package coq

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file indfun_common.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
open Names
open Pp
open Constr
open Libnames

let mk_prefix pre id = Id.of_string (pre ^ Id.to_string id)
let mk_rel_id = mk_prefix "R_"
let mk_correct_id id = Nameops.add_suffix (mk_rel_id id) "_correct"
let mk_complete_id id = Nameops.add_suffix (mk_rel_id id) "_complete"
let mk_equation_id id = Nameops.add_suffix id "_equation"

let fresh_id avoid s =
  Namegen.next_ident_away_in_goal (Global.env ()) (Id.of_string s) (Id.Set.of_list avoid)

let fresh_name avoid s = Name (fresh_id avoid s)

let get_name avoid ?(default = "H") = function
  | Anonymous -> fresh_name avoid default
  | Name n -> Name n

let array_get_start a = Array.init (Array.length a - 1) (fun i -> a.(i))
let locate qid = Nametab.locate qid

let locate_ind ref =
  match locate ref with GlobRef.IndRef x -> x | _ -> raise Not_found

let locate_constant ref =
  match locate ref with GlobRef.ConstRef x -> x | _ -> raise Not_found

let locate_with_msg msg f x = try f x with Not_found -> CErrors.user_err msg

let filter_map filter f =
  let rec it = function
    | [] -> []
    | e :: l -> if filter e then f e :: it l else it l
  in
  it

let chop_rlambda_n =
  let rec chop_lambda_n acc n rt =
    if n == 0 then (List.rev acc, rt)
    else
      match DAst.get rt with
      | Glob_term.GLambda (name, k, t, b) ->
        chop_lambda_n ((name, t, None) :: acc) (n - 1) b
      | Glob_term.GLetIn (name, v, t, b) ->
        chop_lambda_n ((name, v, t) :: acc) (n - 1) b
      | _ ->
        CErrors.user_err
          (str "chop_rlambda_n: Not enough Lambdas")
  in
  chop_lambda_n []

let chop_rprod_n =
  let rec chop_prod_n acc n rt =
    if n == 0 then (List.rev acc, rt)
    else
      match DAst.get rt with
      | Glob_term.GProd (name, k, t, b) ->
        chop_prod_n ((name, t) :: acc) (n - 1) b
      | _ ->
        CErrors.user_err
          (str "chop_rprod_n: Not enough products")
  in
  chop_prod_n []

let list_union_eq eq_fun l1 l2 =
  let rec urec = function
    | [] -> l2
    | a :: l -> if List.exists (eq_fun a) l2 then urec l else a :: urec l
  in
  urec l1

let list_add_set_eq eq_fun x l = if List.exists (eq_fun x) l then l else x :: l
let coq_constant s = UnivGen.constr_of_monomorphic_global (Global.env ()) @@ Coqlib.lib_ref s

let find_reference sl s =
  let dp = Names.DirPath.make (List.rev_map Id.of_string sl) in
  Nametab.locate (make_qualid dp (Id.of_string s))

let eq = lazy (EConstr.of_constr (coq_constant "core.eq.type"))
let refl_equal = lazy (EConstr.of_constr (coq_constant "core.eq.refl"))

let with_full_print f a =
  let old_implicit_args = Impargs.is_implicit_args ()
  and old_strict_implicit_args = Impargs.is_strict_implicit_args ()
  and old_contextual_implicit_args = Impargs.is_contextual_implicit_args () in
  let old_rawprint = !Flags.raw_print in
  let old_printuniverses = !Constrextern.print_universes in
  let old_printallowmatchdefaultclause =
    Detyping.print_allow_match_default_clause ()
  in
  Constrextern.print_universes := true;
  Goptions.set_bool_option_value Detyping.print_allow_match_default_opt_name
    false;
  Flags.raw_print := true;
  Impargs.make_implicit_args false;
  Impargs.make_strict_implicit_args false;
  Impargs.make_contextual_implicit_args false;
  Dumpglob.pause ();
  try
    let res = f a in
    Impargs.make_implicit_args old_implicit_args;
    Impargs.make_strict_implicit_args old_strict_implicit_args;
    Impargs.make_contextual_implicit_args old_contextual_implicit_args;
    Flags.raw_print := old_rawprint;
    Constrextern.print_universes := old_printuniverses;
    Goptions.set_bool_option_value Detyping.print_allow_match_default_opt_name
      old_printallowmatchdefaultclause;
    Dumpglob.pop_output ();
    res
  with reraise ->
    Impargs.make_implicit_args old_implicit_args;
    Impargs.make_strict_implicit_args old_strict_implicit_args;
    Impargs.make_contextual_implicit_args old_contextual_implicit_args;
    Flags.raw_print := old_rawprint;
    Constrextern.print_universes := old_printuniverses;
    Goptions.set_bool_option_value Detyping.print_allow_match_default_opt_name
      old_printallowmatchdefaultclause;
    Dumpglob.pop_output ();
    raise reraise

