package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.14.0.tar.gz
sha256=b1501d686c21836302191ae30f610cca57fb309214c126518ca009363ad2cd3c
doc/src/coq-core.pretyping/coercion.ml.html
Source file coercion.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Hugo Herbelin for Coq V7 by isolating the coercion mechanism out of the type inference algorithm in file trad.ml from Coq V6.3, Nov 1999; The coercion mechanism was implemented in trad.ml by Amokrane Saïbi, May 1996 *) (* Addition of products and sorts in canonical structures by Pierre Corbineau, Feb 2008 *) (* Turned into an abstract compilation unit by Matthieu Sozeau, March 2006 *) open CErrors open Util open Names open Term open Constr open Context open Environ open EConstr open Vars open Reductionops open Pretype_errors open Coercionops open Evarutil open Evarconv open Evd open Globnames let get_use_typeclasses_for_conversion = Goptions.declare_bool_option_and_ref ~depr:false ~key:["Typeclass"; "Resolution"; "For"; "Conversion"] ~value:true (* Typing operations dealing with coercions *) exception NoCoercion exception NoCoercionNoUnifier of evar_map * unification_error (* Here, funj is a coercion therefore already typed in global context *) let apply_coercion_args env sigma check isproj argl funj = let rec apply_rec sigma acc typ = function | [] -> (match isproj with | Some p -> let npars = Projection.Repr.npars p in let p = Projection.make p false in let args = List.skipn npars argl in let hd, tl = match args with hd :: tl -> hd, tl | [] -> assert false in sigma, { uj_val = applist (mkProj (p, hd), tl); uj_type = typ } | None -> sigma, { uj_val = applist (j_val funj,argl); uj_type = typ }) | h::restl -> (* On devrait pouvoir s'arranger pour qu'on n'ait pas a faire hnf_constr *) match EConstr.kind sigma (whd_all env sigma typ) with | Prod (_,c1,c2) -> let sigma = if check then begin match Evarconv.unify_leq_delay env sigma (Retyping.get_type_of env sigma h) c1 with | exception Evarconv.UnableToUnify _ -> raise NoCoercion | sigma -> sigma end else sigma in apply_rec sigma (h::acc) (subst1 h c2) restl | _ -> anomaly (Pp.str "apply_coercion_args.") in apply_rec sigma [] funj.uj_type argl (* appliquer le chemin de coercions de patterns p *) let apply_pattern_coercion ?loc pat p = List.fold_left (fun pat (co,n) -> let f i = if i<n then (DAst.make ?loc @@ Glob_term.PatVar Anonymous) else pat in DAst.make ?loc @@ Glob_term.PatCstr (co, List.init (n+1) f, Anonymous)) pat p (* raise Not_found if no coercion found *) let inh_pattern_coerce_to ?loc env pat ind1 ind2 = let p = lookup_pattern_path_between env (ind1,ind2) in apply_pattern_coercion ?loc pat p (* Program coercions *) open Program let make_existential ?loc ?(opaque = not (get_proofs_transparency ())) na env sigma c = let src = Loc.tag ?loc (Evar_kinds.QuestionMark { Evar_kinds.default_question_mark with Evar_kinds.qm_obligation=Evar_kinds.Define opaque; Evar_kinds.qm_name=na; }) in let sigma, v = Evarutil.new_evar env sigma ~src c in let sigma = Evd.set_obligation_evar sigma (fst (destEvar sigma v)) in sigma, v let app_opt env sigma f t = let sigma, t = match f with | None -> sigma, t | Some f -> f sigma t in sigma, whd_betaiota env sigma t let pair_of_array a = (a.(0), a.(1)) let disc_subset sigma x = match EConstr.kind sigma x with | App (c, l) -> (match EConstr.kind sigma c with Ind (i,_) -> let len = Array.length l in let sigty = delayed_force sig_typ in if Int.equal len 2 && Ind.CanOrd.equal i (Globnames.destIndRef sigty) then let (a, b) = pair_of_array l in Some (a, b) else None | _ -> None) | _ -> None exception NoSubtacCoercion let hnf env sigma c = whd_all env sigma c let hnf_nodelta env sigma c = whd_betaiota env sigma c let lift_args n sign = let rec liftrec k = function | t::sign -> liftn n k t :: (liftrec (k-1) sign) | [] -> [] in liftrec (List.length sign) sign let coerce ?loc env sigma (x : EConstr.constr) (y : EConstr.constr) : evar_map * (evar_map -> EConstr.constr -> evar_map * EConstr.constr) option = let open Context.Rel.Declaration in let rec coerce_unify env sigma x y = let x = hnf env sigma x and y = hnf env sigma y in try Evarconv.unify_leq_delay env sigma x y, None with Evarconv.UnableToUnify _ -> coerce' env sigma x y and coerce' env sigma x y : evar_map * (evar_map -> EConstr.constr -> evar_map * EConstr.constr) option = let subco sigma = subset_coerce env sigma x y in let dest_prod c = match Reductionops.splay_prod_n env sigma 1 c with | [LocalAssum (na,t) | LocalDef (na,_,t)], c -> (na, t), c | _ -> raise NoSubtacCoercion in let coerce_application sigma typ typ' c c' l l' = let len = Array.length l in let rec aux sigma tele typ typ' i co = if i < len then let hdx = l.