package coq

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file certificate.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(*                                                                      *)
(* Micromega: A reflexive tactic using the Positivstellensatz           *)
(*                                                                      *)
(*  Frédéric Besson (Irisa/Inria) 2006-2008                             *)
(*                                                                      *)
(************************************************************************)

(* We take as input a list of polynomials [p1...pn] and return an unfeasibility
   certificate polynomial. *)

let debug = false

open Polynomial
module Mc = Micromega
module Ml2C = Mutils.CamlToCoq
module C2Ml = Mutils.CoqToCaml
open NumCompat
open Q.Notations
open Mutils

let use_simplex =
  Goptions.declare_bool_option_and_ref ~depr:true ~key:["Simplex"] ~value:true

(* If set to some [file], arithmetic goals are dumped in [file].v *)

let dump_file =
  Goptions.declare_stringopt_option_and_ref ~depr:false ~key:["Dump"; "Arith"]

type ('prf, 'model) res = Prf of 'prf | Model of 'model | Unknown
type zres = (Mc.zArithProof, int * Mc.z list) res
type qres = (Mc.q Mc.psatz, int * Mc.q list) res

type 'a number_spec =
  { bigint_to_number : Z.t -> 'a
  ; number_to_num : 'a -> Q.t
  ; zero : 'a
  ; unit : 'a
  ; mult : 'a -> 'a -> 'a
  ; eqb : 'a -> 'a -> bool }

let z_spec =
  { bigint_to_number = Ml2C.bigint
  ; number_to_num = (fun x -> Q.of_bigint (C2Ml.z_big_int x))
  ; zero = Mc.Z0
  ; unit = Mc.Zpos Mc.XH
  ; mult = Mc.Z.mul
  ; eqb = Mc.zeq_bool }

let q_spec =
  { bigint_to_number = (fun x -> {Mc.qnum = Ml2C.bigint x; Mc.qden = Mc.XH})
  ; number_to_num = C2Ml.q_to_num
  ; zero = {Mc.qnum = Mc.Z0; Mc.qden = Mc.XH}
  ; unit = {Mc.qnum = Mc.Zpos Mc.XH; Mc.qden = Mc.XH}
  ; mult = Mc.qmult
  ; eqb = Mc.qeq_bool }

let dev_form n_spec p =
  let rec dev_form p =
    match p with
    | Mc.PEc z -> Poly.constant (n_spec.number_to_num z)
    | Mc.PEX v -> Poly.variable (C2Ml.positive v)
    | Mc.PEmul (p1, p2) ->
      let p1 = dev_form p1 in
      let p2 = dev_form p2 in
      Poly.product p1 p2
    | Mc.PEadd (p1, p2) -> Poly.addition (dev_form p1) (dev_form p2)
    | Mc.PEopp p -> Poly.uminus (dev_form p)
    | Mc.PEsub (p1, p2) ->
      Poly.addition (dev_form p1) (Poly.uminus (dev_form p2))
    | Mc.PEpow (p, n) ->
      let p = dev_form p in
      let n = C2Ml.n n in
      let rec pow n =
        if Int.equal n 0 then Poly.constant (n_spec.number_to_num n_spec.unit)
        else Poly.product p (pow (n - 1))
      in
      pow n
  in
  dev_form p

let rec fixpoint f x =
  let y' = f x in
  if y' = x then y' else fixpoint f y'

let rec_simpl_cone n_spec e =
  let simpl_cone =
    Mc.simpl_cone n_spec.zero n_spec.unit n_spec.mult n_spec.eqb
  in
  let rec rec_simpl_cone = function
    | Mc.PsatzMulE (t1, t2) ->
      simpl_cone (Mc.PsatzMulE (rec_simpl_cone t1, rec_simpl_cone t2))
    | Mc.PsatzAdd (t1, t2) ->
      simpl_cone (Mc.PsatzAdd (rec_simpl_cone t1, rec_simpl_cone t2))
    | x -> simpl_cone x
  in
  rec_simpl_cone e

let simplify_cone n_spec c = fixpoint (rec_simpl_cone n_spec) c

(* The binding with Fourier might be a bit obsolete
   -- how does it handle equalities ? *)

(* Certificates are elements of the cone such that P = 0  *)

(* To begin with, we search for certificates of the form:
   a1.p1 + ... an.pn + b1.q1 +... + bn.qn + c = 0
   where pi >= 0 qi > 0
   ai >= 0
   bi >= 0
   Sum bi + c >= 1
   This is a linear problem: each monomial is considered as a variable.
   Hence, we can use fourier.

   The variable c is at index 1
 *)

(* fold_left followed by a rev ! *)

let constrain_variable v l =
  let coeffs = List.fold_left (fun acc p -> Vect.get v p.coeffs :: acc) [] l in
  { coeffs =
      Vect.from_list
        (Q.of_bigint Z.zero :: Q.of_bigint Z.zero :: List.rev coeffs)
  ; op = Eq
  ; cst = Q.of_bigint Z.zero }

let constrain_constant l =
  let coeffs = List.fold_left (fun acc p -> Q.neg p.cst :: acc) [] l in
  { coeffs =
      Vect.from_list (Q.of_bigint Z.zero :: Q.of_bigint Z.one :: List.rev coeffs)
  ; op = Eq
  ; cst = Q.of_bigint Z.zero }

let positivity l =
  let rec xpositivity i l =
    match l with
    | [] -> []
    | c :: l -> (
      match c.op with
      | Eq -> xpositivity (i + 1) l
      | _ ->
        { coeffs = Vect.update (i + 1) (fun _ -> Q.one) Vect.null
        ; op = Ge
        ; cst = Q.zero }
        :: xpositivity (i + 1) l )
  in
  xpositivity 1 l

let cstr_of_poly (p, o) =
  let c, l = Vect.decomp_cst p in
  {coeffs = l; op = o; cst = Q.neg c}