(**********************)

type function_info =
  { function_constant : Constant.t
  ; graph_ind : inductive
  ; equation_lemma : Constant.t option
  ; correctness_lemma : Constant.t option
  ; completeness_lemma : Constant.t option
  ; rect_lemma : Constant.t option
  ; rec_lemma : Constant.t option
  ; prop_lemma : Constant.t option
  ; sprop_lemma : Constant.t option
  ; is_general : bool
        (* Has this function been defined using general recursive definition *)
  }

(* type function_db  = function_info list *)

(* let function_table = ref ([] : function_db) *)

let from_function = Summary.ref Cmap_env.empty ~name:"functions_db_fn"
let from_graph = Summary.ref Indmap.empty ~name:"functions_db_gr"

(*
let rec do_cache_info finfo = function
  | [] -> raise Not_found
  | (finfo'::finfos as l) ->
      if finfo' == finfo then l
      else if finfo'.function_constant = finfo.function_constant
      then finfo::finfos
      else
        let res = do_cache_info finfo finfos in
        if res == finfos then l else  finfo'::l


let cache_Function (_,(finfos)) =
  let new_tbl =
    try do_cache_info finfos !function_table
    with Not_found -> finfos::!function_table
  in
  if new_tbl != !function_table
  then function_table := new_tbl
*)

let cache_Function (_, finfos) =
  from_function := Cmap_env.add finfos.function_constant finfos !from_function;
  from_graph := Indmap.add finfos.graph_ind finfos !from_graph

let subst_Function (subst, finfos) =
  let do_subst_con c = Mod_subst.subst_constant subst c
  and do_subst_ind i = Mod_subst.subst_ind subst i in
  let function_constant' = do_subst_con finfos.function_constant in
  let graph_ind' = do_subst_ind finfos.graph_ind in
  let equation_lemma' = Option.Smart.map do_subst_con finfos.equation_lemma in
  let correctness_lemma' =
    Option.Smart.map do_subst_con finfos.correctness_lemma
  in
  let completeness_lemma' =
    Option.Smart.map do_subst_con finfos.completeness_lemma
  in
  let rect_lemma' = Option.Smart.map do_subst_con finfos.rect_lemma in
  let rec_lemma' = Option.Smart.map do_subst_con finfos.rec_lemma in
  let prop_lemma' = Option.Smart.map do_subst_con finfos.prop_lemma in
  let sprop_lemma' = Option.Smart.map do_subst_con finfos.sprop_lemma in
  if
    function_constant' == finfos.function_constant
    && graph_ind' == finfos.graph_ind
    && equation_lemma' == finfos.equation_lemma
    && correctness_lemma' == finfos.correctness_lemma
    && completeness_lemma' == finfos.completeness_lemma
    && rect_lemma' == finfos.rect_lemma
    && rec_lemma' == finfos.rec_lemma
    && prop_lemma' == finfos.prop_lemma
    && sprop_lemma' == finfos.sprop_lemma
  then finfos
  else
    { function_constant = function_constant'
    ; graph_ind = graph_ind'
    ; equation_lemma = equation_lemma'
    ; correctness_lemma = correctness_lemma'
    ; completeness_lemma = completeness_lemma'
    ; rect_lemma = rect_lemma'
    ; rec_lemma = rec_lemma'
    ; prop_lemma = prop_lemma'
    ; sprop_lemma = sprop_lemma'
    ; is_general = finfos.is_general }

let discharge_Function (_, finfos) = Some finfos

let pr_ocst env sigma c =
  Option.fold_right
    (fun v acc -> Printer.pr_lconstr_env env sigma (mkConst v))
    c (mt ())

let pr_info env sigma f_info =
  str "function_constant := "
  ++ Printer.pr_lconstr_env env sigma (mkConst f_info.function_constant)
  ++ fnl ()
  ++ str "function_constant_type := "
  ++ ( try
         Printer.pr_lconstr_env env sigma
           (fst
              (Typeops.type_of_global_in_context env
                 (GlobRef.ConstRef f_info.function_constant)))
       with e when CErrors.noncritical e -> mt () )
  ++ fnl () ++ str "equation_lemma := "
  ++ pr_ocst env sigma f_info.equation_lemma
  ++ fnl ()
  ++ str "completeness_lemma :="
  ++ pr_ocst env sigma f_info.completeness_lemma
  ++ fnl ()
  ++ str "correctness_lemma := "
  ++ pr_ocst env sigma f_info.correctness_lemma
  ++ fnl () ++ str "rect_lemma := "
  ++ pr_ocst env sigma f_info.rect_lemma
  ++ fnl () ++ str "rec_lemma := "
  ++ pr_ocst env sigma f_info.rec_lemma
  ++ fnl () ++ str "prop_lemma := "
  ++ pr_ocst env sigma f_info.prop_lemma
  ++ fnl () ++ str "graph_ind := "
  ++ Printer.pr_lconstr_env env sigma (mkInd f_info.graph_ind)
  ++ fnl ()

