package coq

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file uState.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open CErrors
open Util
open Names
open Univ

type universes_entry =
| Monomorphic_entry of Univ.ContextSet.t
| Polymorphic_entry of Univ.UContext.t

module UNameMap = Names.Id.Map

type uinfo = {
  uname : Id.t option;
  uloc : Loc.t option;
}

module UPairSet = UnivMinim.UPairSet

(* 2nd part used to check consistency on the fly. *)
type t =
 { names : UnivNames.universe_binders * uinfo Level.Map.t; (** Printing/location information *)
   local : ContextSet.t; (** The local graph of universes (variables and constraints) *)
   seff_univs : Level.Set.t; (** Local universes used through private constants *)
   univ_variables : UnivSubst.universe_opt_subst;
   (** The local universes that are unification variables *)
   univ_algebraic : Level.Set.t;
   (** The subset of unification variables that can be instantiated with
        algebraic universes as they appear in inferred types only. *)
   universes : UGraph.t; (** The current graph extended with the local constraints *)
   universes_lbound : UGraph.Bound.t; (** The lower bound on universes (e.g. Set or Prop) *)
   initial_universes : UGraph.t; (** The graph at the creation of the evar_map *)
   weak_constraints : UPairSet.t
 }

let initial_sprop_cumulative = UGraph.set_cumulative_sprop true UGraph.initial_universes

let empty =
  { names = UNameMap.empty, Level.Map.empty;
    local = ContextSet.empty;
    seff_univs = Level.Set.empty;
    univ_variables = Level.Map.empty;
    univ_algebraic = Level.Set.empty;
    universes = initial_sprop_cumulative;
    universes_lbound = UGraph.Bound.Set;
    initial_universes = initial_sprop_cumulative;
    weak_constraints = UPairSet.empty; }

let elaboration_sprop_cumul =
  Goptions.declare_bool_option_and_ref ~depr:false
    ~key:["Elaboration";"StrictProp";"Cumulativity"] ~value:true

let make ~lbound univs =
  let univs = UGraph.set_cumulative_sprop (elaboration_sprop_cumul ()) univs in
  { empty with
    universes = univs;
    universes_lbound = lbound;
    initial_universes = univs}

let is_empty uctx =
  ContextSet.is_empty uctx.local &&
    Level.Map.is_empty uctx.univ_variables

let uname_union s t =
  if s == t then s
  else
    UNameMap.merge (fun k l r ->
        match l, r with
        | Some _, _ -> l
        | _, _ -> r) s t

let union uctx uctx' =
  if uctx == uctx' then uctx
  else if is_empty uctx' then uctx
  else
    let local = ContextSet.union uctx.local uctx'.local in
    let seff = Level.Set.union uctx.seff_univs uctx'.seff_univs in
    let names = uname_union (fst uctx.names) (fst uctx'.names) in
    let names_rev = Level.Map.lunion (snd uctx.names) (snd uctx'.names) in
    let newus = Level.Set.diff (ContextSet.levels uctx'.local)
                               (ContextSet.levels uctx.local) in
    let newus = Level.Set.diff newus (Level.Map.domain uctx.univ_variables) in
    let weak = UPairSet.union uctx.weak_constraints uctx'.weak_constraints in
    let declarenew g =
      Level.Set.fold (fun u g -> UGraph.add_universe u ~lbound:uctx.universes_lbound ~strict:false g) newus g
    in
      { names = (names, names_rev);
        local = local;
        seff_univs = seff;
        univ_variables =
          Level.Map.subst_union uctx.univ_variables uctx'.univ_variables;
        univ_algebraic =
          Level.Set.union uctx.univ_algebraic uctx'.univ_algebraic;
        initial_universes = declarenew uctx.initial_universes;
        universes =
          (if local == uctx.local then uctx.universes
           else
             let cstrsr = ContextSet.constraints uctx'.local in
             UGraph.merge_constraints cstrsr (declarenew uctx.universes));
        universes_lbound = uctx.universes_lbound;
        weak_constraints = weak}

let context_set uctx = uctx.local

let constraints uctx = snd uctx.local

let compute_instance_binders rbinders inst =
  let map lvl =
    try Name (Option.get (Level.Map.find lvl rbinders).uname)
    with Option.IsNone | Not_found -> Anonymous
  in
  Array.map map (Instance.to_array inst)

