package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.14.0.tar.gz
sha256=b1501d686c21836302191ae30f610cca57fb309214c126518ca009363ad2cd3c
doc/src/coq-core.pretyping/pretyping.ml.html
Source file pretyping.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* This file contains the syntax-directed part of the type inference algorithm introduced by Murthy in Coq V5.10, 1995; the type inference algorithm was initially developed in a file named trad.ml which formerly contained a simple concrete-to-abstract syntax translation function introduced in CoC V4.10 for implementing the "exact" tactic, 1989 *) (* Support for typing term in Ltac environment by David Delahaye, 2000 *) (* Type inference algorithm made a functor of the coercion and pattern-matching compilation by Matthieu Sozeau, March 2006 *) (* Fixpoint guard index computation by Pierre Letouzey, July 2007 *) (* Structural maintainer: Hugo Herbelin *) (* Secondary maintenance: collective *) open Pp open CErrors open Util open Names open Evd open Constr open Context open Termops open Environ open EConstr open Vars open Reductionops open Structures open Type_errors open Typing open Evarutil open Evardefine open Pretype_errors open Glob_term open Glob_ops open GlobEnv open Evarconv module NamedDecl = Context.Named.Declaration type typing_constraint = UnknownIfTermOrType | IsType | OfType of types | WithoutTypeConstraint let (!!) env = GlobEnv.env env let bidi_hints = Summary.ref (GlobRef.Map.empty : int GlobRef.Map.t) ~name:"bidirectionalityhints" let add_bidirectionality_hint gr n = bidi_hints := GlobRef.Map.add gr n !bidi_hints let get_bidirectionality_hint gr = GlobRef.Map.find_opt gr !bidi_hints let clear_bidirectionality_hint gr = bidi_hints := GlobRef.Map.remove gr !bidi_hints (************************************************************************) (* This concerns Cases *) open Inductive open Inductiveops (************************************************************************) (* An auxiliary function for searching for fixpoint guard indexes *) exception Found of int array let nf_fix sigma (nas, cs, ts) = let inj c = EConstr.to_constr ~abort_on_undefined_evars:false sigma c in (nas, Array.map inj cs, Array.map inj ts) let search_guard ?loc env possible_indexes fixdefs = (* Standard situation with only one possibility for each fix. *) (* We treat it separately in order to get proper error msg. *) let is_singleton = function [_] -> true | _ -> false in if List.for_all is_singleton possible_indexes then let indexes = Array.of_list (List.map List.hd possible_indexes) in let fix = ((indexes, 0),fixdefs) in (try check_fix env fix with reraise -> let (e, info) = Exninfo.capture reraise in let info = Option.cata (fun loc -> Loc.add_loc info loc) info loc in Exninfo.iraise (e, info)); indexes else (* we now search recursively among all combinations *) (try List.iter (fun l -> let indexes = Array.of_list l in let fix = ((indexes, 0),fixdefs) in (* spiwack: We search for a unspecified structural argument under the assumption that we need to check the guardedness condition (otherwise the first inductive argument will be chosen). A more robust solution may be to raise an error when totality is assumed but the strutural argument is not specified. *) try let flags = { (typing_flags env) with Declarations.check_guarded = true } in let env = Environ.set_typing_flags flags env in check_fix env fix; raise (Found indexes) with TypeError _ -> ()) (List.combinations possible_indexes); let errmsg = "Cannot guess decreasing argument of fix." in user_err ?loc ~hdr:"search_guard" (Pp.str errmsg) with Found indexes -> indexes) let esearch_guard ?loc env sigma indexes fix = let fix = nf_fix sigma fix in try search_guard ?loc env indexes fix with TypeError (env,err) -> raise (PretypeError (env,sigma,TypingError (map_ptype_error of_constr err))) (* To force universe name declaration before use *) let is_strict_universe_declarations = Goptions.declare_bool_option_and_ref ~depr:false ~key:["Strict";"Universe";"Declaration"] ~value:true (** Miscellaneous interpretation functions *) let universe_level_name evd ({CAst.v=id} as lid) = try evd, Evd.universe_of_name evd id with Not_found -> if not (is_strict_universe_declarations ()) then new_univ_level_variable ?loc:lid.CAst.loc ~name:id univ_rigid evd else user_err ?loc:lid.CAst.loc ~hdr:"universe_level_name" (Pp.(str "Undeclared universe: " ++ Id.print id)) let sort_name sigma = function | GSProp -> sigma, Univ.Level.sprop | GProp -> sigma, Univ.Level.prop | GSet -> sigma, Univ.Level.set | GUniv u -> sigma, u | GRawUniv u -> (try Evd.add_global_univ sigma u with UGraph.AlreadyDeclared -> sigma), u | GLocalUniv l -> universe_level_name sigma l let sort_info ?loc evd l = List.fold_left (fun (evd, u) (l,n) -> let evd', u' = sort_name evd l in let u' = Univ.Universe.make u' in let u' = match n with | 0 -> u' | 1 -> Univ.Universe.super u' | n -> user_err ?loc ~hdr:"sort_info" (Pp.(str "Cannot interpret universe increment +" ++ int n)) in (evd', Univ.sup u u')) (evd, Univ.Universe.type0m) l type inference_hook = env -> evar_map -> Evar.t -> (evar_map * constr) option type use_typeclasses = NoUseTC | UseTCForConv | UseTC type inference_flags = { use_typeclasses : use_typeclasses; solve_unification_constraints : bool; fail_evar : bool; expand_evars : bool; program_mode : bool; polymorphic : bool; } (* Compute the set of still-undefined initial evars up to restriction (e.g. clearing) and the set of yet-unsolved evars freshly created in the extension [sigma'] of [sigma] (excluding the restrictions of the undefined evars of [sigma] to be freshly created evars of [sigma']). Otherwise said, we partition the undefined evars of [sigma'] into those already in [sigma] or deriving from an evar in [sigma] by restriction, and the evars properly created in [sigma'] *) type frozen = | FrozenId of evar_info Evar.Map.t (** No pending evars. We do not put a set here not to reallocate like crazy, but the actual data of the map is not used, only keys matter. All functions operating on this type must have the same behaviour on [FrozenId map] and [FrozenProgress (Evar.Map.domain map, Evar.Set.empty)] *) | FrozenProgress of (Evar.Set.t * Evar.Set.t) Lazy.t (** Proper partition of the evar map as described above. *) let frozen_and_pending_holes (sigma, sigma') = let undefined0 = Option.cata Evd.undefined_map Evar.Map.empty sigma in (* Fast path when the undefined evars where not modified *) if undefined0 == Evd.undefined_map sigma' then FrozenId undefined0 else let data = lazy begin let add_derivative_of evk evi acc = match advance sigma' evk with None -> acc | Some evk' -> Evar.Set.add evk' acc in let frozen = Evar.Map.fold add_derivative_of undefined0 Evar.Set.empty in let fold evk _ accu = if not (Evar.Set.mem evk frozen) then Evar.Set.add evk accu else accu in let pending = Evd.fold_undefined fold