let pr_table env sigma tb =
  let l = Cmap_env.fold (fun k v acc -> v :: acc) tb [] in
  Pp.prlist_with_sep fnl (pr_info env sigma) l

let in_Function : function_info -> Libobject.obj =
  let open Libobject in
  declare_object
  @@ superglobal_object "FUNCTIONS_DB" ~cache:cache_Function
       ~subst:(Some subst_Function) ~discharge:discharge_Function

let find_or_none id =
  try
    Some
      ( match Nametab.locate (qualid_of_ident id) with
      | GlobRef.ConstRef c -> c
      | _ -> CErrors.anomaly (Pp.str "Not a constant.") )
  with Not_found -> None

let find_Function_infos f = Cmap_env.find_opt f !from_function
let find_Function_of_graph ind = Indmap.find_opt ind !from_graph

let update_Function finfo =
  (* Pp.msgnl (pr_info finfo); *)
  Lib.add_anonymous_leaf (in_Function finfo)

let add_Function is_general f =
  let f_id = Label.to_id (Constant.label f) in
  let equation_lemma = find_or_none (mk_equation_id f_id)
  and correctness_lemma = find_or_none (mk_correct_id f_id)
  and completeness_lemma = find_or_none (mk_complete_id f_id)
  and rect_lemma = find_or_none (Nameops.add_suffix f_id "_rect")
  and rec_lemma = find_or_none (Nameops.add_suffix f_id "_rec")
  and prop_lemma = find_or_none (Nameops.add_suffix f_id "_ind")
  and sprop_lemma = find_or_none (Nameops.add_suffix f_id "_sind")
  and graph_ind =
    match Nametab.locate (qualid_of_ident (mk_rel_id f_id)) with
    | GlobRef.IndRef ind -> ind
    | _ -> CErrors.anomaly (Pp.str "Not an inductive.")
  in
  let finfos =
    { function_constant = f
    ; equation_lemma
    ; completeness_lemma
    ; correctness_lemma
    ; rect_lemma
    ; rec_lemma
    ; prop_lemma
    ; sprop_lemma
    ; graph_ind
    ; is_general }
  in
  update_Function finfos

let pr_table env sigma = pr_table env sigma !from_function

(*********************************)
(* Debugging *)

let do_rewrite_dependent =
  Goptions.declare_bool_option_and_ref ~depr:false
    ~key:["Functional"; "Induction"; "Rewrite"; "Dependent"]
    ~value:true

let do_observe =
  Goptions.declare_bool_option_and_ref ~depr:false ~key:["Function_debug"]
    ~value:false

let observe strm = if do_observe () then Feedback.msg_debug strm else ()
let debug_queue = Stack.create ()

let print_debug_queue b e =
  if not (Stack.is_empty debug_queue) then
    let lmsg, goal = Stack.pop debug_queue in
    if b then
      Feedback.msg_debug
        (hov 1
           ( lmsg
           ++ (str " raised exception " ++ CErrors.print e)
           ++ str " on goal" ++ fnl () ++ goal ))
    else
      Feedback.msg_debug
        (hov 1 (str " from " ++ lmsg ++ str " on goal" ++ fnl () ++ goal))

(* print_debug_queue false e; *)

module New = struct
  let do_observe_tac ~header s tac =
    let open Proofview.Notations in
    let open Proofview in
    Goal.enter (fun gl ->
        let goal = Printer.pr_goal (Goal.print gl) in
        let env, sigma = (Goal.env gl, Goal.sigma gl) in
        let s = s env sigma in
        let lmsg = seq [header; str " : " ++ s] in
        tclLIFT (NonLogical.make (fun () -> Feedback.msg_debug (s ++ fnl ())))
        >>= fun () ->
        tclOR
          ( Stack.push (lmsg, goal) debug_queue;
            tac
            >>= fun v ->
            ignore (Stack.pop debug_queue);
            Proofview.tclUNIT v )
          (fun (exn, info) ->
            if not (Stack.is_empty debug_queue) then print_debug_queue true exn;
            tclZERO ~info exn))