let context uctx =
  let (_, rbinders) = uctx.names in
  ContextSet.to_context (compute_instance_binders rbinders) uctx.local

type named_universes_entry = universes_entry * UnivNames.universe_binders

let univ_entry ~poly uctx =
  let (binders, _) = uctx.names in
  let entry =
    if poly then Polymorphic_entry (context uctx)
    else Monomorphic_entry (context_set uctx) in
  entry, binders

let of_context_set local = { empty with local }

type universe_opt_subst = UnivSubst.universe_opt_subst

let subst uctx = uctx.univ_variables

let nf_universes uctx c =
  UnivSubst.nf_evars_and_universes_opt_subst (fun _ -> None) (subst uctx) c

let ugraph uctx = uctx.universes

let initial_graph uctx = uctx.initial_universes

let algebraics uctx = uctx.univ_algebraic

let add_names ?loc s l (names, names_rev) =
  if UNameMap.mem s names
  then user_err ?loc
      Pp.(str "Universe " ++ Names.Id.print s ++ str" already bound.");
  (UNameMap.add s l names, Level.Map.add l { uname = Some s; uloc = loc } names_rev)

let add_loc l loc (names, names_rev) =
  match loc with
  | None -> (names, names_rev)
  | Some _ -> (names, Level.Map.add l { uname = None; uloc = loc } names_rev)

let of_binders names =
  let rev_map =
    UNameMap.fold (fun id l rmap ->
        Level.Map.add l { uname = Some id; uloc = None } rmap)
      names Level.Map.empty
  in
  { empty with names = (names, rev_map) }

let universe_of_name uctx s =
  UNameMap.find s (fst uctx.names)

let universe_binders uctx =
  let named, _ = uctx.names in
  named

let instantiate_variable l b v =
  try v := Level.Map.set l (Some b) !v
  with Not_found -> assert false

exception UniversesDiffer

let drop_weak_constraints =
  Goptions.declare_bool_option_and_ref
    ~depr:false
    ~key:["Cumulativity";"Weak";"Constraints"]
    ~value:false