sigma' Evar.Set.empty in (frozen, pending) end in FrozenProgress data let apply_typeclasses ~program_mode ~fail_evar env sigma frozen = let filter_frozen = match frozen with | FrozenId map -> fun evk -> Evar.Map.mem evk map | FrozenProgress (lazy (frozen, _)) -> fun evk -> Evar.Set.mem evk frozen in let sigma = Typeclasses.resolve_typeclasses ~filter:(if program_mode then (fun evk evi -> Typeclasses.no_goals_or_obligations evk evi && not (filter_frozen evk)) else (fun evk evi -> Typeclasses.no_goals evk evi && not (filter_frozen evk))) ~split:true ~fail:fail_evar env sigma in let sigma = if program_mode then (* Try optionally solving the obligations *) Typeclasses.resolve_typeclasses ~filter:(fun evk evi -> Typeclasses.all_evars evk evi && not (filter_frozen evk)) ~split:true ~fail:false env sigma else sigma in sigma let apply_inference_hook (hook : inference_hook) env sigma frozen = match frozen with | FrozenId _ -> sigma | FrozenProgress (lazy (_, pending)) -> Evar.Set.fold (fun evk sigma -> if Evd.is_undefined sigma evk (* in particular not defined by side-effect *) then match hook env sigma evk with | Some (sigma, c) -> Evd.define evk c sigma | None -> sigma else sigma) pending sigma let apply_heuristics env sigma fail_evar = (* Resolve eagerly, potentially making wrong choices *) let flags = default_flags_of (Conv_oracle.get_transp_state (Environ.oracle env)) in try solve_unif_constraints_with_heuristics ~flags env sigma with e when CErrors.noncritical e -> let e = Exninfo.capture e in if fail_evar then Exninfo.iraise e else sigma let check_typeclasses_instances_are_solved ~program_mode env current_sigma frozen = (* Naive way, call resolution again with failure flag *) apply_typeclasses ~program_mode ~fail_evar:true env current_sigma frozen let check_extra_evars_are_solved env current_sigma frozen = match frozen with | FrozenId _ -> () | FrozenProgress (lazy (_, pending)) -> Evar.Set.iter (fun evk -> if not (Evd.is_defined current_sigma evk) then let (loc,k) = evar_source evk current_sigma in match k with | Evar_kinds.ImplicitArg (gr, (i, id), false) -> () | _ -> error_unsolvable_implicit ?loc env current_sigma evk None) pending (* [check_evars] fails if some unresolved evar remains *) let check_evars env ?initial sigma c = let rec proc_rec c = match EConstr.kind sigma c with | Evar (evk, _) -> (match initial with | Some initial when Evd.mem initial evk -> () | _ -> let (loc,k) = evar_source evk sigma in begin match k with | Evar_kinds.ImplicitArg (gr, (i, id), false) -> () | _ -> Pretype_errors.error_unsolvable_implicit ?loc env sigma evk None end) | _ -> EConstr.iter sigma proc_rec c in proc_rec c let check_evars_are_solved ~program_mode env sigma frozen = let sigma = check_typeclasses_instances_are_solved ~program_mode env sigma frozen in check_problems_are_solved env sigma; check_extra_evars_are_solved env sigma frozen (* Try typeclasses, hooks, unification heuristics ... *) let solve_remaining_evars ?hook flags env ?initial sigma = let program_mode = flags.program_mode in let frozen = frozen_and_pending_holes (initial, sigma) in let sigma = match flags.use_typeclasses with | UseTC -> apply_typeclasses ~program_mode ~fail_evar:false env sigma frozen | NoUseTC | UseTCForConv -> sigma in let sigma = match hook with | None -> sigma | Some hook -> apply_inference_hook hook env sigma frozen in let sigma = if flags.solve_unification_constraints then apply_heuristics env sigma false else sigma in if flags.fail_evar then check_evars_are_solved ~program_mode env sigma frozen; sigma let check_evars_are_solved ~program_mode env ?initial current_sigma = let frozen = frozen_and_pending_holes (initial, current_sigma) in check_evars_are_solved ~program_mode env current_sigma frozen let process_inference_flags flags env initial (sigma,c,cty) = let sigma = solve_remaining_evars flags env ~initial sigma in let c = if flags.expand_evars then nf_evar sigma c else c in sigma,c,cty let adjust_evar_source sigma na c = match na, kind sigma c with | Name id, Evar (evk,args) -> let evi = Evd.find sigma evk in begin match evi.evar_source with | loc, Evar_kinds.QuestionMark { Evar_kinds.qm_obligation=b; Evar_kinds.qm_name=Anonymous; Evar_kinds.qm_record_field=recfieldname; } -> let src = (loc,Evar_kinds.QuestionMark { Evar_kinds.qm_obligation=b; Evar_kinds.qm_name=na; Evar_kinds.qm_record_field=recfieldname; }) in let (sigma, evk') = restrict_evar sigma evk (evar_filter evi) ~src None in sigma, mkEvar (evk',args) | _ -> sigma, c end | _, _ -> sigma, c (* coerce to tycon if any *) let inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma j = function | None -> sigma, j, Some Coercion.empty_coercion_trace | Some t -> Coercion.inh_conv_coerce_to ?loc ~program_mode resolve_tc !!env sigma j t let check_instance subst = function | [] -> () | (CAst.{loc;v=id},_) :: _ -> if List.mem_assoc id subst then user_err ?loc (Id.print id ++ str "appears more than once.") else user_err ?loc (str "No such variable in the signature of the existential variable: " ++ Id.print id ++ str ".") (* used to enforce a name in Lambda when the type constraints itself is named, hence possibly dependent *) let orelse_name name name' = match name with | Anonymous -> name' | _ -> name let pretype_id pretype loc env sigma id = (* Look for the binder of [id] *) try let (n,_,typ) = lookup_rel_id id (rel_context !!env) in sigma, { uj_val = mkRel n; uj_type = lift n typ } with Not_found -> try GlobEnv.interp_ltac_variable ?loc (fun env -> pretype env sigma) env sigma id with Not_found -> (* Check if [id] is a section or goal variable *) try sigma, { uj_val = mkVar id; uj_type = NamedDecl.get_type (lookup_named id !!env) } with Not_found -> (* [id] not found, standard error message *) error_var_not_found ?loc !!env sigma id (*************************************************************************) (* Main pretyping function *) let known_universe_level_name evd lid = try Evd.universe_of_name evd lid.CAst.v with Not_found -> let u = Nametab.locate_universe (Libnames.qualid_of_lident lid) in Univ.Level.make u let known_glob_level evd = function | GSProp -> Univ.Level.sprop | GProp -> Univ.Level.prop | GSet -> Univ.Level.set | GUniv u -> u | GRawUniv u -> anomaly Pp.(str "Raw universe in known_glob_level.") | GLocalUniv lid -> try known_universe_level_name evd lid with Not_found -> user_err ?loc:lid.CAst.loc ~hdr:"known_level_info" (str "Undeclared universe " ++ Id.print lid.CAst.v) let glob_level ?loc evd : glob_level -> _ = function | UAnonymous {rigid} -> new_univ_level_variable ?loc (if rigid then univ_rigid else univ_flexible) evd | UNamed s -> sort_name evd s let instance ?loc evd l = let evd, l' = List.fold_left (fun (evd, univs) l -> let evd, l = glob_level ?loc evd l in (evd, l :: univs)) (evd, []) l in if List.exists (fun l -> Univ.Level.is_prop l) l' then user_err ?loc ~hdr:"pretype" (str "Universe instances cannot contain Prop, polymorphic" ++ str " universe instances must be greater or equal to Set."); evd, Some (Univ.Instance.of_array (Array.of_list (List.rev l'))) let pretype_global ?loc rigid env evd gr us = let evd, instance = match us with | None -> evd, None | Some l -> instance ?loc evd l in Evd.fresh_global ?loc ~rigid ?names:instance !!env evd gr let pretype_ref ?loc sigma env ref us = match ref with | GlobRef.VarRef id -> (* Section variable *) (try let ty = NamedDecl.get_type (lookup_named id !!env) in (match us with | None | Some [] -> () | Some (_ :: _) -> CErrors.user_err ?loc Pp.