let variables_of_cstr c = Vect.variables c.coeffs

(* If the certificate includes at least one strict inequality,
   the obtained polynomial can also be 0 *)

let build_dual_linear_system l =
  let variables =
    List.fold_left
      (fun acc p -> ISet.union acc (variables_of_cstr p))
      ISet.empty l
  in
  (* For each monomial, compute a constraint *)
  let s0 =
    ISet.fold (fun mn res -> constrain_variable mn l :: res) variables []
  in
  let c = constrain_constant l in
  (* I need at least something strictly positive *)
  let strict =
    { coeffs =
        Vect.from_list
          ( Q.of_bigint Z.zero :: Q.of_bigint Z.one
          :: List.map
               (fun c ->
                 if is_strict c then Q.of_bigint Z.one else Q.of_bigint Z.zero)
               l )
    ; op = Ge
    ; cst = Q.of_bigint Z.one }
  in
  (* Add the positivity constraint *)
  { coeffs = Vect.from_list [Q.of_bigint Z.zero; Q.of_bigint Z.one]
  ; op = Ge
  ; cst = Q.of_bigint Z.zero }
  :: ((strict :: positivity l) @ (c :: s0))

(** [direct_linear_prover l] does not handle strict inegalities *)
let fourier_linear_prover l =
  let open Util in
  match Mfourier.Fourier.find_point l with
  | Inr prf ->
    if debug then Printf.printf "AProof : %a\n" Mfourier.pp_proof prf;
    let cert =
      (*List.map (fun (x,n) -> x+1,n)*)
      fst (List.hd (Mfourier.Proof.mk_proof l prf))
    in
    if debug then Printf.printf "CProof : %a" Vect.pp cert;
    (*Some (rats_to_ints (Vect.to_list cert))*)
    Some (Vect.normalise cert)
  | Inl _ -> None

let direct_linear_prover l =
  if use_simplex () then Simplex.find_unsat_certificate l
  else fourier_linear_prover l

let find_point l =
  let open Util in
  if use_simplex () then Simplex.find_point l
  else
    match Mfourier.Fourier.find_point l with
    | Inr _ -> None
    | Inl cert -> Some cert

let optimise v l =
  if use_simplex () then Simplex.optimise v l else Mfourier.Fourier.optimise v l

let output_cstr_sys o sys =
  List.iter
    (fun (c, wp) ->
      Printf.fprintf o "%a by %a\n" output_cstr c ProofFormat.output_prf_rule wp)
    sys

let output_sys o sys =
  List.iter (fun s -> Printf.fprintf o "%a\n" WithProof.output s) sys

let tr_sys str f sys =
  let sys' = f sys in
  if debug then
    Printf.fprintf stdout "[%s\n%a=>\n%a]\n" str output_sys sys output_sys sys';
  sys'

let tr_cstr_sys str f sys =
  let sys' = f sys in
  if debug then
    Printf.fprintf stdout "[%s\n%a=>\n%a]\n" str output_cstr_sys sys
      output_cstr_sys sys';
  sys'

let dual_raw_certificate l =
  if debug then begin
    Printf.printf "dual_raw_certificate\n";
    List.iter (fun c -> Printf.fprintf stdout "%a\n" output_cstr c) l
  end;
  let sys = build_dual_linear_system l in
  if debug then begin
    Printf.printf "dual_system\n";
    List.iter (fun c -> Printf.fprintf stdout "%a\n" output_cstr c) sys
  end;
  try
    match find_point sys with
    | None -> None
    | Some cert -> (
      match Vect.choose cert with
      | None -> failwith "dual_raw_certificate: empty_certificate"
      | Some _ ->
        (*Some (rats_to_ints (Vect.to_list (Vect.decr_var 2 (Vect.set 1 Q.zero cert))))*)
        Some (Vect.normalise (Vect.decr_var 2 (Vect.set 1 Q.zero cert))) )
    (* should not use rats_to_ints *)
  with x when CErrors.noncritical x ->
    if debug then (
      Printf.printf "dual raw certificate %s" (Printexc.to_string x);
      flush stdout );
    None

let simple_linear_prover l =
  try direct_linear_prover l
  with Strict ->
    (* Fourier elimination should handle > *)
    dual_raw_certificate l

let env_of_list l =
  snd
    (List.fold_left (fun (i, m) p -> (i + 1, IMap.add i p m)) (0, IMap.empty) l)

let linear_prover_cstr sys =
  let sysi, prfi = List.split sys in
  match simple_linear_prover sysi with
  | None -> None
  | Some cert -> Some (ProofFormat.proof_of_farkas (env_of_list prfi) cert)

let linear_prover_cstr =
  if debug then ( fun sys ->
    Printf.printf "<linear_prover";
    flush stdout;
    let res = linear_prover_cstr sys in
    Printf.printf ">"; flush stdout; res )
  else linear_prover_cstr

let compute_max_nb_cstr l d =
  let len = List.length l in
  max len (max d (len * d))

let develop_constraint z_spec (e, k) =
  ( dev_form z_spec e
  , match k with
    | Mc.NonStrict -> Ge
    | Mc.Equal -> Eq
    | Mc.Strict -> Gt
    | _ -> assert false )

(** A single constraint can be unsat for the following reasons:
    - 0 >= c for c a negative constant
    - 0 =  c for c a non-zero constant
    - e = c  when the coeffs of e are all integers and c is rational
 *)

type checksat =
  | Tauto (* Tautology *)
  | Unsat of ProofFormat.prf_rule (* Unsatisfiable *)
  | Cut of cstr * ProofFormat.prf_rule (* Cutting plane *)
  | Normalise of cstr * ProofFormat.prf_rule