let process_universe_constraints uctx cstrs =
  let open UnivSubst in
  let open UnivProblem in
  let univs = uctx.universes in
  let vars = ref uctx.univ_variables in
  let weak = ref uctx.weak_constraints in
  let normalize u = normalize_univ_variable_opt_subst !vars u in
  let nf_constraint = function
    | ULub (u, v) -> ULub (level_subst_of normalize u, level_subst_of normalize v)
    | UWeak (u, v) -> UWeak (level_subst_of normalize u, level_subst_of normalize v)
    | UEq (u, v) -> UEq (subst_univs_universe normalize u, subst_univs_universe normalize v)
    | ULe (u, v) -> ULe (subst_univs_universe normalize u, subst_univs_universe normalize v)
  in
  let is_local l = Level.Map.mem l !vars in
  let varinfo x =
    match Universe.level x with
    | None -> Inl x
    | Some l -> Inr l
  in
  let equalize_variables fo l l' r r' local =
    (* Assumes l = [l',0] and r = [r',0] *)
    let () =
      if is_local l' then
        instantiate_variable l' r vars
      else if is_local r' then
        instantiate_variable r' l vars
      else if not (UGraph.check_eq_level univs l' r') then
        (* Two rigid/global levels, none of them being local,
            one of them being Prop/Set, disallow *)
        if Level.is_small l' || Level.is_small r' then
          raise (UniverseInconsistency (Eq, l, r, None))
        else if fo then
          raise UniversesDiffer
    in
    enforce_eq_level l' r' local
  in
  let equalize_universes l r local = match varinfo l, varinfo r with
  | Inr l', Inr r' -> equalize_variables false l l' r r' local
  | Inr l, Inl r | Inl r, Inr l ->
    let alg = Level.Set.mem l uctx.univ_algebraic in
    let inst = univ_level_rem l r r in
      if alg && not (Level.Set.mem l (Universe.levels inst)) then
        (instantiate_variable l inst vars; local)
      else
        let lu = Universe.make l in
        if univ_level_mem l r then
          enforce_leq inst lu local
        else raise (UniverseInconsistency (Eq, lu, r, None))
  | Inl _, Inl _ (* both are algebraic *) ->
    if UGraph.check_eq univs l r then local
    else raise (UniverseInconsistency (Eq, l, r, None))
  in
  let unify_universes cst local =
    let cst = nf_constraint cst in
      if UnivProblem.is_trivial cst then local
      else
          match cst with
          | ULe (l, r) ->
            begin match Univ.Universe.level r with
            | None ->
              if UGraph.check_leq univs l r then local
              else user_err Pp.(str "Algebraic universe on the right")
            | Some r' ->
              if Level.is_small r' then
                  if not (Universe.is_levels l)
                  then (* l contains a +1 and r=r' small so l <= r impossible *)
                    raise (UniverseInconsistency (Le, l, r, None))
                  else
                    if UGraph.check_leq univs l r then match Univ.Universe.level l with
                    | Some l ->
                      Univ.Constraints.add (l, Le, r') local
                    | None -> local
                    else
                    let levels = Universe.levels l in
                    let fold l' local =
                      let l = Universe.make l' in
                      if Level.is_small l' || is_local l' then
                        equalize_variables false l l' r r' local
                      else raise (UniverseInconsistency (Le, l, r, None))
                    in
                    Level.Set.fold fold levels local
              else
                match Univ.Universe.level l with
                | Some l ->
                  Univ.Constraints.add (l, Le, r') local
                | None ->
                  (* We insert the constraint in the graph even if the graph
                     already contains it.  Indeed, checking the existance of the
                     constraint is costly when the constraint does not already
                     exist directly as a single edge in the graph, but adding an
                     edge in the graph which is implied by others is cheap.
                     Hence, by doing this, we avoid a costly check here, and
                     make further checks of this constraint easier since it will
                     exist directly in the graph. *)
                  enforce_leq l r local
              end
          | ULub (l, r) ->
              equalize_variables true (Universe.make l) l (Universe.make r) r local
          | UWeak (l, r) ->
            if not (drop_weak_constraints ()) then weak := UPairSet.add (l,r) !weak; local
          | UEq (l, r) -> equalize_universes l r local
  in
  let unify_universes cst local =
    if not (UGraph.type_in_type univs) then unify_universes cst local
    else try unify_universes cst local with UniverseInconsistency _ -> local
  in
  let local =
    UnivProblem.Set.fold unify_universes cstrs Constraints.empty
  in
    !vars, !weak, local

let add_constraints uctx cstrs =
  let univs, old_cstrs = uctx.local in
  let cstrs' = Constraints.fold (fun (l,d,r) acc ->
    let l = Universe.make l and r = Universe.make r in
    let cstr' = let open UnivProblem in
      match d with
      | Lt ->
        ULe (Universe.super l, r)
      | Le -> ULe (l, r)
      | Eq -> UEq (l, r)
    in UnivProblem.Set.add cstr' acc)
    cstrs UnivProblem.Set.empty
  in
  let vars, weak, cstrs' = process_universe_constraints uctx cstrs' in
  { uctx with
    local = (univs, Constraints.union old_cstrs cstrs');
    univ_variables = vars;
    universes = UGraph.merge_constraints cstrs' uctx.universes;
    weak_constraints = weak; }

let add_universe_constraints uctx cstrs =
  let univs, local = uctx.local in
  let vars, weak, local' = process_universe_constraints uctx cstrs in
  { uctx with
    local = (univs, Constraints.union local local');
    univ_variables = vars;
    universes = UGraph.merge_constraints local' uctx.universes;
    weak_constraints = weak; }

let constrain_variables diff uctx =
  let univs, local = uctx.local in
  let univs, vars, local =
    Level.Set.fold
      (fun l (univs, vars, cstrs) ->
        try
          match Level.Map.find l vars with
          | Some u ->
             (Level.Set.add l univs,
              Level.Map.remove l vars,
              Constraints.add (l, Eq, Option.get (Universe.level u)) cstrs)
          | None -> (univs, vars, cstrs)
        with Not_found | Option.IsNone -> (univs, vars, cstrs))
      diff (univs, uctx.univ_variables, local)
  in
  { uctx with local = (univs, local); univ_variables = vars }