(str "Section variables are not polymorphic:" ++ spc () ++ str "universe instance should have length 0.")); sigma, make_judge (mkVar id) ty with Not_found -> (* This may happen if env is a goal env and section variables have been cleared - section variables should be different from goal variables *) Pretype_errors.error_var_not_found ?loc !!env sigma id) | ref -> let sigma, c = pretype_global ?loc univ_flexible env sigma ref us in let sigma, ty = type_of !!env sigma c in sigma, make_judge c ty let sort ?loc evd : glob_sort -> _ = function | UAnonymous {rigid} -> let evd, l = new_univ_level_variable ?loc (if rigid then univ_rigid else univ_flexible) evd in evd, Univ.Universe.make l | UNamed l -> sort_info ?loc evd l let judge_of_sort ?loc evd s = let judge = { uj_val = mkType s; uj_type = mkType (Univ.super s) } in evd, judge let pretype_sort ?loc sigma s = match s with | UNamed [GSProp,0] -> sigma, judge_of_sprop | UNamed [GProp,0] -> sigma, judge_of_prop | UNamed [GSet,0] -> sigma, judge_of_set | _ -> let sigma, s = sort ?loc sigma s in judge_of_sort ?loc sigma s let new_typed_evar env sigma ?naming ~src tycon = match tycon with | Some ty -> let sigma, c = new_evar env sigma ~src ?naming ty in sigma, c, ty | None -> let sigma, ty = new_type_evar env sigma ~src in let sigma, c = new_evar env sigma ~src ?naming ty in let evk = fst (destEvar sigma c) in let ido = Evd.evar_ident evk sigma in let src = (fst src,Evar_kinds.EvarType (ido,evk)) in let sigma = update_source sigma (fst (destEvar sigma ty)) src in sigma, c, ty let mark_obligation_evar sigma k evc = match k with | Evar_kinds.QuestionMark _ | Evar_kinds.ImplicitArg (_, _, false) -> Evd.set_obligation_evar sigma (fst (destEvar sigma evc)) | _ -> sigma type 'a pretype_fun = ?loc:Loc.t -> program_mode:bool -> poly:bool -> bool -> type_constraint -> GlobEnv.t -> evar_map -> evar_map * 'a type pretyper = { pretype_ref : pretyper -> GlobRef.t * glob_level list option -> unsafe_judgment pretype_fun; pretype_var : pretyper -> Id.t -> unsafe_judgment pretype_fun; pretype_evar : pretyper -> existential_name CAst.t * (lident * glob_constr) list -> unsafe_judgment pretype_fun; pretype_patvar : pretyper -> Evar_kinds.matching_var_kind -> unsafe_judgment pretype_fun; pretype_app : pretyper -> glob_constr * glob_constr list -> unsafe_judgment pretype_fun; pretype_lambda : pretyper -> Name.t * binding_kind * glob_constr * glob_constr -> unsafe_judgment pretype_fun; pretype_prod : pretyper -> Name.t * binding_kind * glob_constr * glob_constr -> unsafe_judgment pretype_fun; pretype_letin : pretyper -> Name.t * glob_constr * glob_constr option * glob_constr -> unsafe_judgment pretype_fun; pretype_cases : pretyper -> Constr.case_style * glob_constr option * tomatch_tuples * cases_clauses -> unsafe_judgment pretype_fun; pretype_lettuple : pretyper -> Name.t list * (Name.t * glob_constr option) * glob_constr * glob_constr -> unsafe_judgment pretype_fun; pretype_if : pretyper -> glob_constr * (Name.t * glob_constr option) * glob_constr * glob_constr -> unsafe_judgment pretype_fun; pretype_rec : pretyper -> glob_fix_kind * Id.t array * glob_decl list array * glob_constr array * glob_constr array -> unsafe_judgment pretype_fun; pretype_sort : pretyper -> glob_sort -> unsafe_judgment pretype_fun; pretype_hole : pretyper -> Evar_kinds.t * Namegen.intro_pattern_naming_expr * Genarg.glob_generic_argument option -> unsafe_judgment pretype_fun; pretype_cast : pretyper -> glob_constr * glob_constr cast_type -> unsafe_judgment pretype_fun; pretype_int : pretyper -> Uint63.t -> unsafe_judgment pretype_fun; pretype_float : pretyper -> Float64.t -> unsafe_judgment pretype_fun; pretype_array : pretyper -> glob_level list option * glob_constr array * glob_constr * glob_constr -> unsafe_judgment pretype_fun; pretype_type : pretyper -> glob_constr -> unsafe_type_judgment pretype_fun; } (** Tie the loop *) let eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma t = let loc = t.CAst.loc in match DAst.get t with | GRef (ref,u) -> self.pretype_ref self (ref, u) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GVar id -> self.pretype_var self id ?loc ~program_mode ~poly resolve_tc tycon env sigma | GEvar (evk, args) -> self.pretype_evar self (evk, args) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GPatVar knd -> self.pretype_patvar self knd ?loc ~program_mode ~poly resolve_tc tycon env sigma | GApp (c, args) -> self.pretype_app self (c, args) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GLambda (na, bk, t, c) -> self.pretype_lambda self (na, bk, t, c) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GProd (na, bk, t, c) -> self.pretype_prod self (na, bk, t, c) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GLetIn (na, b, t, c) -> self.pretype_letin self (na, b, t, c) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GCases (st, c, tm, cl) -> self.pretype_cases self (st, c, tm, cl) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GLetTuple (na, b, t, c) -> self.pretype_lettuple self (na, b, t, c) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GIf (c, r, t1, t2) -> self.pretype_if self (c, r, t1, t2) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GRec (knd, nas, decl, c, t) -> self.pretype_rec self (knd, nas, decl, c, t) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GSort s -> self.pretype_sort self s ?loc ~program_mode ~poly resolve_tc tycon env sigma | GHole (knd, nam, arg) -> self.pretype_hole self (knd, nam, arg) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GCast (c, t) -> self.pretype_cast self (c, t) ?loc ~program_mode ~poly resolve_tc tycon env sigma | GInt n -> self.pretype_int self n ?loc ~program_mode ~poly resolve_tc tycon env sigma | GFloat f -> self.pretype_float self f ?loc ~program_mode ~poly resolve_tc tycon env sigma | GArray (u,t,def,ty) -> self.pretype_array self (u,t,def,ty) ?loc ~program_mode ~poly resolve_tc tycon env sigma let eval_type_pretyper self ~program_mode ~poly resolve_tc tycon env sigma t = self.pretype_type self t ~program_mode ~poly resolve_tc tycon env sigma let pretype_instance self ~program_mode ~poly resolve_tc env sigma loc hyps evk update = let f decl (subst,update,sigma) = let id = NamedDecl.get_id decl in let b = Option.map (replace_vars subst) (NamedDecl.get_value