(* Coefficients may be normalised i.e relatively prime *)

exception FoundProof of ProofFormat.prf_rule

(** [check_sat]
    - detects constraints that are not satisfiable;
    - normalises constraints and generate cuts.
 *)

let check_int_sat (cstr, prf) =
  let {coeffs; op; cst} = cstr in
  match Vect.choose coeffs with
  | None -> if eval_op op Q.zero cst then Tauto else Unsat prf
  | _ -> (
    let gcdi = Vect.gcd coeffs in
    let gcd = Q.of_bigint gcdi in
    if gcd =/ Q.one then Normalise (cstr, prf)
    else if Int.equal (Q.sign (Q.mod_ cst gcd)) 0 then begin
      (* We can really normalise *)
      assert (Q.sign gcd >= 1);
      let cstr = {coeffs = Vect.div gcd coeffs; op; cst = cst // gcd} in
      Normalise (cstr, ProofFormat.Gcd (gcdi, prf))
      (*		    Normalise(cstr,CutPrf prf)*)
    end
    else
      match op with
      | Eq -> Unsat (ProofFormat.CutPrf prf)
      | Ge ->
        let cstr =
          {coeffs = Vect.div gcd coeffs; op; cst = Q.ceiling (cst // gcd)}
        in
        Cut (cstr, ProofFormat.CutPrf prf)
      | Gt -> failwith "check_sat : Unexpected operator" )

let apply_and_normalise check f psys =
  List.fold_left
    (fun acc pc' ->
      match f pc' with
      | None -> pc' :: acc
      | Some pc' -> (
        match check pc' with
        | Tauto -> acc
        | Unsat prf -> raise (FoundProof prf)
        | Cut (c, p) -> (c, p) :: acc
        | Normalise (c, p) -> (c, p) :: acc ))
    [] psys

let is_linear_for v pc =
  LinPoly.is_linear (fst (fst pc)) || LinPoly.is_linear_for v (fst (fst pc))

(*let non_linear_pivot sys pc v pc' =
  if LinPoly.is_linear (fst (fst pc'))
  then None (* There are other ways to deal with those *)
  else WithProof.linear_pivot sys pc v pc'
 *)

let is_linear_substitution sys ((p, o), prf) =
  let pred v = v =/ Q.one || v =/ Q.minus_one in
  match o with
  | Eq -> (
    match
      List.filter
        (fun v -> List.for_all (is_linear_for v) sys)
        (LinPoly.search_all_linear pred p)
    with
    | [] -> None
    | v :: _ -> Some v (* make a choice *) )
  | _ -> None

let elim_simple_linear_equality sys0 =
  let elim sys =
    let oeq, sys' = extract (is_linear_substitution sys) sys in
    match oeq with
    | None -> None
    | Some (v, pc) -> simplify (WithProof.linear_pivot sys0 pc v) sys'
  in
  iterate_until_stable elim sys0

let subst sys = tr_sys "subst" WithProof.subst sys

(** [saturate_linear_equality sys] generate new constraints
    obtained by eliminating linear equalities by pivoting.
    For integers, the obtained constraints are  sound but not complete.
 *)
let saturate_by_linear_equalities sys0 = WithProof.saturate_subst false sys0

let saturate_by_linear_equalities sys =
  tr_sys "saturate_by_linear_equalities" saturate_by_linear_equalities sys

let bound_monomials (sys : WithProof.t list) =
  let (bounds,_) =
    extract_all
      (fun p ->
        match BoundWithProof.make p with
        | None -> None
        | Some b ->
          let Vect.Bound.{cst; var; coeff} = BoundWithProof.bound b in
          Some (Monomial.degree (LinPoly.MonT.retrieve var), b))
      sys
  in
  let deg =
    List.fold_left (fun acc ((p, o), _) -> max acc (LinPoly.degree p)) 0 sys
  in
  let vars =
    List.fold_left
      (fun acc ((p, o), _) -> ISet.union (LinPoly.monomials p) acc)
      ISet.empty sys
  in
  let module SetWP = Set.Make (struct
    type t = int * BoundWithProof.t

    let compare (_, x) (_, y) = BoundWithProof.compare x y
  end) in
  let bounds =
    saturate_bin
      (module SetWP : Set.S with type elt = int * BoundWithProof.t)
      (fun (i1, w1) (i2, w2) ->
        if i1 + i2 > deg then None
        else
          match BoundWithProof.mul_bound w1 w2 with
          | None -> None
          | Some b -> Some (i1 + i2, b))
      bounds
  in
  let has_mon (_, b) =
    let Vect.Bound.{cst; var; coeff} = BoundWithProof.bound b in
    if ISet.mem var vars then Some (BoundWithProof.proof b) else None
  in
  CList.map_filter has_mon bounds

let bound_monomials = tr_sys "bound_monomials" bound_monomials

let develop_constraints prfdepth n_spec sys =
  LinPoly.MonT.clear ();
  max_nb_cstr := compute_max_nb_cstr sys prfdepth;
  let sys = List.map (develop_constraint n_spec) sys in
  List.mapi
    (fun i (p, o) -> ((LinPoly.linpol_of_pol p, o), ProofFormat.Hyp i))
    sys

let square_of_var i =
  let x = LinPoly.var i in
  ((LinPoly.product x x, Ge), ProofFormat.Square x)

(** [nlinear_preprocess  sys]  augments the system [sys] by performing some limited non-linear reasoning.
    For instance, it asserts that the x² ≥0 but also that if c₁ ≥ 0 ∈ sys and c₂ ≥ 0 ∈ sys then c₁ × c₂ ≥ 0.
    The resulting system is linearised.
 *)

let nlinear_preprocess (sys : WithProof.t list) =
  let is_linear = List.for_all (fun ((p, _), _) -> LinPoly.is_linear p) sys in
  if is_linear then sys
  else
    let collect_square =
      List.fold_left
        (fun acc ((p, _), _) ->
          MonMap.union (fun k e1 e2 -> Some e1) acc (LinPoly.collect_square p))
        MonMap.empty sys
    in
    let sys =
      MonMap.fold
        (fun s m acc ->
          let s = LinPoly.of_monomial s in
          let m = LinPoly.of_monomial m in
          ((m, Ge), ProofFormat.Square s) :: acc)
        collect_square sys
    in
    let collect_vars =
      List.fold_left
        (fun acc p -> ISet.union acc (LinPoly.variables (fst (fst p))))
        ISet.empty sys
    in
    let sys =
      ISet.fold (fun i acc -> square_of_var i :: acc) collect_vars sys
    in
    let sys = sys @ all_pairs WithProof.product sys in
    List.map (WithProof.annot "P") sys