let id_of_level uctx l =
  try Some (Option.get (Level.Map.find l (snd uctx.names)).uname)
  with Not_found | Option.IsNone ->
    None

let qualid_of_level uctx l =
  let map, map_rev = uctx.names in
  try Some (Libnames.qualid_of_ident (Option.get (Level.Map.find l map_rev).uname))
  with Not_found | Option.IsNone ->
    UnivNames.qualid_of_level map l

let pr_uctx_level uctx l =
  match qualid_of_level uctx l with
  | Some qid -> Libnames.pr_qualid qid
  | None -> Level.pr l

type ('a, 'b) gen_universe_decl = {
  univdecl_instance : 'a; (* Declared universes *)
  univdecl_extensible_instance : bool; (* Can new universes be added *)
  univdecl_constraints : 'b; (* Declared constraints *)
  univdecl_extensible_constraints : bool (* Can new constraints be added *) }

type universe_decl =
  (lident list, Constraints.t) gen_universe_decl

let default_univ_decl =
  { univdecl_instance = [];
    univdecl_extensible_instance = true;
    univdecl_constraints = Constraints.empty;
    univdecl_extensible_constraints = true }

let pr_error_unbound_universes left uctx =
  let open Pp in
  let n = Level.Set.cardinal left in
  let prlev u =
    let info = Level.Map.find_opt u (snd uctx.names) in
    h (pr_uctx_level uctx u ++ (match info with
        | None | Some {uloc=None} -> mt ()
        | Some {uloc=Some loc} -> spc() ++ str"(" ++ Loc.pr loc ++ str")"))
  in
  (hv 0
     (str (CString.plural n "Universe") ++ spc () ++
      (prlist_with_sep spc prlev (Level.Set.elements left)) ++
      spc () ++ str (CString.conjugate_verb_to_be n) ++ str" unbound."))

exception UnboundUnivs of Level.Set.t * t

(* Deliberately using no location as the location of the univs
   doesn't correspond to the failing command. *)
let error_unbound_universes left uctx = raise (UnboundUnivs (left,uctx))

let _ = CErrors.register_handler (function
    | UnboundUnivs (left,uctx) -> Some (pr_error_unbound_universes left uctx)
    | _ -> None)

let universe_context ~names ~extensible uctx =
  let levels = ContextSet.levels uctx.local in
  let newinst, left =
    List.fold_right
      (fun { CAst.loc; v = id } (newinst, acc) ->
         let l =
           try universe_of_name uctx id
           with Not_found -> assert false
         in (l :: newinst, Level.Set.remove l acc))
      names ([], levels)
  in
  if not extensible && not (Level.Set.is_empty left)
  then error_unbound_universes left uctx
  else
    let left = ContextSet.sort_levels (Array.of_list (Level.Set.elements left)) in
    let inst = Array.append (Array.of_list newinst) left in
    let inst = Instance.of_array inst in
    (inst, ContextSet.constraints uctx.local)

let check_universe_context_set ~names ~extensible uctx =
  if extensible then ()
  else
    let left = List.fold_left (fun left { CAst.loc; v = id } ->
        let l =
          try universe_of_name uctx id
          with Not_found -> assert false
        in Level.Set.remove l left)
        (ContextSet.levels uctx.local) names
    in
    if not (Level.Set.is_empty left)
    then error_unbound_universes left uctx

let check_implication uctx cstrs cstrs' =
  let gr = initial_graph uctx in
  let grext = UGraph.merge_constraints cstrs gr in
  let cstrs' = Constraints.filter (fun c -> not (UGraph.check_constraint grext c)) cstrs' in
  if Constraints.is_empty cstrs' then ()
  else CErrors.user_err
      Pp.(str "Universe constraints are not implied by the ones declared: " ++
          pr_constraints (pr_uctx_level uctx) cstrs')

let check_mono_univ_decl uctx decl =
  let () =
    let names = decl.univdecl_instance in
    let extensible = decl.univdecl_extensible_instance in
    check_universe_context_set ~names ~extensible uctx
  in
  if not decl.univdecl_extensible_constraints then
    check_implication uctx
      decl.univdecl_constraints
      (ContextSet.constraints uctx.local);
  uctx.local