decl) in let t = replace_vars subst (NamedDecl.get_type decl) in let check_body sigma id c = match b, c with | Some b, Some c -> if not (is_conv !!env sigma b c) then user_err ?loc (str "Cannot interpret " ++ pr_existential_key sigma evk ++ strbrk " in current context: binding for " ++ Id.print id ++ strbrk " is not convertible to its expected definition (cannot unify " ++ quote (Termops.Internal.print_constr_env !!env sigma b) ++ strbrk " and " ++ quote (Termops.Internal.print_constr_env !!env sigma c) ++ str ").") | Some b, None -> user_err ?loc (str "Cannot interpret " ++ pr_existential_key sigma evk ++ strbrk " in current context: " ++ Id.print id ++ strbrk " should be bound to a local definition.") | None, _ -> () in let check_type sigma id t' = if not (is_conv !!env sigma t t') then user_err ?loc (str "Cannot interpret " ++ pr_existential_key sigma evk ++ strbrk " in current context: binding for " ++ Id.print id ++ strbrk " is not well-typed.") in let sigma, c, update = try let c = snd (List.find (fun (CAst.{v=id'},c) -> Id.equal id id') update) in let sigma, c = eval_pretyper self ~program_mode ~poly resolve_tc (mk_tycon t) env sigma c in check_body sigma id (Some c.uj_val); sigma, c.uj_val, List.remove_first (fun (CAst.{v=id'},_) -> Id.equal id id') update with Not_found -> try let (n,b',t') = lookup_rel_id id (rel_context !!env) in check_type sigma id (lift n t'); check_body sigma id (Option.map (lift n) b'); sigma, mkRel n, update with Not_found -> try let decl = lookup_named id !!env in check_type sigma id (NamedDecl.get_type decl); check_body sigma id (NamedDecl.get_value decl); sigma, mkVar id, update with Not_found -> user_err ?loc (str "Cannot interpret " ++ pr_existential_key sigma evk ++ str " in current context: no binding for " ++ Id.print id ++ str ".") in ((id,c)::subst, update, sigma) in let subst,inst,sigma = List.fold_right f hyps ([],update,sigma) in check_instance subst inst; sigma, List.map snd subst module Default = struct let discard_trace (sigma,t,otrace) = sigma, t let pretype_ref self (ref, u) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let sigma, t_ref = pretype_ref ?loc sigma env ref u in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma t_ref tycon let pretype_var self id = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let pretype tycon env sigma t = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma t in let sigma, t_id = pretype_id (fun e r t -> pretype tycon e r t) loc env sigma id in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma t_id tycon let pretype_evar self (CAst.{v=id;loc=locid}, inst) ?loc ~program_mode ~poly resolve_tc tycon env sigma = (* Ne faudrait-il pas s'assurer que hyps est bien un sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *) let id = interp_ltac_id env id in let evk = try Evd.evar_key id sigma with Not_found -> error_evar_not_found ?loc:locid !!env sigma id in let hyps = evar_filtered_context (Evd.find sigma evk) in let sigma, args = pretype_instance self ~program_mode ~poly resolve_tc env sigma loc hyps evk inst in let c = mkEvar (evk, args) in let j = Retyping.get_judgment_of !!env sigma c in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma j tycon let pretype_patvar self kind ?loc ~program_mode ~poly resolve_tc tycon env sigma = let k = Evar_kinds.MatchingVar kind in let sigma, uj_val, uj_type = new_typed_evar env sigma ~src:(loc,k) tycon in sigma, { uj_val; uj_type } let pretype_hole self (k, naming, ext) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> match ext with | None -> let open Namegen in let naming = match naming with | IntroIdentifier id -> IntroIdentifier (interp_ltac_id env id) | IntroAnonymous -> IntroAnonymous | IntroFresh id -> IntroFresh (interp_ltac_id env id) in let sigma, uj_val, uj_type = new_typed_evar env sigma ~src:(loc,k) ~naming tycon in let sigma = if program_mode then mark_obligation_evar sigma k uj_val else sigma in sigma, { uj_val; uj_type } | Some arg -> let j, sigma = GlobEnv.interp_glob_genarg ?loc ~poly env sigma tycon arg in sigma, j let pretype_rec self (fixkind, names, bl, lar, vdef) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let open Context.Rel.Declaration in let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let pretype_type tycon env sigma c = eval_type_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let rec type_bl env sigma ctxt = function | [] -> sigma, ctxt | (na,bk,None,ty)::bl -> let sigma, ty' = pretype_type empty_valcon env sigma ty in let rty' = Sorts.relevance_of_sort ty'.utj_type in let dcl = LocalAssum (make_annot na rty', ty'.utj_val) in let dcl', env = push_rel ~hypnaming sigma dcl env in type_bl env sigma (Context.Rel.add dcl' ctxt) bl | (na,bk,Some bd,ty)::bl -> let sigma, ty' = pretype_type empty_valcon env sigma ty in let rty' = Sorts.relevance_of_sort ty'.utj_type in let sigma, bd' = pretype (mk_tycon ty'.utj_val) env sigma bd in let dcl = LocalDef (make_annot na rty', bd'.uj_val, ty'.utj_val) in let dcl', env = push_rel ~hypnaming sigma dcl env in type_bl env sigma (Context.Rel.add dcl' ctxt) bl in let sigma, ctxtv = Array.fold_left_map (fun sigma -> type_bl env sigma Context.Rel.empty) sigma bl in let sigma, larj = Array.fold_left2_map (fun sigma e ar -> pretype_type empty_valcon (snd (push_rel_context ~hypnaming sigma e env)) sigma ar) sigma ctxtv lar in let lara = Array.map (fun a -> a.utj_val) larj in let ftys = Array.map2 (fun e a -> it_mkProd_or_LetIn a e) ctxtv lara in let nbfix = Array.length lar in let names = Array.map (fun id -> Name id) names in let sigma = match tycon with | Some t -> let fixi = match fixkind with | GFix (vn,i) -> i | GCoFix i -> i in begin match Evarconv.unify_delay !!env sigma ftys.(fixi) t with | exception Evarconv.UnableToUnify _ -> sigma | sigma -> sigma end | None -> sigma in let names = Array.map2 (fun na t -> make_annot na (Retyping.relevance_of_type !!(env) sigma t)) names ftys in (* Note: bodies are not used by push_rec_types, so [||] is safe *) let names,newenv = push_rec_types ~hypnaming sigma (names,ftys) env in let sigma, vdefj = Array.fold_left2_map_i (fun i sigma ctxt def -> (* we lift nbfix times the type in tycon, because of * the nbfix variables pushed to newenv *) let (ctxt,ty) = decompose_prod_n_assum sigma (Context.Rel.length ctxt) (lift nbfix ftys.(i)) in let ctxt,nenv = push_rel_context ~hypnaming sigma ctxt newenv in let sigma, j = pretype (mk_tycon ty) nenv sigma def in sigma, { uj_val = it_mkLambda_or_LetIn j.uj_val ctxt; uj_type = it_mkProd_or_LetIn j.uj_type ctxt }) sigma ctxtv vdef in let sigma = Typing.check_type_fixpoint ?loc !!env sigma names ftys vdefj in let nf c = nf_evar sigma c in let ftys = Array.map nf ftys in (* FIXME *) let fdefs = Array.map (fun x -> nf (j_val x)) vdefj in let fixj = match fixkind with | GFix (vn,i) -> (* First, let's find the guard indexes. *) (* If recursive argument was not given by user, we try all args. An earlier approach was to look only for inductive arguments, but doing it properly involves delta-reduction, and it finally doesn't seem worth the effort (except for huge mutual fixpoints ?) *) let possible_indexes = Array.to_list (Array.mapi (fun i annot -> match annot with | Some n -> [n] | None -> List.map_i (fun i _ -> i) 0 ctxtv.