let nlinear_preprocess = tr_sys "nlinear_preprocess" nlinear_preprocess

let nlinear_prover prfdepth sys =
  let sys = develop_constraints prfdepth q_spec sys in
  let sys1 = elim_simple_linear_equality sys in
  let sys2 = saturate_by_linear_equalities sys1 in
  let sys = nlinear_preprocess sys1 @ sys2 in
  let sys = List.map (fun ((p, o), prf) -> (cstr_of_poly (p, o), prf)) sys in
  let id =
    List.fold_left
      (fun acc (_, r) -> max acc (ProofFormat.pr_rule_max_hyp r))
      0 sys
  in
  let env = List.map (fun i -> ProofFormat.Hyp i) (CList.interval 0 id) in
  match linear_prover_cstr sys with
  | None -> Unknown
  | Some cert -> Prf (ProofFormat.cmpl_prf_rule Mc.normQ CamlToCoq.q env cert)

let linear_prover_with_cert prfdepth sys =
  let sys = develop_constraints prfdepth q_spec sys in
  (*  let sys = nlinear_preprocess  sys in *)
  let sys = List.map (fun (c, p) -> (cstr_of_poly c, p)) sys in
  match linear_prover_cstr sys with
  | None -> Unknown
  | Some cert ->
    Prf
      (ProofFormat.cmpl_prf_rule Mc.normQ CamlToCoq.q
         (List.mapi (fun i e -> ProofFormat.Hyp i) sys)
         cert)

(* The prover is (probably) incomplete --
   only searching for naive cutting planes *)

open Sos_types

let rec scale_term t =
  match t with
  | Zero -> (Z.one, Zero)
  | Const n -> (Q.den n, Const (Q.of_bigint (Q.num n)))
  | Var n -> (Z.one, Var n)
  | Opp t ->
    let s, t = scale_term t in
    (s, Opp t)
  | Add (t1, t2) ->
    let s1, y1 = scale_term t1 and s2, y2 = scale_term t2 in
    let g = Z.gcd s1 s2 in
    let s1' = Z.div s1 g in
    let s2' = Z.div s2 g in
    let e = Z.mul g (Z.mul s1' s2') in
    if Int.equal (Z.compare e Z.one) 0 then (Z.one, Add (y1, y2))
    else
      ( e
      , Add
          (Mul (Const (Q.of_bigint s2'), y1), Mul (Const (Q.of_bigint s1'), y2))
      )
  | Sub _ -> failwith "scale term: not implemented"
  | Mul (y, z) ->
    let s1, y1 = scale_term y and s2, y2 = scale_term z in
    (Z.mul s1 s2, Mul (y1, y2))
  | Pow (t, n) ->
    let s, t = scale_term t in
    (Z.power_int s n, Pow (t, n))

let scale_term t =
  let s, t' = scale_term t in
  (s, t')

let rec scale_certificate pos =
  match pos with
  | Axiom_eq i -> (Z.one, Axiom_eq i)
  | Axiom_le i -> (Z.one, Axiom_le i)
  | Axiom_lt i -> (Z.one, Axiom_lt i)
  | Monoid l -> (Z.one, Monoid l)
  | Rational_eq n -> (Q.den n, Rational_eq (Q.of_bigint (Q.num n)))
  | Rational_le n -> (Q.den n, Rational_le (Q.of_bigint (Q.num n)))
  | Rational_lt n -> (Q.den n, Rational_lt (Q.of_bigint (Q.num n)))
  | Square t ->
    let s, t' = scale_term t in
    (Z.mul s s, Square t')
  | Eqmul (t, y) ->
    let s1, y1 = scale_term t and s2, y2 = scale_certificate y in
    (Z.mul s1 s2, Eqmul (y1, y2))
  | Sum (y, z) ->
    let s1, y1 = scale_certificate y and s2, y2 = scale_certificate z in
    let g = Z.gcd s1 s2 in
    let s1' = Z.div s1 g in
    let s2' = Z.div s2 g in
    ( Z.mul g (Z.mul s1' s2')
    , Sum
        ( Product (Rational_le (Q.of_bigint s2'), y1)
        , Product (Rational_le (Q.of_bigint s1'), y2) ) )
  | Product (y, z) ->
    let s1, y1 = scale_certificate y and s2, y2 = scale_certificate z in
    (Z.mul s1 s2, Product (y1, y2))

module Z_ = Z
open Micromega

let rec term_to_q_expr = function
  | Const n -> PEc (Ml2C.q n)
  | Zero -> PEc (Ml2C.q Q.zero)
  | Var s ->
    PEX (Ml2C.index (int_of_string (String.sub s 1 (String.length s - 1))))
  | Mul (p1, p2) -> PEmul (term_to_q_expr p1, term_to_q_expr p2)
  | Add (p1, p2) -> PEadd (term_to_q_expr p1, term_to_q_expr p2)
  | Opp p -> PEopp (term_to_q_expr p)
  | Pow (t, n) -> PEpow (term_to_q_expr t, Ml2C.n n)
  | Sub (t1, t2) -> PEsub (term_to_q_expr t1, term_to_q_expr t2)

let term_to_q_pol e =
  Mc.norm_aux (Ml2C.q Q.zero) (Ml2C.q Q.one) Mc.qplus Mc.qmult Mc.qminus Mc.qopp
    Mc.qeq_bool (term_to_q_expr e)

let rec product l =
  match l with
  | [] -> Mc.PsatzZ
  | [i] -> Mc.PsatzIn (Ml2C.nat i)
  | i :: l -> Mc.PsatzMulE (Mc.PsatzIn (Ml2C.nat i), product l)

