec chop_prod_n acc n rt = if n == 0 then (List.rev acc, rt) else match DAst.get rt with | Glob_term.GProd (name, k, t, b) -> chop_prod_n ((name, t) :: acc) (n - 1) b | _ -> CErrors.user_err (str "chop_rprod_n: Not enough products") in chop_prod_n [] let list_union_eq eq_fun l1 l2 = let rec urec = function | [] -> l2 | a :: l -> if List.exists (eq_fun a) l2 then urec l else a :: urec l in urec l1 let list_add_set_eq eq_fun x l = if List.exists (eq_fun x) l then l else x :: l let coq_constant s = UnivGen.constr_of_monomorphic_global (Global.env ()) @@ Coqlib.lib_ref s let find_reference sl s = let dp = Names.DirPath.make (List.rev_map Id.of_string sl) in Nametab.locate (make_qualid dp (Id.of_string s)) let eq = lazy (EConstr.of_constr (coq_constant "core.eq.type")) let refl_equal = lazy (EConstr.of_constr (coq_constant "core.eq.refl")) let with_full_print f a = let old_implicit_args = Impargs.is_implicit_args () and old_strict_implicit_args = Impargs.is_strict_implicit_args () and old_contextual_implicit_args = Impargs.is_contextual_implicit_args () in let old_rawprint = !Flags.raw_print in let old_printuniverses = !Constrextern.print_universes in let old_printallowmatchdefaultclause = Detyping.print_allow_match_default_clause () in Constrextern.print_universes := true; Goptions.set_bool_option_value Detyping.print_allow_match_default_opt_name false; Flags.raw_print := true; Impargs.make_implicit_args false; Impargs.make_strict_implicit_args false; Impargs.make_contextual_implicit_args false; Dumpglob.pause (); try let res = f a in Impargs.make_implicit_args old_implicit_args; Impargs.make_strict_implicit_args old_strict_implicit_args; Impargs.make_contextual_implicit_args old_contextual_implicit_args; Flags.raw_print := old_rawprint; Constrextern.print_universes := old_printuniverses; Goptions.set_bool_option_value Detyping.print_allow_match_default_opt_name old_printallowmatchdefaultclause; Dumpglob.pop_output (); res with reraise -> Impargs.make_implicit_args old_implicit_args; Impargs.make_strict_implicit_args old_strict_implicit_args; Impargs.make_contextual_implicit_args old_contextual_implicit_args; Flags.raw_print := old_rawprint; Constrextern.print_universes := old_printuniverses; Goptions.set_bool_option_value Detyping.print_allow_match_default_opt_name old_printallowmatchdefaultclause; Dumpglob.pop_output (); raise reraise (**********************) type function_info = { function_constant : Constant.t ; graph_ind : inductive ; equation_lemma : Constant.t option ; correctness_lemma : Constant.t option ; completeness_lemma : Constant.t option ; rect_lemma : Constant.t option ; rec_lemma : Constant.t option ; prop_lemma : Constant.t option ; sprop_lemma : Constant.t option ; is_general : bool (* Has this function been defined using general recursive definition *) } (* type function_db = function_info list *) (* let function_table = ref ([] : function_db) *) let from_function = Summary.ref Cmap_env.empty ~name:"functions_db_fn" let from_graph = Summary.ref Indmap.empty ~name:"functions_db_gr" (* let rec do_cache_info finfo = function | [] -> raise Not_found | (finfo'::finfos as l) -> if finfo' == finfo then l else if finfo'.function_constant = finfo.function_constant then finfo::finfos else let res = do_cache_info finfo finfos in if res == finfos then l else finfo'::l let cache_Function (_,(finfos)) = let new_tbl = try do_cache_info finfos !function_table with Not_found -> finfos::!function_table in if new_tbl != !function_table then function_table := new_tbl *) let cache_Function finfos = from_function := Cmap_env.add finfos.function_constant finfos !from_function; from_graph := Indmap.add finfos.graph_ind finfos !from_graph let subst_Function (subst, finfos) = let do_subst_con c = Mod_subst.subst_constant subst c and do_subst_ind i = Mod_subst.subst_ind subst i in let function_constant' = do_subst_con finfos.function_constant in let graph_ind' = do_subst_ind finfos.graph_ind in let equation_lemma' = Option.Smart.map do_subst_con finfos.equation_lemma in let correctness_lemma' = Option.Smart.map do_subst_con finfos.correctness_lemma in let completeness_lemma' = Option.Smart.map do_subst_con finfos.completeness_lemma in let rect_lemma' = Option.Smart.map