(i)) vn) in let fixdecls = (names,ftys,fdefs) in let indexes = esearch_guard ?loc !!env sigma possible_indexes fixdecls in make_judge (mkFix ((indexes,i),fixdecls)) ftys.(i) | GCoFix i -> let fixdecls = (names,ftys,fdefs) in let cofix = (i, fixdecls) in (try check_cofix !!env (i, nf_fix sigma fixdecls) with reraise -> let (e, info) = Exninfo.capture reraise in let info = Option.cata (Loc.add_loc info) info loc in Exninfo.iraise (e, info)); make_judge (mkCoFix cofix) ftys.(i) in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma fixj tycon let pretype_sort self s = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let sigma, j = pretype_sort ?loc sigma s in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma j tycon let pretype_app self (f, args) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let sigma, fj = pretype empty_tycon env sigma f in let floc = loc_of_glob_constr f in let length = List.length args in let nargs_before_bidi = if Option.is_empty tycon then length (* We apply bidirectionality hints only if an expected type is specified *) else (* if `f` is a global, we retrieve bidirectionality hints *) try let (gr,_) = destRef sigma fj.uj_val in Option.default length @@ GlobRef.Map.find_opt gr !bidi_hints with DestKO -> length in let candargs = (* Bidirectional typechecking hint: parameters of a constructor are completely determined by a typing constraint *) (* This bidirectionality machinery is the one of `Program` for constructors and is orthogonal to bidirectionality hints. However, we could probably factorize both by providing default bidirectionality hints for constructors corresponding to their number of parameters. *) if program_mode && length > 0 && isConstruct sigma fj.uj_val then match tycon with | None -> [] | Some ty -> let ((ind, i), u) = destConstruct sigma fj.uj_val in let npars = inductive_nparams !!env ind in if Int.equal npars 0 then [] else try let IndType (indf, args) = find_rectype !!env sigma ty in let ((ind',u'),pars) = dest_ind_family indf in if Ind.CanOrd.equal ind ind' then List.map EConstr.of_constr pars else (* Let the usual code throw an error *) [] with Not_found -> [] else [] in let app_f = match EConstr.kind sigma fj.uj_val with | Const (p, u) when PrimitiveProjections.mem p -> let p = Option.get @@ PrimitiveProjections.find_opt p in let p = Projection.make p false in let npars = Projection.npars p in fun n -> if Int.equal n npars then fun _ v -> mkProj (p, v) else fun f v -> applist (f, [v]) | _ -> fun _ f v -> applist (f, [v]) in let refresh_template env sigma resj = (* Special case for inductive type applications that must be refreshed right away. *) match EConstr.kind sigma resj.uj_val with | App (f,args) -> if Termops.is_template_polymorphic_ind !!env sigma f then let c = mkApp (f, args) in let sigma, c = Evarsolve.refresh_universes (Some true) !!env sigma c in let t = Retyping.get_type_of !!env sigma c in sigma, make_judge c (* use this for keeping evars: resj.uj_val *) t else sigma, resj | _ -> sigma, resj in let rec apply_rec env sigma n resj resj_before_bidi candargs bidiargs = function | [] -> sigma, resj, resj_before_bidi, List.rev bidiargs | c::rest -> let bidi = n >= nargs_before_bidi in let argloc = loc_of_glob_constr c in let sigma, resj, trace = Coercion.inh_app_fun ~program_mode resolve_tc !!env sigma resj in let resty = whd_all !!env sigma resj.uj_type in match EConstr.kind sigma resty with | Prod (na,c1,c2) -> let (sigma, hj), bidiargs = if bidi then (* We want to get some typing information from the context before typing the argument, so we replace it by an existential variable *) let sigma, c_hole = new_evar env sigma ~src:(loc,Evar_kinds.InternalHole) c1 in (sigma, make_judge c_hole c1), (c_hole, c1, c, trace) :: bidiargs else let tycon = Some c1 in pretype tycon env sigma c, bidiargs in let sigma, candargs, ujval = match candargs with | [] -> sigma, [], j_val hj | arg :: args -> begin match Evarconv.unify_delay !!env sigma (j_val hj) arg with | exception Evarconv.UnableToUnify _ -> sigma, [], j_val hj | sigma -> sigma, args, nf_evar sigma (j_val hj) end in let sigma, ujval = adjust_evar_source sigma na.binder_name ujval in let value, typ = app_f n (j_val resj) ujval, subst1 ujval c2 in let resj = { uj_val = value; uj_type = typ } in let resj_before_bidi = if bidi then resj_before_bidi else resj in apply_rec env sigma (n+1) resj resj_before_bidi candargs bidiargs rest | _ -> let sigma, hj = pretype empty_tycon env sigma c in error_cant_apply_not_functional ?loc:(Loc.merge_opt floc argloc) !!env sigma resj [|hj|] in let sigma, resj, resj_before_bidi, bidiargs = apply_rec env sigma 0 fj fj candargs [] args in let sigma, resj = refresh_template env sigma resj in let sigma, resj, otrace = inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma resj tycon in let refine_arg n (sigma,t) (newarg,ty,origarg,trace) = (* Refine an argument (originally `origarg`) represented by an evar (`newarg`) to use typing information from the context *) (* Type the argument using the expected type *) let sigma, j = pretype (Some ty) env sigma origarg in (* Unify the (possibly refined) existential variable with the (typechecked) original value *) let sigma = Evarconv.unify_delay !!env sigma newarg (j_val j) in sigma, app_f n (Coercion.reapply_coercions sigma trace t) (j_val j) in (* We now refine any arguments whose typing was delayed for bidirectionality *) let t = resj_before_bidi.uj_val in let sigma, t = List.fold_left_i refine_arg nargs_before_bidi (sigma,t) bidiargs in (* If we did not get a coercion trace (e.g. with `Program` coercions, we replaced user-provided arguments with inferred ones. Otherwise, we apply the coercion trace to the user-provided arguments. *) let resj = match otrace with | None -> resj | Some trace -> let resj = { resj with uj_val = t } in let sigma, resj = refresh_template env sigma resj in { resj with uj_val = Coercion.reapply_coercions sigma trace t } in (sigma, resj) let pretype_lambda self (name, bk, c1, c2) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let open Context.Rel.Declaration in let sigma, tycon' = match tycon with | None -> sigma, tycon | Some ty -> let sigma, ty' = Coercion.inh_coerce_to_prod ?loc ~program_mode !!env sigma ty in sigma, Some ty' in let sigma,name',dom,rng = match tycon' with | None -> sigma,Anonymous, None, None | Some ty -> let sigma, ty = Evardefine.presplit !!env sigma ty in match EConstr.kind sigma ty with | Prod (na,dom,rng) -> sigma, na.binder_name, Some dom, Some rng | Evar ev -> (* define_evar_as_product works badly when impredicativity is possible but not known (#12623). OTOH if we know we are impredicative (typically Prop) we want to keep the information when typing the body. *) let s = Retyping.get_sort_of !!env sigma ty in if Environ.is_impredicative_sort !!env s || Evd.check_leq sigma (Univ.Universe.type1) (Sorts.univ_of_sort s) then let sigma, prod = define_evar_as_product !!env sigma ev in let na,dom,rng = destProd sigma prod in sigma, na.binder_name, Some dom, Some rng else sigma, Anonymous, None, None | _ -> (* XXX no error to allow later coercion? Not sure if possible with funclass *) error_not_product ?loc !!env sigma ty in let dom_valcon = valcon_of_tycon dom in let sigma, j = eval_type_pretyper self ~program_mode ~poly resolve_tc dom_valcon env sigma c1 in let name = {binder_name=name; binder_relevance=Sorts.relevance_of_sort j.utj_type} in let var = LocalAssum (name, j.utj_val) in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let var',env' = push_rel ~hypnaming sigma var env in let sigma, j' = eval_pretyper self ~program_mode ~poly resolve_tc rng env' sigma c2 in let name = get_name var' in let resj = judge_of_abstraction !!env (orelse_name name name') j j' in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma resj tycon let pretype_prod self (name, bk, c1, c2) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let open Context.Rel.Declaration in let pretype_type tycon env sigma c = eval_type_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let sigma, j = pretype_type empty_valcon env sigma c1 in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let sigma, name, j' = match name with | Anonymous -> let sigma, j = pretype_type empty_valcon env sigma c2 in sigma, name, { j with utj_val = lift 1 j.utj_val } | Name _ -> let r = Sorts.relevance_of_sort j.utj_type in let var = LocalAssum (make_annot name r, j.utj_val) in let var, env' = push_rel ~hypnaming sigma var env in let sigma, c2_j = pretype_type empty_valcon env' sigma c2 in sigma, get_name var, c2_j in let resj = try judge_of_product !!env name j j' with TypeError _ as e -> let (e, info) = Exninfo.capture e in let info = Option.cata (Loc.add_loc info) info loc in Exninfo.iraise (e, info) in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma resj tycon let pretype_letin self (name, c1, t, c2) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let open Context.Rel.Declaration in let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let pretype_type tycon env sigma c = eval_type_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let sigma, tycon1 = match t with | Some t -> let sigma, t_j = pretype_type empty_valcon env sigma t in sigma, mk_tycon t_j.utj_val | None -> sigma, empty_tycon in let sigma, j = pretype tycon1 env sigma c1 in let sigma, t = Evarsolve.refresh_universes ~onlyalg:true ~status:Evd.univ_flexible (Some false) !!env sigma j.uj_type in let r = Retyping.relevance_of_term !!env sigma j.uj_val in let var = LocalDef (make_annot name r, j.uj_val, t) in let tycon = lift_tycon 1 tycon in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let var, env = push_rel ~hypnaming sigma var env in let sigma, j' = pretype tycon env sigma c2 in let name = get_name var in sigma, { uj_val = mkLetIn (make_annot name r, j.uj_val, t, j'.uj_val) ; uj_type = subst1 j.uj_val j'.uj_type } let pretype_lettuple self (nal, (na, po), c, d) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let open Context.Rel.Declaration in let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let pretype_type tycon env sigma c = eval_type_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let sigma, cj = pretype empty_tycon env sigma c in let (IndType (indf,realargs)) as indty = try find_rectype !!env sigma cj.uj_type with Not_found -> let cloc = loc_of_glob_constr c in error_case_not_inductive ?loc:cloc !!env sigma cj in let ind = fst (fst (dest_ind_family indf)) in let cstrs = get_constructors !!env indf in if not (Int.equal (Array.length cstrs) 1) then user_err ?loc (str "Destructing let is only for inductive types" ++ str " with one constructor."); let cs = cstrs.(0) in if not (Int.equal (List.length nal) cs.cs_nargs) then user_err ?loc:loc (str "Destructing let on this type expects " ++ int cs.cs_nargs ++ str " variables."); let fsign, record = let set_name na d = set_name na (map_rel_decl EConstr.of_constr d) in match Environ.get_projections !!env ind with | None -> List.map2 set_name (List.rev nal) cs.cs_args, false | Some ps -> let rec aux n k names l = match names, l with | na :: names, (LocalAssum (na', t) :: l) -> let t = EConstr.of_constr t in let proj = Projection.make ps.(cs.cs_nargs - k) true in LocalDef ({na' with binder_name = na}, lift (cs.cs_nargs - n) (mkProj (proj, cj.uj_val)), t) :: aux (n+1) (k + 1) names l | na :: names, (decl :: l) -> set_name na decl :: aux (n+1) k names l | [], [] -> [] | _ -> assert false in aux 1 1 (List.rev nal) cs.cs_args, true in let fsign = Context.Rel.map (whd_betaiota !!env sigma) fsign in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let fsign,env_f = push_rel_context ~hypnaming sigma fsign env in let obj indt rci p v f = if not record then let f = it_mkLambda_or_LetIn f fsign in let ci = make_case_info !!env (ind_of_ind_type indt) rci LetStyle in mkCase (EConstr.contract_case !!env sigma (ci, p, make_case_invert !!env indt ci, cj.uj_val,[|f|])) else it_mkLambda_or_LetIn f fsign in (* Make dependencies from arity signature impossible *) let arsgn, indr = let arsgn,s = get_arity !!env indf in List.map (set_name Anonymous) arsgn, Sorts.relevance_of_sort_family s in let indt = build_dependent_inductive !!env indf in let psign = LocalAssum (make_annot na indr, indt) :: arsgn in (* For locating names in [po] *) let psign = List.map (fun d -> map_rel_decl EConstr.of_constr d) psign in let predenv = Cases.make_return_predicate_ltac_lvar env sigma na c cj.uj_val in let nar = List.length arsgn in let psign',env_p = push_rel_context ~hypnaming ~force_names:true sigma psign predenv in (match po with | Some p -> let sigma, pj = pretype_type empty_valcon env_p sigma p in let ccl = nf_evar sigma pj.utj_val in let p = it_mkLambda_or_LetIn ccl psign' in let inst = (Array.map_to_list EConstr.of_constr cs.cs_concl_realargs) @[EConstr.of_constr (build_dependent_constructor cs)] in let lp = lift cs.cs_nargs p in let fty = hnf_lam_applist !!env sigma lp inst in let sigma, fj = pretype (mk_tycon fty) env_f sigma d in let v = let ind,_ = dest_ind_family indf in let rci = Typing.check_allowed_sort !!env sigma ind cj.uj_val p in obj indty rci p cj.uj_val fj.uj_val in sigma, { uj_val = v; uj_type = (substl (realargs@[cj.uj_val]) ccl) } | None -> let tycon = lift_tycon cs.cs_nargs tycon in let sigma, fj = pretype tycon env_f sigma d in let ccl = nf_evar sigma fj.uj_type in let ccl = if noccur_between sigma 1 cs.cs_nargs