let check_univ_decl ~poly uctx decl =
  if not decl.univdecl_extensible_constraints then
    check_implication uctx
      decl.univdecl_constraints
      (ContextSet.constraints uctx.local);
  let names = decl.univdecl_instance in
  let extensible = decl.univdecl_extensible_instance in
  let (binders, rbinders) = uctx.names in
  if poly then
    let inst, csts = universe_context ~names ~extensible uctx in
    let nas = compute_instance_binders rbinders inst in
    let uctx = UContext.make nas (inst, csts) in
    Polymorphic_entry uctx, binders
  else
    let () = check_universe_context_set ~names ~extensible uctx in
    Monomorphic_entry uctx.local, binders

let is_bound l lbound = match lbound with
  | UGraph.Bound.Prop -> Level.is_prop l
  | UGraph.Bound.Set -> Level.is_set l

let restrict_universe_context ~lbound (univs, csts) keep =
  let removed = Level.Set.diff univs keep in
  if Level.Set.is_empty removed then univs, csts
  else
  let allunivs = Constraints.fold (fun (u,_,v) all -> Level.Set.add u (Level.Set.add v all)) csts univs in
  let g = UGraph.initial_universes in
  let g = Level.Set.fold (fun v g -> if Level.is_small v then g else
                        UGraph.add_universe v ~lbound ~strict:false g) allunivs g in
  let g = UGraph.merge_constraints csts g in
  let allkept = Level.Set.union (UGraph.domain UGraph.initial_universes) (Level.Set.diff allunivs removed) in
  let csts = UGraph.constraints_for ~kept:allkept g in
  let csts = Constraints.filter (fun (l,d,r) ->
      not ((is_bound l lbound && d == Le) || (Level.is_prop l && d == Lt && Level.is_set r))) csts in
  (Level.Set.inter univs keep, csts)

let restrict uctx vars =
  let vars = Level.Set.union vars uctx.seff_univs in
  let vars = Names.Id.Map.fold (fun na l vars -> Level.Set.add l vars)
      (fst uctx.names) vars
  in
  let uctx' = restrict_universe_context ~lbound:uctx.universes_lbound uctx.local vars in
  { uctx with local = uctx' }

type rigid =
  | UnivRigid
  | UnivFlexible of bool (** Is substitution by an algebraic ok? *)

let univ_rigid = UnivRigid
let univ_flexible = UnivFlexible false
let univ_flexible_alg = UnivFlexible true

(** ~sideff indicates that it is ok to redeclare a universe.
    ~extend also merges the universe context in the local constraint structures
    and not only in the graph. This depends if the
    context we merge comes from a side effect that is already inlined
    or defined separately. In the later case, there is no extension,
    see [emit_side_effects] for example. *)
let merge ?loc ~sideff rigid uctx uctx' =
  let levels = ContextSet.levels uctx' in
  let uctx =
    match rigid with
    | UnivRigid -> uctx
    | UnivFlexible b ->
      let fold u accu =
        if Level.Map.mem u accu then accu
        else Level.Map.add u None accu
      in
      let uvars' = Level.Set.fold fold levels uctx.univ_variables in
      if b then
        { uctx with univ_variables = uvars';
                    univ_algebraic = Level.Set.union uctx.univ_algebraic levels }
      else { uctx with univ_variables = uvars' }
  in
  let local = ContextSet.append uctx' uctx.local in
  let declare g =
    Level.Set.fold (fun u g ->
        try UGraph.add_universe ~lbound:uctx.universes_lbound ~strict:false u g
        with UGraph.AlreadyDeclared when sideff -> g)
      levels g
  in
  let names =
    let fold u accu =
      let modify _ info = match info.uloc with
        | None -> { info with uloc = loc }
        | Some _ -> info
      in
      try Level.Map.modify u modify accu
      with Not_found -> Level.Map.add u { uname = None; uloc = loc } accu
    in
    (fst uctx.names, Level.Set.fold fold levels (snd uctx.names))
  in
  let initial = declare uctx.initial_universes in
  let univs = declare uctx.universes in
  let universes = UGraph.merge_constraints (ContextSet.constraints uctx') univs in
  { uctx with names; local; universes;
              initial_universes = initial }