do_subst_con finfos.rect_lemma in let rec_lemma' = Option.Smart.map do_subst_con finfos.rec_lemma in let prop_lemma' = Option.Smart.map do_subst_con finfos.prop_lemma in let sprop_lemma' = Option.Smart.map do_subst_con finfos.sprop_lemma in if function_constant' == finfos.function_constant && graph_ind' == finfos.graph_ind && equation_lemma' == finfos.equation_lemma && correctness_lemma' == finfos.correctness_lemma && completeness_lemma' == finfos.completeness_lemma && rect_lemma' == finfos.rect_lemma && rec_lemma' == finfos.rec_lemma && prop_lemma' == finfos.prop_lemma && sprop_lemma' == finfos.sprop_lemma then finfos else { function_constant = function_constant' ; graph_ind = graph_ind' ; equation_lemma = equation_lemma' ; correctness_lemma = correctness_lemma' ; completeness_lemma = completeness_lemma' ; rect_lemma = rect_lemma' ; rec_lemma = rec_lemma' ; prop_lemma = prop_lemma' ; sprop_lemma = sprop_lemma' ; is_general = finfos.is_general } let discharge_Function finfos = Some finfos let pr_ocst env sigma c = Option.fold_right (fun v acc -> Printer.pr_lconstr_env env sigma (mkConst v)) c (mt ()) let pr_info env sigma f_info = str "function_constant := " ++ Printer.pr_lconstr_env env sigma (mkConst f_info.function_constant) ++ fnl () ++ str "function_constant_type := " ++ ( try Printer.pr_lconstr_env env sigma (fst (Typeops.type_of_global_in_context env (GlobRef.ConstRef f_info.function_constant))) with e when CErrors.noncritical e -> mt () ) ++ fnl () ++ str "equation_lemma := " ++ pr_ocst env sigma f_info.equation_lemma ++ fnl () ++ str "completeness_lemma :=" ++ pr_ocst env sigma f_info.completeness_lemma ++ fnl () ++ str "correctness_lemma := " ++ pr_ocst env sigma f_info.correctness_lemma ++ fnl () ++ str "rect_lemma := " ++ pr_ocst env sigma f_info.rect_lemma ++ fnl () ++ str "rec_lemma := " ++ pr_ocst env sigma f_info.rec_lemma ++ fnl () ++ str "prop_lemma := " ++ pr_ocst env sigma f_info.prop_lemma ++ fnl () ++ str "graph_ind := " ++ Printer.pr_lconstr_env env sigma (mkInd f_info.graph_ind) ++ fnl () let pr_table env sigma tb = let l = Cmap_env.fold (fun k v acc -> v :: acc) tb [] in Pp.prlist_with_sep fnl (pr_info env sigma) l let in_Function : function_info -> Libobject.obj = let open Libobject in declare_object @@ superglobal_object "FUNCTIONS_DB" ~cache:cache_Function ~subst:(Some subst_Function) ~discharge:discharge_Function let find_or_none id = try Some ( match Nametab.locate (qualid_of_ident id) with | GlobRef.ConstRef c -> c | _ -> CErrors.anomaly (Pp.str "Not a constant.") ) with Not_found -> None let find_Function_infos f = Cmap_env.find_opt f !from_function let find_Function_of_graph ind = Indmap.find_opt ind !from_graph let update_Function finfo = (* Pp.msgnl (pr_info finfo); *) Lib.add_leaf (in_Function finfo) let add_Function is_general f = let f_id = Label.to_id (Constant.label f) in let equation_lemma = find_or_none (mk_equation_id f_id) and correctness_lemma = find_or_none (mk_correct_id f_id) and completeness_lemma = find_or_none (mk_complete_id f_id) and rect_lemma = find_or_none (Nameops.add_suffix f_id "_rect") and rec_lemma = find_or_none (Nameops.add_suffix f_id "_rec") and prop_lemma = find_or_none (Nameops.add_suffix f_id "_ind") and sprop_lemma = find_or_none (Nameops.add_suffix f_id "_sind") and graph_ind = match Nametab.locate (qualid_of_ident (mk_rel_id f_id)) with | GlobRef.IndRef ind -> ind | _ -> CErrors.anomaly (Pp.str "Not an inductive.") in let finfos = { function_constant = f ; equation_lemma ; completeness_lemma ; correctness_lemma ; rect_lemma ; rec_lemma ; prop_lemma ; sprop_lemma ; graph_ind ; is_general } in update_Function finfos let pr_table env sigma = pr_table env sigma !from_function (*********************************) (* Debugging *) let do_rewrite_dependent = Goptions.declare_bool_option_and_ref ~depr:false ~key:["Functional"; "Induction"; "Rewrite"; "Dependent"] ~value:true let do_observe = Goptions.declare_bool_option_and_ref ~depr:false ~key:["Function_debug"] ~value:false let observe strm = if do_observe () then Feedback.msg_debug strm else () let debug_queue = Stack.create () let print_debug_queue b e = if not (Stack.is_empty debug_queue) then let lmsg, goal = Stack.pop debug_queue in