ccl then lift (- cs.cs_nargs) ccl else error_cant_find_case_type ?loc !!env sigma cj.uj_val in (* let ccl = refresh_universes ccl in *) let p = it_mkLambda_or_LetIn (lift (nar+1) ccl) psign' in let v = let ind,_ = dest_ind_family indf in let rci = Typing.check_allowed_sort !!env sigma ind cj.uj_val p in obj indty rci p cj.uj_val fj.uj_val in sigma, { uj_val = v; uj_type = ccl }) let pretype_cases self (sty, po, tml, eqns) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in Cases.compile_cases ?loc ~program_mode sty (pretype, sigma) tycon env (po,tml,eqns) let pretype_if self (c, (na, po), b1, b2) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let open Context.Rel.Declaration in let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let sigma, cj = pretype empty_tycon env sigma c in let (IndType (indf,realargs)) as indty = try find_rectype !!env sigma cj.uj_type with Not_found -> let cloc = loc_of_glob_constr c in error_case_not_inductive ?loc:cloc !!env sigma cj in let cstrs = get_constructors !!env indf in if not (Int.equal (Array.length cstrs) 2) then user_err ?loc (str "If is only for inductive types with two constructors."); let arsgn, indr = let arsgn,s = get_arity !!env indf in (* Make dependencies from arity signature impossible *) List.map (set_name Anonymous) arsgn, Sorts.relevance_of_sort_family s in let nar = List.length arsgn in let indt = build_dependent_inductive !!env indf in let psign = LocalAssum (make_annot na indr, indt) :: arsgn in (* For locating names in [po] *) let psign = List.map (fun d -> map_rel_decl EConstr.of_constr d) psign in let predenv = Cases.make_return_predicate_ltac_lvar env sigma na c cj.uj_val in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let psign,env_p = push_rel_context ~hypnaming sigma psign predenv in let sigma, pred, p = match po with | Some p -> let sigma, pj = eval_type_pretyper self ~program_mode ~poly resolve_tc empty_valcon env_p sigma p in let ccl = nf_evar sigma pj.utj_val in let pred = it_mkLambda_or_LetIn ccl psign in let typ = lift (- nar) (beta_applist sigma (pred,[cj.uj_val])) in sigma, pred, typ | None -> let sigma, p = match tycon with | Some ty -> sigma, ty | None -> new_type_evar env sigma ~src:(loc,Evar_kinds.CasesType false) in sigma, it_mkLambda_or_LetIn (lift (nar+1) p) psign, p in let pred = nf_evar sigma pred in let p = nf_evar sigma p in let f sigma cs b = let n = Context.Rel.length cs.cs_args in let pi = lift n pred in (* liftn n 2 pred ? *) let pi = beta_applist sigma (pi, [EConstr.of_constr (build_dependent_constructor cs)]) in let cs_args = List.map (fun d -> map_rel_decl EConstr.of_constr d) cs.cs_args in let cs_args = Context.Rel.map (whd_betaiota !!env sigma) cs_args in let csgn = List.map (set_name Anonymous) cs_args in let _,env_c = push_rel_context ~hypnaming sigma csgn env in let sigma, bj = pretype (mk_tycon pi) env_c sigma b in sigma, it_mkLambda_or_LetIn bj.uj_val cs_args in let sigma, b1 = f sigma cstrs.(0) b1 in let sigma, b2 = f sigma cstrs.(1) b2 in let v = let ind,_ = dest_ind_family indf in let pred = nf_evar sigma pred in let rci = Typing.check_allowed_sort !!env sigma ind cj.uj_val pred in let ci = make_case_info !!env (fst ind) rci IfStyle in mkCase (EConstr.contract_case !!env sigma (ci, pred, make_case_invert !!env indty ci, cj.uj_val, [|b1;b2|])) in let cj = { uj_val = v; uj_type = p } in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma cj tycon let pretype_cast self (c, k) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let pretype tycon env sigma c = eval_pretyper self ~program_mode ~poly resolve_tc tycon env sigma c in let sigma, cj = match k with | CastConv t | CastVM t | CastNative t -> let k = (match k with CastVM _ -> VMcast | CastNative _ -> NATIVEcast | _ -> DEFAULTcast) in let sigma, tj = eval_type_pretyper self ~program_mode ~poly resolve_tc empty_valcon env sigma t in let sigma, tval = Evarsolve.refresh_universes ~onlyalg:true ~status:Evd.univ_flexible (Some false) !!env sigma tj.utj_val in let tval = nf_evar sigma tval in let (sigma, cj), tval = match k with | VMcast -> let sigma, cj = pretype empty_tycon env sigma c in let cty = nf_evar sigma cj.uj_type and tval = nf_evar sigma tval in if not (occur_existential sigma cty || occur_existential sigma tval) then match Reductionops.vm_infer_conv !!env sigma cty tval with | Some sigma -> (sigma, cj), tval | None -> error_actual_type ?loc !!env sigma cj tval (ConversionFailed (!!env,cty,tval)) else user_err ?loc (str "Cannot check cast with vm: " ++ str "unresolved arguments remain.") | NATIVEcast -> let sigma, cj = pretype empty_tycon env sigma c in let cty = nf_evar sigma cj.uj_type and tval = nf_evar sigma tval in begin match Nativenorm.native_infer_conv !!env sigma cty tval with | Some sigma -> (sigma, cj), tval | None -> error_actual_type ?loc !!env sigma cj tval (ConversionFailed (!!env,cty,tval)) end | _ -> pretype (mk_tycon tval) env sigma c, tval in let v = mkCast (cj.uj_val, k, tval) in sigma, { uj_val = v; uj_type = tval } in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma cj tycon (* [pretype_type valcon env sigma c] coerces [c] into a type *) let pretype_type self c ?loc ~program_mode ~poly resolve_tc valcon (env : GlobEnv.t) sigma = match DAst.get c with | GHole (knd, naming, None) -> let loc = loc_of_glob_constr c in (match valcon with | Some v -> let sigma, s = let t = Retyping.get_type_of !!env sigma v in match EConstr.kind sigma (whd_all !!env sigma t) with | Sort s -> sigma, ESorts.kind sigma s | Evar ev when is_Type sigma (existential_type sigma ev) -> define_evar_as_sort !!env sigma ev | _ -> anomaly (Pp.str "Found a type constraint which is not a type.") in (* Correction of bug #5315 : we need to define an evar for *all* holes *) let sigma, evkt = new_evar env sigma ~src:(loc, knd) ~naming (mkSort s) in let ev,_ = destEvar sigma evkt in let sigma = Evd.define ev (nf_evar sigma v) sigma in (* End of correction of bug #5315 *) sigma, { utj_val = v; utj_type = s } | None -> let sigma, s = new_sort_variable univ_flexible_alg sigma in let sigma, utj_val = new_evar env sigma ~src:(loc, knd) ~naming (mkSort s) in let sigma = if program_mode then mark_obligation_evar sigma knd utj_val else sigma in sigma, { utj_val; utj_type = s}) | _ -> let sigma, j = eval_pretyper self ~program_mode ~poly resolve_tc empty_tycon env sigma c in let loc = loc_of_glob_constr c in let sigma, tj = Coercion.inh_coerce_to_sort ?loc !!env sigma j in match valcon with | None -> sigma, tj | Some v -> begin match Evarconv.unify_leq_delay !!env sigma v tj.utj_val with | sigma -> sigma, tj | exception Evarconv.UnableToUnify _ -> error_unexpected_type ?loc:(loc_of_glob_constr c) !!env sigma tj.utj_val v end let pretype_int self i = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let resj = try Typing.judge_of_int !!env i with Invalid_argument _ -> user_err ?loc ~hdr:"pretype" (str "Type