let q_cert_of_pos pos =
  let rec _cert_of_pos = function
    | Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i)
    | Axiom_le i -> Mc.PsatzIn (Ml2C.nat i)
    | Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i)
    | Monoid l -> product l
    | Rational_eq n | Rational_le n | Rational_lt n ->
      if Int.equal (Q.compare n Q.zero) 0 then Mc.PsatzZ
      else Mc.PsatzC (Ml2C.q n)
    | Square t -> Mc.PsatzSquare (term_to_q_pol t)
    | Eqmul (t, y) -> Mc.PsatzMulC (term_to_q_pol t, _cert_of_pos y)
    | Sum (y, z) -> Mc.PsatzAdd (_cert_of_pos y, _cert_of_pos z)
    | Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z)
  in
  simplify_cone q_spec (_cert_of_pos pos)

let rec term_to_z_expr = function
  | Const n -> PEc (Ml2C.bigint (Q.to_bigint n))
  | Zero -> PEc Z0
  | Var s ->
    PEX (Ml2C.index (int_of_string (String.sub s 1 (String.length s - 1))))
  | Mul (p1, p2) -> PEmul (term_to_z_expr p1, term_to_z_expr p2)
  | Add (p1, p2) -> PEadd (term_to_z_expr p1, term_to_z_expr p2)
  | Opp p -> PEopp (term_to_z_expr p)
  | Pow (t, n) -> PEpow (term_to_z_expr t, Ml2C.n n)
  | Sub (t1, t2) -> PEsub (term_to_z_expr t1, term_to_z_expr t2)

let term_to_z_pol e =
  Mc.norm_aux (Ml2C.z 0) (Ml2C.z 1) Mc.Z.add Mc.Z.mul Mc.Z.sub Mc.Z.opp
    Mc.zeq_bool (term_to_z_expr e)

let z_cert_of_pos pos =
  let s, pos = scale_certificate pos in
  let rec _cert_of_pos = function
    | Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i)
    | Axiom_le i -> Mc.PsatzIn (Ml2C.nat i)
    | Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i)
    | Monoid l -> product l
    | Rational_eq n | Rational_le n | Rational_lt n ->
      if Int.equal (Q.compare n Q.zero) 0 then Mc.PsatzZ
      else Mc.PsatzC (Ml2C.bigint (Q.to_bigint n))
    | Square t -> Mc.PsatzSquare (term_to_z_pol t)
    | Eqmul (t, y) ->
      let is_unit = match t with Const n -> n =/ Q.one | _ -> false in
      if is_unit then _cert_of_pos y
      else Mc.PsatzMulC (term_to_z_pol t, _cert_of_pos y)
    | Sum (y, z) -> Mc.PsatzAdd (_cert_of_pos y, _cert_of_pos z)
    | Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z)
  in
  simplify_cone z_spec (_cert_of_pos pos)

(** All constraints (initial or derived) have an index and have a justification i.e., proof.
    Given a constraint, all the coefficients are always integers.
 *)
open Mutils

open Polynomial

type prf_sys = (cstr * ProofFormat.prf_rule) list

(** Proof generating pivoting over variable v *)
let pivot v (c1, p1) (c2, p2) =
  let {coeffs = v1; op = op1; cst = n1} = c1
  and {coeffs = v2; op = op2; cst = n2} = c2 in
  (* Could factorise gcd... *)
  let xpivot cv1 cv2 =
    ( { coeffs = Vect.add (Vect.mul cv1 v1) (Vect.mul cv2 v2)
      ; op = opAdd op1 op2
      ; cst = (n1 */ cv1) +/ (n2 */ cv2) }
    , ProofFormat.add_proof
        (ProofFormat.mul_cst_proof cv1 p1)
        (ProofFormat.mul_cst_proof cv2 p2) )
  in
  let a, b = (Vect.get v v1, Vect.get v v2) in
  if a =/ Q.zero || b =/ Q.zero then None
  else if Int.equal (Q.sign a * Q.sign b) (-1) then
    let cv1 = Q.abs b and cv2 = Q.abs a in
    Some (xpivot cv1 cv2)
  else if op1 == Eq then
    let cv1 = Q.neg (b */ Q.of_int (Q.sign a)) and cv2 = Q.abs a in
    Some (xpivot cv1 cv2)
  else if op2 == Eq then
    let cv1 = Q.abs b and cv2 = Q.neg (a */ Q.of_int (Q.sign b)) in
    Some (xpivot cv1 cv2)
  else None

let pivot v c1 c2 =
  let res = pivot v c1 c2 in
  ( match res with
  | None -> ()
  | Some (c, _) ->
    if Vect.get v c.coeffs =/ Q.zero then ()
    else Printf.printf "pivot error %a\n" output_cstr c );
  res

(* op2 could be Eq ... this might happen *)

let simpl_sys sys =
  List.fold_left
    (fun acc (c, p) ->
      match check_int_sat (c, p) with
      | Tauto -> acc
      | Unsat prf -> raise (FoundProof prf)
      | Cut (c, p) -> (c, p) :: acc
      | Normalise (c, p) -> (c, p) :: acc)
    [] sys