  let observe_tac ~header s tac =
    if do_observe () then do_observe_tac ~header s tac else tac
end

let is_strict_tcc =
  Goptions.declare_bool_option_and_ref ~depr:false ~key:["Function_raw_tcc"]
    ~value:false

exception Building_graph of exn
exception Defining_principle of exn
exception ToShow of exn

let jmeq () =
  try
    Coqlib.check_required_library Coqlib.jmeq_module_name;
    EConstr.of_constr @@ UnivGen.constr_of_monomorphic_global (Global.env ())
    @@ Coqlib.lib_ref "core.JMeq.type"
  with e when CErrors.noncritical e -> raise (ToShow e)

let jmeq_refl () =
  try
    Coqlib.check_required_library Coqlib.jmeq_module_name;
    EConstr.of_constr @@ UnivGen.constr_of_monomorphic_global (Global.env ())
    @@ Coqlib.lib_ref "core.JMeq.refl"
  with e when CErrors.noncritical e -> raise (ToShow e)

let h_intros l = Tacticals.tclMAP (fun x -> Tactics.Simple.intro x) l
let h_id = Id.of_string "h"
let hrec_id = Id.of_string "hrec"

let well_founded = function
  | () -> EConstr.of_constr (coq_constant "core.wf.well_founded")

let acc_rel = function () -> EConstr.of_constr (coq_constant "core.wf.acc")

let acc_inv_id = function
  | () -> EConstr.of_constr (coq_constant "core.wf.acc_inv")

let well_founded_ltof () =
  EConstr.of_constr (coq_constant "num.nat.well_founded_ltof")

let ltof_ref = function () -> find_reference ["Coq"; "Arith"; "Wf_nat"] "ltof"

let make_eq () =
  try
    EConstr.of_constr
      (UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref "core.eq.type"))
  with _ -> assert false

let evaluable_of_global_reference r =
  let open Tacred in
  (* Tacred.evaluable_of_global_reference (Global.env ()) *)
  match r with
  | GlobRef.ConstRef sp -> EvalConstRef sp
  | GlobRef.VarRef id -> EvalVarRef id
  | _ -> assert false

let list_rewrite (rev : bool) (eqs : (EConstr.constr * bool) list) =
  let open Tacticals in
  (tclREPEAT
     (List.fold_right
        (fun (eq, b) i ->
          tclORELSE
            ((if b then Equality.rewriteLR else Equality.rewriteRL) eq)
            i)
        (if rev then List.rev eqs else eqs)
        (tclFAIL 0 (mt ()))) [@ocaml.warning "-3"])

let decompose_lam_n sigma n =
  if n < 0 then
    CErrors.user_err
      Pp.(str "decompose_lam_n: integer parameter must be positive");
  let rec lamdec_rec l n c =
    if Int.equal n 0 then (l, c)
    else
      match EConstr.kind sigma c with
      | Lambda (x, t, c) -> lamdec_rec ((x, t) :: l) (n - 1) c
      | Cast (c, _, _) -> lamdec_rec l n c
      | _ ->
        CErrors.user_err Pp.(str "decompose_lam_n: not enough abstractions")
  in
  lamdec_rec [] n

let lamn n env b =
  let open EConstr in
  let rec lamrec = function
    | 0, env, b -> b
    | n, (v, t) :: l, b -> lamrec (n - 1, l, mkLambda (v, t, b))
    | _ -> assert false
  in
  lamrec (n, env, b)

(* compose_lam [xn:Tn;..;x1:T1] b = [x1:T1]..[xn:Tn]b *)
let compose_lam l b = lamn (List.length l) l b

(* prodn n [xn:Tn;..;x1:T1;Gamma] b = (x1:T1)..(xn:Tn)b *)
let prodn n env b =
  let open EConstr in
  let rec prodrec = function
    | 0, env, b -> b
    | n, (v, t) :: l, b -> prodrec (n - 1, l, mkProd (v, t, b))
    | _ -> assert false
  in
  prodrec (n, env, b)

(* compose_prod [xn:Tn;..;x1:T1] b = (x1:T1)..(xn:Tn)b *)
let compose_prod l b = prodn (List.length l) l b

type tcc_lemma_value = Undefined | Value of constr | Not_needed

(* We only "purify" on exceptions. XXX: What is this doing here? *)
let funind_purify f x =
  let st = Vernacstate.freeze_interp_state ~marshallable:false in
  try f x
  with e ->
    let e = Exninfo.capture e in
    Vernacstate.unfreeze_interp_state st;
    Exninfo.iraise e
OCaml

Innovation. Community. Security.