of int63 should be registered first.") in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma resj tycon let pretype_float self f = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let resj = try Typing.judge_of_float !!env f with Invalid_argument _ -> user_err ?loc ~hdr:"pretype" (str "Type of float should be registered first.") in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma resj tycon let pretype_array self (u,t,def,ty) = fun ?loc ~program_mode ~poly resolve_tc tycon env sigma -> let sigma, tycon' = split_as_array !!env sigma tycon in let sigma, jty = eval_type_pretyper self ~program_mode ~poly resolve_tc tycon' env sigma ty in (* XXX not sure if we need to be this complex, I wrote this while being confused by broken universe substitutions *) let sigma, u = match Univ.Universe.level (Sorts.univ_of_sort jty.utj_type) with | Some u -> let sigma = Evd.make_nonalgebraic_variable sigma u in sigma, u | None -> let sigma, u = Evd.new_univ_level_variable UState.univ_flexible sigma in let sigma = Evd.set_leq_sort !!env sigma jty.utj_type (Sorts.sort_of_univ (Univ.Universe.make u)) in sigma, u in let sigma, jdef = eval_pretyper self ~program_mode ~poly resolve_tc (mk_tycon jty.utj_val) env sigma def in let pretype_elem = eval_pretyper self ~program_mode ~poly resolve_tc (mk_tycon jty.utj_val) env in let sigma, jt = Array.fold_left_map pretype_elem sigma t in let u = Univ.Instance.of_array [| u |] in let ta = EConstr.of_constr @@ Typeops.type_of_array !!env u in let j = { uj_val = EConstr.mkArray(EInstance.make u, Array.map (fun j -> j.uj_val) jt, jdef.uj_val, jty.utj_val); uj_type = EConstr.mkApp(ta,[|jdef.uj_type|]) } in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~program_mode resolve_tc env sigma j tycon end (* [pretype tycon env sigma lvar lmeta cstr] attempts to type [cstr] *) (* in environment [env], with existential variables [sigma] and *) (* the type constraint tycon *) let default_pretyper = let open Default in { pretype_ref = pretype_ref; pretype_var = pretype_var; pretype_evar = pretype_evar; pretype_patvar = pretype_patvar; pretype_app = pretype_app; pretype_lambda = pretype_lambda; pretype_prod = pretype_prod; pretype_letin = pretype_letin; pretype_cases = pretype_cases; pretype_lettuple = pretype_lettuple; pretype_if = pretype_if; pretype_rec = pretype_rec; pretype_sort = pretype_sort; pretype_hole = pretype_hole; pretype_cast = pretype_cast; pretype_int = pretype_int; pretype_float = pretype_float; pretype_array = pretype_array; pretype_type = pretype_type; } let pretype ~program_mode ~poly resolve_tc tycon env sigma c = eval_pretyper default_pretyper ~program_mode ~poly resolve_tc tycon env sigma c let pretype_type ~program_mode ~poly resolve_tc tycon env sigma c = eval_type_pretyper default_pretyper ~program_mode ~poly resolve_tc tycon env sigma c let ise_pretype_gen flags env sigma lvar kind c = let program_mode = flags.program_mode in let poly = flags.polymorphic in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let env = GlobEnv.make ~hypnaming env sigma lvar in let use_tc = match flags.use_typeclasses with | NoUseTC -> false | UseTC | UseTCForConv -> true in let sigma', c', c'_ty = match kind with | WithoutTypeConstraint | UnknownIfTermOrType -> let sigma, j = pretype ~program_mode ~poly use_tc empty_tycon env sigma c in sigma, j.uj_val, j.uj_type | OfType exptyp -> let sigma, j = pretype ~program_mode ~poly use_tc (mk_tycon exptyp) env sigma c in sigma, j.uj_val, j.uj_type | IsType -> let sigma, tj = pretype_type ~program_mode ~poly use_tc empty_valcon env sigma c in sigma, tj.utj_val, mkSort tj.utj_type in process_inference_flags flags !!env sigma (sigma',c',c'_ty) let default_inference_flags fail = { use_typeclasses = UseTC; solve_unification_constraints = true; fail_evar = fail; expand_evars = true; program_mode = false; polymorphic = false; } let no_classes_no_fail_inference_flags = { use_typeclasses = NoUseTC; solve_unification_constraints = true; fail_evar = false; expand_evars = true; program_mode = false; polymorphic = false; } let all_and_fail_flags = default_inference_flags true let all_no_fail_flags = default_inference_flags false let ise_pretype_gen_ctx flags env sigma lvar kind c = let sigma, c, _ = ise_pretype_gen flags env sigma lvar kind c in c, Evd.evar_universe_context sigma (** Entry points of the high-level type synthesis algorithm *) let understand ?(flags=all_and_fail_flags) ?(expected_type=WithoutTypeConstraint) env sigma c = ise_pretype_gen_ctx flags env sigma empty_lvar expected_type c let understand_tcc_ty ?(flags=all_no_fail_flags) env sigma ?(expected_type=WithoutTypeConstraint) c = ise_pretype_gen flags env sigma empty_lvar expected_type c let understand_tcc ?flags env sigma ?expected_type c = let sigma, c, _ = understand_tcc_ty ?flags env sigma ?expected_type c in sigma, c let understand_ltac flags env sigma lvar kind c = let (sigma, c, _) = ise_pretype_gen flags env sigma lvar kind c in (sigma, c) let path_convertible env sigma cl p q = let open Coercionops in let mkGRef ref = DAst.make @@ Glob_term.GRef(ref,None) in let mkGVar id = DAst.make @@ Glob_term.GVar(id) in let mkGApp(rt,rtl) = DAst.make @@ Glob_term.GApp(rt,rtl) in let mkGLambda(n,t,b) = DAst.make @@ Glob_term.GLambda(n,Explicit,t,b) in let mkGSort u = DAst.make @@ Glob_term.GSort u in let mkGHole () = DAst.make @@ Glob_term.GHole(Evar_kinds.BinderType Anonymous,Namegen.IntroAnonymous,None) in let path_to_gterm p = match p with | ic :: p' -> let names = List.init (ic.coe_param + 1) (fun n -> Id.of_string ("x" ^ string_of_int n)) in List.fold_right (fun id t -> mkGLambda (Name id, mkGHole (), t)) names @@ List.fold_left (fun t ic -> mkGApp (mkGRef ic.coe_value, List.make ic.coe_param (mkGHole ()) @ [t])) (mkGApp (mkGRef ic.coe_value, List.map mkGVar names)) p' | [] -> (* identity function for the class [i]. *) let params = class_nparams cl in let clty = match cl with | CL_SORT -> mkGSort (Glob_term.UAnonymous {rigid=false}) | CL_FUN -> anomaly (str "A source class must not be Funclass.") | CL_SECVAR v -> mkGRef (GlobRef.VarRef v) | CL_CONST c -> mkGRef (GlobRef.ConstRef c) | CL_IND i -> mkGRef (GlobRef.IndRef i) | CL_PROJ p -> mkGRef (GlobRef.ConstRef (Projection.Repr.constant p)) in let names = List.init params (fun n -> Id.of_string ("x" ^ string_of_int n)) in List.fold_right (fun id t -> mkGLambda (Name id, mkGHole (), t)) names @@ mkGLambda (Name (Id.of_string "x"), mkGApp (clty, List.map mkGVar names), mkGVar (Id.of_string "x")) in try let sigma,tp = understand_tcc env sigma (path_to_gterm p) in let sigma,tq = understand_tcc env sigma (path_to_gterm q) in if Evd.has_undefined sigma then false else let _ = Evarconv.unify_delay env sigma tp tq in true with Evarconv.UnableToUnify _ | PretypeError _ -> false let _ = Coercionops.install_path_comparator path_convertible
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>