(** [ext_gcd a b] is the extended Euclid algorithm.
    [ext_gcd a b = (x,y,g)] iff [ax+by=g]
    Source: http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
 *)
let rec ext_gcd a b =
  if Int.equal (Z_.sign b) 0 then (Z_.one, Z_.zero)
  else
    let q, r = Z_.quomod a b in
    let s, t = ext_gcd b r in
    (t, Z_.sub s (Z_.mul q t))

let extract_coprime (c1, p1) (c2, p2) =
  if c1.op == Eq && c2.op == Eq then
    Vect.exists2
      (fun n1 n2 ->
        Int.equal (Z_.compare (Z_.gcd (Q.num n1) (Q.num n2)) Z_.one) 0)
      c1.coeffs c2.coeffs
  else None

let extract2 pred l =
  let rec xextract2 rl l =
    match l with
    | [] -> (None, rl) (* Did not find *)
    | e :: l -> (
      match extract (pred e) l with
      | None, _ -> xextract2 (e :: rl) l
      | Some (r, e'), l' -> (Some (r, e, e'), List.rev_append rl l') )
  in
  xextract2 [] l

let extract_coprime_equation psys = extract2 extract_coprime psys
let pivot_sys v pc psys = apply_and_normalise check_int_sat (pivot v pc) psys

let reduce_coprime psys =
  let oeq, sys = extract_coprime_equation psys in
  match oeq with
  | None -> None (* Nothing to do *)
  | Some ((v, n1, n2), (c1, p1), (c2, p2)) ->
    let l1, l2 = ext_gcd (Q.num n1) (Q.num n2) in
    let l1' = Q.of_bigint l1 and l2' = Q.of_bigint l2 in
    let cstr =
      { coeffs = Vect.add (Vect.mul l1' c1.coeffs) (Vect.mul l2' c2.coeffs)
      ; op = Eq
      ; cst = (l1' */ c1.cst) +/ (l2' */ c2.cst) }
    in
    let prf =
      ProofFormat.add_proof
        (ProofFormat.mul_cst_proof l1' p1)
        (ProofFormat.mul_cst_proof l2' p2)
    in
    Some (pivot_sys v (cstr, prf) ((c1, p1) :: sys))

(*let pivot_sys v pc sys = tr_cstr_sys "pivot_sys" (pivot_sys v pc) sys*)

(** If there is an equation [eq] of the form 1.x + e = c, do a pivot over x with equation [eq] *)
let reduce_unary psys =
  let is_unary_equation (cstr, prf) =
    if cstr.op == Eq then
      Vect.find
        (fun v n -> if n =/ Q.one || n =/ Q.minus_one then Some v else None)
        cstr.coeffs
    else None
  in
  let oeq, sys = extract is_unary_equation psys in
  match oeq with
  | None -> None (* Nothing to do *)
  | Some (v, pc) -> Some (pivot_sys v pc sys)

let reduce_var_change psys =
  let rec rel_prime vect =
    match Vect.choose vect with
    | None -> None
    | Some (x, v, vect) -> (
      let v = Q.num v in
      match
        Vect.find
          (fun x' v' ->
            let v' = Q.num v' in
            if Z_.equal (Z_.gcd v v') Z_.one then Some (x', v') else None)
          vect
      with
      | Some (x', v') -> Some ((x, v), (x', v'))
      | None -> rel_prime vect )
  in
  let rel_prime (cstr, prf) =
    if cstr.op == Eq then rel_prime cstr.coeffs else None
  in
  let oeq, sys = extract rel_prime psys in
  match oeq with
  | None -> None
  | Some (((x, v), (x', v')), (c, p)) ->
    let l1, l2 = ext_gcd v v' in
    let l1, l2 = (Q.of_bigint l1, Q.of_bigint l2) in
    let pivot_eq (c', p') =
      let {coeffs; op; cst} = c' in
      let vx = Vect.get x coeffs in
      let vx' = Vect.get x' coeffs in
      let m = Q.neg ((vx */ l1) +/ (vx' */ l2)) in
      Some
        ( { coeffs = Vect.add (Vect.mul m c.coeffs) coeffs
          ; op
          ; cst = (m */ c.cst) +/ cst }
        , ProofFormat.add_proof (ProofFormat.mul_cst_proof m p) p' )
    in
    Some (apply_and_normalise check_int_sat pivot_eq sys)

let reduction_equations psys =
  iterate_until_stable
    (app_funs
       [reduce_unary; reduce_coprime; reduce_var_change (*; reduce_pivot*)])
    psys

let reduction_equations = tr_cstr_sys "reduction_equations" reduction_equations

(** [get_bound sys] returns upon success an interval (lb,e,ub) with proofs *)
let get_bound sys =
  let is_small (v, i) =
    match Itv.range i with None -> false | Some i -> i <=/ Q.one
  in
  let select_best (x1, i1) (x2, i2) =
    if Itv.smaller_itv i1 i2 then (x1, i1) else (x2, i2)
  in
  (* For lia, there are no equations => these precautions are not needed *)
  (* For nlia, there are equations => do not enumerate over equations! *)
  let all_planes sys =
    let eq, ineq = List.partition (fun c -> c.op == Eq) sys in
    match eq with
    | [] -> List.rev_map (fun c -> c.coeffs) ineq
    | _ ->
      List.fold_left
        (fun acc c ->
          if List.exists (fun c' -> Vect.equal c.coeffs c'.coeffs) eq then acc
          else c.coeffs :: acc)
        [] ineq
  in
  let smallest_interval =
    List.fold_left
      (fun acc vect ->
        if is_small acc then acc
        else
          match optimise vect sys with
          | None -> acc
          | Some i ->
            if debug then
              Printf.printf "Found a new bound %a in %a" Vect.pp vect Itv.pp i;
            select_best (vect, i) acc)
      (Vect.null, (None, None))
      (all_planes sys)
  in
  let smallest_interval =
    match smallest_interval with
    | x, (Some i, Some j) -> Some (i, x, j)
    | x -> None
    (* This should not be possible *)
  in
  match smallest_interval with
  | Some (lb, e, ub) -> (
    let lbn, lbd = (Z_.sub (Q.num lb) Z_.one, Q.den lb) in
    let ubn, ubd = (Z_.add Z_.one (Q.num ub), Q.den ub) in
    (* x <= ub ->  x  > ub *)
    match
      ( direct_linear_prover
          ( { coeffs = Vect.mul (Q.of_bigint ubd) e
            ; op = Ge
            ; cst = Q.of_bigint ubn }
          :: sys )
      , (* lb <= x  -> lb > x *)
        direct_linear_prover
          ( { coeffs = Vect.mul (Q.neg (Q.of_bigint lbd)) e
            ; op = Ge
            ; cst = Q.neg (Q.of_bigint lbn) }
          :: sys ) )
    with
    | Some cub, Some clb ->
      Some (List.tl (Vect.to_list clb), (lb, e, ub), List.tl (Vect.to_list cub))
    | _ -> failwith "Interval without proof" )
  | None -> None