let merge_subst uctx s =
  { uctx with univ_variables = Level.Map.subst_union uctx.univ_variables s }

let demote_seff_univs univs uctx =
  let seff = Level.Set.union uctx.seff_univs univs in
  { uctx with seff_univs = seff }

let demote_global_univs env uctx =
  let env_ugraph = Environ.universes env in
  let global_univs = UGraph.domain env_ugraph in
  let global_constraints, _ = UGraph.constraints_of_universes env_ugraph in
  let promoted_uctx =
    ContextSet.(of_set global_univs |> add_constraints global_constraints) in
  { uctx with local = ContextSet.diff uctx.local promoted_uctx }

let merge_seff uctx uctx' =
  let levels = ContextSet.levels uctx' in
  let declare g =
    Level.Set.fold (fun u g ->
        try UGraph.add_universe ~lbound:uctx.universes_lbound ~strict:false u g
        with UGraph.AlreadyDeclared -> g)
      levels g
  in
  let initial_universes = declare uctx.initial_universes in
  let univs = declare uctx.universes in
  let universes = UGraph.merge_constraints (ContextSet.constraints uctx') univs in
  { uctx with universes; initial_universes }

let emit_side_effects eff u =
  let uctx = Safe_typing.universes_of_private eff in
  let u = demote_seff_univs (fst uctx) u in
  merge_seff u uctx

let update_sigma_univs uctx ugraph =
  let univs = UGraph.set_cumulative_sprop (elaboration_sprop_cumul()) ugraph in
  let eunivs =
    { uctx with
      initial_universes = univs;
      universes = univs }
  in
  merge_seff eunivs eunivs.local

let add_universe ?loc name strict lbound uctx u =
  let initial_universes = UGraph.add_universe ~lbound ~strict u uctx.initial_universes in
  let universes = UGraph.add_universe ~lbound ~strict u uctx.universes in
  let local = ContextSet.add_universe u uctx.local in
  let names =
    match name with
    | Some n -> add_names ?loc n u uctx.names
    | None -> add_loc u loc uctx.names
  in
  { uctx with names; local; initial_universes; universes }

let new_univ_variable ?loc rigid name uctx =
  let u = UnivGen.fresh_level () in
  let uctx =
    match rigid with
    | UnivRigid -> uctx
    | UnivFlexible allow_alg ->
      let univ_variables = Level.Map.add u None uctx.univ_variables in
      if allow_alg
      then
        let univ_algebraic = Level.Set.add u uctx.univ_algebraic in
        { uctx with univ_variables; univ_algebraic }
      else
        { uctx with univ_variables }
  in
  let uctx = add_universe ?loc name false uctx.universes_lbound uctx u in
  uctx, u

let add_global_univ uctx u = add_universe None true UGraph.Bound.Set uctx u

let make_with_initial_binders ~lbound univs us =
  let uctx = make ~lbound univs in
  List.fold_left
    (fun uctx { CAst.loc; v = id } ->
       fst (new_univ_variable ?loc univ_rigid (Some id) uctx))
    uctx us

let from_env ?(binders=[]) env =
  make_with_initial_binders ~lbound:(Environ.universes_lbound env) (Environ.universes env) binders

let make_flexible_variable uctx ~algebraic u =
  let {local = cstrs; univ_variables = uvars;
       univ_algebraic = avars; universes=g; } = uctx in
  assert (try Level.Map.find u uvars == None with Not_found -> true);
  match UGraph.choose (fun v -> not (Level.equal u v) && (algebraic || not (Level.Set.mem v avars))) g u with
  | Some v ->
    let uvars' = Level.Map.add u (Some (Universe.make v)) uvars in
    { uctx with univ_variables = uvars'; }
  | None ->
    let uvars' = Level.Map.add u None uvars in
    let avars' =
      if algebraic then
        let uu = Universe.make u in
        let substu_not_alg u' v =
          Option.cata (fun vu -> Universe.equal uu vu && not (Level.Set.mem u' avars)) false v
        in
        let has_upper_constraint () =
          Constraints.exists
            (fun (l,d,r) -> d == Lt && Level.equal l u)
            (ContextSet.constraints cstrs)
        in
        if not (Level.Map.exists substu_not_alg uvars || has_upper_constraint ())
        then Level.Set.add u avars else avars
      else avars
    in
    { uctx with univ_variables = uvars'; univ_algebraic = avars' }