if b then Feedback.msg_debug (hov 1 ( lmsg ++ (str " raised exception " ++ CErrors.print e) ++ str " on goal" ++ fnl () ++ goal )) else Feedback.msg_debug (hov 1 (str " from " ++ lmsg ++ str " on goal" ++ fnl () ++ goal)) (* print_debug_queue false e; *) module New = struct let do_observe_tac ~header s tac = let open Proofview.Notations in let open Proofview in Goal.enter (fun gl -> let goal = Printer.Debug.pr_goal gl in let env, sigma = (Goal.env gl, Goal.sigma gl) in let s = s env sigma in let lmsg = seq [header; str " : " ++ s] in tclLIFT (NonLogical.make (fun () -> Feedback.msg_debug (s ++ fnl ()))) >>= fun () -> tclOR ( Stack.push (lmsg, goal) debug_queue; tac >>= fun v -> ignore (Stack.pop debug_queue); Proofview.tclUNIT v ) (fun (exn, info) -> if not (Stack.is_empty debug_queue) then print_debug_queue true exn; tclZERO ~info exn)) let observe_tac ~header s tac = if do_observe () then do_observe_tac ~header s tac else tac end let is_strict_tcc = Goptions.declare_bool_option_and_ref ~depr:false ~key:["Function_raw_tcc"] ~value:false exception Building_graph of exn exception Defining_principle of exn exception ToShow of exn let jmeq () = try Coqlib.check_required_library Coqlib.jmeq_module_name; EConstr.of_constr @@ UnivGen.constr_of_monomorphic_global (Global.env ()) @@ Coqlib.lib_ref "core.JMeq.type" with e when CErrors.noncritical e -> raise (ToShow e) let jmeq_refl () = try Coqlib.check_required_library Coqlib.jmeq_module_name; EConstr.of_constr @@ UnivGen.constr_of_monomorphic_global (Global.env ()) @@ Coqlib.lib_ref "core.JMeq.refl" with e when CErrors.noncritical e -> raise (ToShow e) let h_intros l = Tacticals.tclMAP (fun x -> Tactics.Simple.intro x) l let h_id = Id.of_string "h" let hrec_id = Id.of_string "hrec" let well_founded = function | () -> EConstr.of_constr (coq_constant "core.wf.well_founded") let acc_rel = function () -> EConstr.of_constr (coq_constant "core.wf.acc") let acc_inv_id = function | () -> EConstr.of_constr (coq_constant "core.wf.acc_inv") let well_founded_ltof () = EConstr.of_constr (coq_constant "num.nat.well_founded_ltof") let ltof_ref = function () -> find_reference ["Coq"; "Arith"; "Wf_nat"] "ltof" let make_eq () = try EConstr.of_constr (UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref "core.eq.type")) with _ -> assert false let evaluable_of_global_reference r = let open Tacred in (* Tacred.evaluable_of_global_reference (Global.env ()) *) match r with | GlobRef.ConstRef sp -> EvalConstRef sp | GlobRef.VarRef id -> EvalVarRef id | _ -> assert false let list_rewrite (rev : bool) (eqs : (EConstr.constr * bool) list) = let open Tacticals in (tclREPEAT (List.fold_right (fun (eq, b) i -> tclORELSE ((if b then Equality.rewriteLR else Equality.rewriteRL) eq) i) (if rev then List.rev eqs else eqs) (tclFAIL (mt ())))) let decompose_lam_n sigma n = if n < 0 then CErrors.user_err Pp.(str "decompose_lam_n: integer parameter must be positive"); let rec lamdec_rec l n c = if Int.equal n 0 then (l, c) else match EConstr.kind sigma c with | Lambda (x, t, c) -> lamdec_rec ((x, t) :: l) (n - 1) c | Cast (c, _, _) -> lamdec_rec l n c | _ -> CErrors.user_err Pp.(str "decompose_lam_n: not enough abstractions") in lamdec_rec [] n let lamn n env b = let open EConstr in let rec lamrec = function | 0, env, b -> b | n, (v, t) :: l, b -> lamrec (n - 1, l, mkLambda (v, t, b)) | _ -> assert false in lamrec (n, env, b) (* compose_lam [xn:Tn;..;x1:T1] b = [x1:T1]..[xn:Tn]b *) let compose_lam l b = lamn (List.length l) l b (* prodn n [xn:Tn;..;x1:T1;Gamma] b = (x1:T1)..(xn:Tn)b *) let prodn n env b = let open EConstr in let rec prodrec = function | 0, env, b -> b | n, (v, t) :: l, b -> prodrec (n - 1, l, mkProd (v, t, b)) | _ -> assert false in prodrec (n, env, b) (* compose_prod [xn:Tn;..;x1:T1] b = (x1:T1)..(xn:Tn)b *) let compose_prod l b = prodn (List.length l) l b type tcc_lemma_value = Undefined | Value of constr | Not_needed (* We only "purify" on exceptions. XXX: What is this doing here? *) let funind_purify f x = let st = Vernacstate.freeze_interp_state ~marshallable:false in try f x with e -> let e = Exninfo.capture e in Vernacstate.unfreeze_interp_state st; Exninfo.iraise e
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>