let check_sys sys =
  List.for_all
    (fun (c, p) -> Vect.for_all (fun _ n -> Q.sign n <> 0) c.coeffs)
    sys

open ProofFormat

let xlia (can_enum : bool) reduction_equations sys =
  let rec enum_proof (id : int) (sys : prf_sys) =
    if debug then (
      Printf.printf "enum_proof\n";
      flush stdout );
    assert (check_sys sys);
    let nsys, prf = List.split sys in
    match get_bound nsys with
    | None -> Unknown (* Is the systeme really unbounded ? *)
    | Some (prf1, (lb, e, ub), prf2) -> (
      if debug then
        Printf.printf "Found interval: %a in [%s;%s] -> " Vect.pp e
          (Q.to_string lb) (Q.to_string ub);
      match start_enum id e (Q.ceiling lb) (Q.floor ub) sys with
      | Prf prfl ->
        Prf
          (ProofFormat.Enum
             ( id
             , ProofFormat.proof_of_farkas (env_of_list prf)
                 (Vect.from_list prf1)
             , e
             , ProofFormat.proof_of_farkas (env_of_list prf)
                 (Vect.from_list prf2)
             , prfl ))
      | _ -> Unknown )
  and start_enum id e clb cub sys =
    if clb >/ cub then Prf []
    else
      let eq = {coeffs = e; op = Eq; cst = clb} in
      match aux_lia (id + 1) ((eq, ProofFormat.Def id) :: sys) with
      | Unknown | Model _ -> Unknown
      | Prf prf -> (
        match start_enum id e (clb +/ Q.one) cub sys with
        | Prf l -> Prf (prf :: l)
        | _ -> Unknown )
  and aux_lia (id : int) (sys : prf_sys) =
    assert (check_sys sys);
    if debug then Printf.printf "xlia:  %a \n" output_cstr_sys sys;
    try
      let sys = reduction_equations sys in
      if debug then Printf.printf "after reduction:  %a \n" output_cstr_sys sys;
      match linear_prover_cstr sys with
      | Some prf -> Prf (Step (id, prf, Done))
      | None -> if can_enum then enum_proof id sys else Unknown
    with FoundProof prf ->
      (* [reduction_equations] can find a proof *)
      Prf (Step (id, prf, Done))
  in
  (*  let sys' = List.map (fun (p,o) -> Mc.norm0 p , o) sys in*)
  let id =
    1
    + List.fold_left
        (fun acc (_, r) -> max acc (ProofFormat.pr_rule_max_hyp r))
        0 sys
  in
  let orpf =
    try
      let sys = simpl_sys sys in
      aux_lia id sys
    with FoundProof pr -> Prf (Step (id, pr, Done))
  in
  match orpf with
  | Unknown | Model _ -> Unknown
  | Prf prf ->
    let env = CList.interval 0 (id - 1) in
    if debug then begin
      Printf.fprintf stdout "direct proof %a\n" output_proof prf;
      flush stdout
    end;
    let prf = compile_proof env prf in
    (*try
             if Mc.zChecker sys' prf then Some prf else
             raise Certificate.BadCertificate
             with Failure s -> (Printf.printf "%s" s ; Some prf)
    *)
    Prf prf

let xlia_simplex env red sys =
  let compile_prf sys prf =
    let id =
      1
      + List.fold_left
          (fun acc (_, r) -> max acc (ProofFormat.pr_rule_max_hyp r))
          0 sys
    in
    let env = CList.interval 0 (id - 1) in
    Prf (compile_proof env prf)
  in
  try
    let sys = red sys in
    match Simplex.integer_solver sys with
    | None -> Unknown
    | Some prf -> compile_prf sys prf
  with FoundProof prf -> compile_prf sys (Step (0, prf, Done))

let xlia env0 en red sys =
  if use_simplex () then xlia_simplex env0 red sys else xlia en red sys

let gen_bench (tac, prover) can_enum prfdepth sys =
  let res = prover can_enum prfdepth sys in
  ( match dump_file () with
  | None -> ()
  | Some file ->
    let o = open_out (Filename.temp_file ~temp_dir:(Sys.getcwd ()) file ".v") in
    let sys = develop_constraints prfdepth z_spec sys in
    Printf.fprintf o "Require Import ZArith Lia. Open Scope Z_scope.\n";
    Printf.fprintf o "Goal %a.\n" (LinPoly.pp_goal "Z") (List.map fst sys);
    begin
      match res with
      | Unknown | Model _ ->
        Printf.fprintf o "Proof.\n intros. Fail %s.\nAbort.\n" tac
      | Prf res -> Printf.fprintf o "Proof.\n intros. %s.\nQed.\n" tac
    end;
    flush o; close_out o );
  res

let normalise sys =
  List.fold_left
    (fun acc s ->
      match WithProof.cutting_plane s with
      | None -> s :: acc
      | Some s' -> s' :: acc)
    [] sys

let normalise = tr_sys "normalise" normalise

let elim_redundant sys =
  let module VectMap = Map.Make (Vect) in
  let elim_eq sys =
    List.fold_left
      (fun acc (((v, o), prf) as wp) ->
        match o with
        | Gt -> assert false
        | Ge -> wp :: acc
        | Eq -> wp :: WithProof.neg wp :: acc)
      [] sys
  in
  let of_list l =
    List.fold_left
      (fun m (((v, o), prf) as wp) ->
        let q, v' = Vect.decomp_cst v in
        try
          let q', wp' = VectMap.find v' m in
          match Q.compare q q' with
          | 0 -> if o = Eq then VectMap.add v' (q, wp) m else m
          | 1 -> m
          | _ -> VectMap.add v' (q, wp) m
        with Not_found -> VectMap.add v' (q, wp) m)
      VectMap.empty l
  in
  let to_list m = VectMap.fold (fun _ (_, wp) sys -> wp :: sys) m [] in
  to_list (of_list (elim_eq sys))