let make_nonalgebraic_variable uctx u =
  { uctx with univ_algebraic = Level.Set.remove u uctx.univ_algebraic }

let make_flexible_nonalgebraic uctx =
  { uctx with univ_algebraic = Level.Set.empty }

let is_sort_variable uctx s =
  match s with
  | Sorts.Type u ->
    (match universe_level u with
    | Some l as x ->
        if Level.Set.mem l (ContextSet.levels uctx.local) then x
        else None
    | None -> None)
  | _ -> None

let subst_univs_context_with_def def usubst (uctx, cst) =
  (Level.Set.diff uctx def, UnivSubst.subst_univs_constraints usubst cst)

let is_trivial_leq (l,d,r) =
  Level.is_prop l && (d == Le || d == Lt) && Level.is_set r

(* Prop < i <-> Set+1 <= i <-> Set < i *)
let translate_cstr (l,d,r as cstr) =
  if Level.equal Level.prop l && d == Lt && not (Level.equal Level.set r) then
    (Level.set, d, r)
  else cstr

let refresh_constraints univs (ctx, cstrs) =
  let cstrs', univs' =
    Constraints.fold (fun c (cstrs', univs as acc) ->
      let c = translate_cstr c in
      if is_trivial_leq c then acc
      else (Constraints.add c cstrs', UGraph.enforce_constraint c univs))
      cstrs (Constraints.empty, univs)
  in ((ctx, cstrs'), univs')

let normalize_variables uctx =
  let normalized_variables, def, subst =
    UnivSubst.normalize_univ_variables uctx.univ_variables
  in
  let uctx_local = subst_univs_context_with_def def (make_subst subst) uctx.local in
  let uctx_local', univs = refresh_constraints uctx.initial_universes uctx_local in
  { uctx with
    local = uctx_local';
    univ_variables = normalized_variables;
    universes = univs }

let abstract_undefined_variables uctx =
  let vars' =
    Level.Map.fold (fun u v acc ->
      if v == None then Level.Set.remove u acc
      else acc)
    uctx.univ_variables uctx.univ_algebraic
  in { uctx with local = ContextSet.empty;
      univ_algebraic = vars' }

let fix_undefined_variables uctx =
  let algs', vars' =
    Level.Map.fold (fun u v (algs, vars as acc) ->
      if v == None then (Level.Set.remove u algs, Level.Map.remove u vars)
      else acc)
      uctx.univ_variables
      (uctx.univ_algebraic, uctx.univ_variables)
  in
  { uctx with univ_variables = vars';
    univ_algebraic = algs' }

let minimize uctx =
  let open UnivMinim in
  let lbound = uctx.universes_lbound in
  let ((vars',algs'), us') =
    normalize_context_set ~lbound uctx.universes uctx.local uctx.univ_variables
      uctx.univ_algebraic uctx.weak_constraints
  in
  if ContextSet.equal us' uctx.local then uctx
  else
    let us', universes =
      refresh_constraints uctx.initial_universes us'
    in
      { names = uctx.names;
        local = us';
        seff_univs = uctx.seff_univs; (* not sure about this *)
        univ_variables = vars';
        univ_algebraic = algs';
        universes = universes;
        universes_lbound = lbound;
        initial_universes = uctx.initial_universes;
        weak_constraints = UPairSet.empty; (* weak constraints are consumed *) }

let pr_weak prl {weak_constraints=weak} =
  let open Pp in
  prlist_with_sep fnl (fun (u,v) -> prl u ++ str " ~ " ++ prl v) (UPairSet.elements weak)

let pr_universe_body = function
  | None -> Pp.mt ()
  | Some x -> Pp.(str " := " ++ Univ.Universe.pr x)

let pr_universe_opt_subst = Univ.Level.Map.pr pr_universe_body
OCaml

Innovation. Community. Security.