let elim_redundant sys = tr_sys "elim_redundant" elim_redundant sys

(** [fourier_small] performs some variable elimination and keeps the cutting planes.
    To decide which elimination to perform, the constraints are sorted according to
    1 - the number of variables
    2 - the value of the smallest coefficient
    Given the smallest constraint, we eliminate the variable with the smallest coefficient.
    The rational is that a constraint with a single variable provides some bound information.
    When there are several variables, we hope to eliminate all the variables.
    A necessary condition is to take the variable with the smallest coefficient *)

let fourier_small (sys : WithProof.t list) =
  let gen_pivot acc (q, x) wp l =
    List.fold_left
      (fun acc (s, wp') ->
        match WithProof.simple_pivot (q, x) wp wp' with
        | None -> acc
        | Some wp2 -> (
          match WithProof.cutting_plane wp2 with
          | Some wp2 -> (s, wp2) :: acc
          | _ -> acc ))
      acc l
  in
  let rec all_pivots acc l =
    match l with
    | [] -> acc
    | ((_, qx), wp) :: l' -> all_pivots (gen_pivot acc qx wp (acc @ l')) l'
  in
  List.rev_map snd (all_pivots [] (WithProof.sort sys))

let fourier_small = tr_sys "fourier_small" fourier_small

(** [propagate_bounds sys] generate new constraints by exploiting bounds.
    A bound is a constraint of the form c + a.x >= 0
 *)

(*let propagate_bounds sys =
  let bounds, sys' =
    List.fold_left
      (fun (b, r) (((c, o), prf) as wp) ->
        match Vect.Bound.of_vect c with
        | None -> (b, wp :: r)
        | Some b' -> ((b', wp) :: b, r))
      ([], []) sys
  in
  let exploit_bound acc (b, wp) =
    let cf = b.Vect.Bound.coeff in
    let vr = b.Vect.Bound.var in
    List.fold_left
      (fun acc (((c, o), prf) as wp') ->
        let cf' = Vect.get vr c in
        if Q.sign (cf */ cf') = -1 then
          WithProof.(
            let wf2 =
              addition
                (mult (LinPoly.constant (Q.abs cf')) wp)
                (mult (LinPoly.constant (Q.abs cf)) wp')
            in
            match cutting_plane wf2 with None -> acc | Some cp -> cp :: acc)
        else acc)
      acc sys'
  in
  List.fold_left exploit_bound [] bounds
 *)

let rev_concat l =
  let rec conc acc l =
    match l with [] -> acc | l1 :: lr -> conc (List.rev_append l1 acc) lr
  in
  conc [] l

let pre_process sys =
  let sys = normalise sys in
  let bnd1 = bound_monomials sys in
  let sys1 = normalise (subst (List.rev_append sys bnd1)) in
  let pbnd1 = fourier_small sys1 in
  let sys2 = elim_redundant (List.rev_append pbnd1 sys1) in
  let bnd2 = bound_monomials sys2 in
  (* Should iterate ? *)
  let sys =
    rev_concat [bnd2; saturate_by_linear_equalities sys2; sys2]
  in
  sys

let lia (can_enum : bool) (prfdepth : int) sys =
  let sys = develop_constraints prfdepth z_spec sys in
  if debug then begin
    Printf.fprintf stdout "Input problem\n";
    List.iter (fun s -> Printf.fprintf stdout "%a\n" WithProof.output s) sys;
    Printf.fprintf stdout "Input problem\n";
    let string_of_op = function Eq -> "=" | Ge -> ">=" | Gt -> ">" in
    List.iter
      (fun ((p, op), _) ->
        Printf.fprintf stdout "(assert (%s %a))\n" (string_of_op op) Vect.pp_smt
          p)
      sys
  end;
  let sys = pre_process sys in
  let sys' = List.map (fun ((p, o), prf) -> (cstr_of_poly (p, o), prf)) sys in
  xlia (List.map fst sys) can_enum reduction_equations sys'

let make_cstr_system sys =
  List.map (fun ((p, o), prf) -> (cstr_of_poly (p, o), prf)) sys

let nlia enum prfdepth sys =
  let sys = develop_constraints prfdepth z_spec sys in
  let is_linear = List.for_all (fun ((p, _), _) -> LinPoly.is_linear p) sys in
  if debug then begin
    Printf.fprintf stdout "Input problem\n";
    List.iter (fun s -> Printf.fprintf stdout "%a\n" WithProof.output s) sys
  end;
  if is_linear then
    xlia (List.map fst sys) enum reduction_equations
      (make_cstr_system (pre_process sys))
  else
    (*
      let sys1 = elim_every_substitution sys in
      No: if a wrong equation is chosen, the proof may fail.
      It would only be safe if the variable is linear...
     *)
    let sys1 =
      normalise
        (elim_simple_linear_equality (WithProof.subst_constant true sys))
    in
    let bnd1 = bound_monomials sys1 in
    let sys2 = saturate_by_linear_equalities sys1 in
    let sys3 = nlinear_preprocess (rev_concat [bnd1; sys1; sys2]) in
    let sys4 = make_cstr_system (*sys2@*) sys3 in
    (* [reduction_equations] is too brutal - there should be some non-linear reasoning  *)
    xlia (List.map fst sys) enum reduction_equations sys4

(* For regression testing, if bench = true generate a Coq goal *)

let lia can_enum prfdepth sys = gen_bench ("lia", lia) can_enum prfdepth sys
let nlia enum prfdepth sys = gen_bench ("nia", nlia) enum prfdepth sys

(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
OCaml

Innovation. Community. Security.