(i) and hdy = l'.(i) in try let sigma = unify_leq_delay env sigma hdx hdy in let (n, eqT), restT = dest_prod typ in let (n', eqT'), restT' = dest_prod typ' in aux sigma (hdx :: tele) (subst1 hdx restT) (subst1 hdy restT') (succ i) co with UnableToUnify _ as exn -> let _, info = Exninfo.capture exn in let (n, eqT), restT = dest_prod typ in let (n', eqT'), restT' = dest_prod typ' in let sigma = try unify_leq_delay env sigma eqT eqT' with UnableToUnify _ -> let e, info = Exninfo.capture exn in Exninfo.iraise (NoSubtacCoercion,info) in (* Disallow equalities on arities *) if Reductionops.is_arity env sigma eqT then Exninfo.iraise (NoSubtacCoercion,info); let restargs = lift_args 1 (List.rev (Array.to_list (Array.sub l (succ i) (len - (succ i))))) in let args = List.rev (restargs @ mkRel 1 :: List.map (lift 1) tele) in let pred = mkLambda (n, eqT, applist (lift 1 c, args)) in let sigma, eq = papp sigma coq_eq_ind [| eqT; hdx; hdy |] in let sigma, evar = make_existential ?loc n.binder_name env sigma eq in let eq_app sigma x = papp sigma coq_eq_rect [| eqT; hdx; pred; x; hdy; evar|] in aux sigma (hdy :: tele) (subst1 hdx restT) (subst1 hdy restT') (succ i) (fun sigma x -> let sigma, x = co sigma x in eq_app sigma x) else sigma, Some (fun sigma x -> let sigma, term = co sigma x in let sigma, term = Typing.solve_evars env sigma term in sigma, term) in if isEvar sigma c || isEvar sigma c' || not (Program.is_program_generalized_coercion ()) then (* Second-order unification needed. *) raise NoSubtacCoercion; aux sigma [] typ typ' 0 (fun sigma x -> sigma, x) in match (EConstr.kind sigma x, EConstr.kind sigma y) with | Sort s, Sort s' -> (match ESorts.kind sigma s, ESorts.kind sigma s' with | Prop, Prop | Set, Set -> sigma, None | (Prop | Set), Type _ -> sigma, None | Type x, Type y when Univ.Universe.equal x y -> sigma, None (* false *) | _ -> subco sigma) | Prod (name, a, b), Prod (name', a', b') -> let name' = {name' with binder_name = Name (Namegen.next_ident_away Namegen.default_dependent_ident (Termops.vars_of_env env))} in let env' = push_rel (LocalAssum (name', a')) env in let sigma, c1 = coerce_unify env' sigma (lift 1 a') (lift 1 a) in (* env, x : a' |- c1 : lift 1 a' > lift 1 a *) let sigma, coec1 = app_opt env' sigma c1 (mkRel 1) in (* env, x : a' |- c1[x] : lift 1 a *) let sigma, c2 = coerce_unify env' sigma (subst1 coec1 (liftn 1 2 b)) b' in (* env, x : a' |- c2 : b[c1[x]/x]] > b' *) (match c1, c2 with | None, None -> sigma, None | _, _ -> sigma, Some (fun sigma f -> let sigma, t = app_opt env' sigma c2 (mkApp (lift 1 f, [| coec1 |])) in sigma, mkLambda (name', a', t))) | App (c, l), App (c', l') -> (match EConstr.kind sigma c, EConstr.kind sigma c' with Ind (i, u), Ind (i', u') -> (* Inductive types *) let len = Array.length l in let sigT = delayed_force sigT_typ in let prod = delayed_force prod_typ in (* Sigma types *) if Int.equal len (Array.length l') && Int.equal len 2 && Ind.CanOrd.equal i i' && (Ind.CanOrd.equal i (destIndRef sigT) || Ind.CanOrd.equal i (destIndRef prod)) then if Ind.CanOrd.equal i (destIndRef sigT) then begin let (a, pb), (a', pb') = pair_of_array l, pair_of_array l' in let sigma, c1 = coerce_unify env sigma a a' in let remove_head sigma a c = match EConstr.kind sigma c with | Lambda (n, t, t') -> sigma, (c, t') | Evar (k, args) -> let (sigma, t) = Evardefine.define_evar_as_lambda env sigma (k,args) in let (n, dom, rng) = destLambda sigma t in let sigma = if isEvar sigma dom then let (domk, args) = destEvar sigma dom in define domk a sigma else sigma in sigma, (t, rng) | _ -> raise NoSubtacCoercion in let sigma, (pb, b) = remove_head sigma a pb in let sigma, (pb', b') = remove_head sigma a' pb' in let ra = Retyping.relevance_of_type env sigma a in let env' = push_rel (LocalAssum (make_annot (Name Namegen.default_dependent_ident) ra, a)) env in let sigma, c2 = coerce_unify env' sigma b b' in match c1, c2 with | None, None -> sigma, None | _, _ -> sigma, Some (fun sigma x -> let sigma, t1 = papp sigma sigT_proj1 [| a; pb; x |] in let sigma, t2 = papp sigma sigT_proj2 [| a; pb; x |] in let sigma, x = app_opt env' sigma c1 t1 in let sigma, y = app_opt env' sigma c2 t2 in papp sigma sigT_intro [| a'; pb'; x ; y |]) end else begin let (a, b), (a', b') = pair_of_array l, pair_of_array l' in let sigma, c1 = coerce_unify env sigma a a' in let sigma, c2 = coerce_unify env sigma b b' in match c1, c2 with | None, None -> sigma, None | _, _ -> sigma, Some (fun sigma x -> let sigma, t1 = papp sigma prod_proj1 [| a; b; x |] in let sigma, t2 = papp sigma prod_proj2 [| a; b; x |] in let sigma, x = app_opt env sigma c1 t1 in let sigma, y = app_opt env sigma c2 t2 in papp sigma prod_intro [| a'; b'; x ; y |]) end else if Ind.CanOrd.equal i i' && Int.equal len (Array.length l') then (try subco sigma with NoSubtacCoercion -> let sigma, typ = Typing.type_of env sigma c in let sigma, typ' = Typing.type_of env sigma c' in coerce_application sigma typ typ' c c' l l') else subco sigma | x, y when EConstr.eq_constr sigma c c' -> if Int.equal (Array.length l) (Array.length l') then let sigma, lam_type = Typing.type_of env sigma c in let sigma, lam_type' = Typing.type_of env sigma c' in coerce_application sigma lam_type lam_type' c c' l l' else subco sigma | _ -> subco sigma) | _, _ -> subco sigma and subset_coerce env sigma x y = match disc_subset sigma x with Some (u, p) -> let sigma, c = coerce_unify env sigma u y in let f sigma x = let sigma, t = papp sigma sig_proj1 [| u; p; x |] in app_opt env sigma c t in sigma, Some f | None -> match disc_subset sigma y with Some (u, p) -> let sigma, c = coerce_unify env sigma x u in sigma, Some (fun sigma x -> let sigma, cx = app_opt env sigma c x in let sigma, evar = make_existential ?loc Anonymous env sigma (mkApp (p, [| cx |])) in (papp sigma sig_intro [| u; p; cx; evar |])) | None -> raise NoSubtacCoercion in coerce_unify env sigma x y let app_coercion env sigma coercion v = match coercion with | None -> sigma, v | Some f -> let sigma, v' = f sigma v in let sigma, v' = Typing.solve_evars env sigma v' in sigma, whd_betaiota env sigma v' let coerce_itf ?loc env sigma v t c1 = let sigma, coercion = coerce ?loc env sigma t c1 in app_coercion env sigma coercion v let saturate_evd env sigma = Typeclasses.resolve_typeclasses ~filter:Typeclasses.no_goals ~split:true ~fail:false env sigma type coercion_trace = | IdCoe | PrimProjCoe of { proj : Projection.Repr.t; args : econstr list; previous : coercion_trace; } | Coe of { head : econstr; args : econstr list; previous : coercion_trace; } | ProdCoe of { na : Name.t binder_annot; ty : econstr; dom : coercion_trace; body : coercion_trace } let empty_coercion_trace = IdCoe (* similar to iterated apply_coercion_args *) let rec reapply_coercions sigma trace c = match trace with | IdCoe -> c | PrimProjCoe { proj; args; previous } -> let c = reapply_coercions sigma previous c in let args = args@[c] in let head, args = match args with [] -> assert false | hd :: tl -> hd, tl in applist (mkProj (Projection.make proj false, head), args) | Coe {head; args; previous} -> let c = reapply_coercions sigma previous c in let args = args@[c] in applist (head, args) | ProdCoe { na; ty; dom; body } -> let x = reapply_coercions sigma dom (mkRel 1) in let c = beta_applist sigma (lift 1 c, [x]) in let c = reapply_coercions sigma body c in mkLambda (na, ty, c) (* Apply coercion path from p to hj; raise NoCoercion if not applicable *) let apply_coercion env sigma p hj typ_cl = let j,t,trace,sigma = List.fold_left (fun (ja,typ_cl,trace,sigma) i -> let isid = i.coe_is_identity in let isproj = i.coe_is_projection in let sigma, c = new_global sigma i.coe_value in let typ = Retyping.get_type_of env sigma c in let fv = make_judge c typ in let argl = class_args_of env sigma typ_cl in let trace = if isid then trace else match isproj with | None -> Coe {head=fv.uj_val;args=argl;previous=trace} | Some proj -> let args = List.skipn (Projection.Repr.npars proj) argl in PrimProjCoe {proj; args; previous=trace } in let argl = argl@[ja.uj_val] in let sigma, jres = apply_coercion_args env sigma true isproj argl fv in let jres = if isid then { uj_val = ja.uj_val; uj_type = jres.uj_type } else jres in jres, jres.uj_type, trace, sigma) (hj,typ_cl,IdCoe,sigma) p in sigma, j, trace let mu env sigma t = let rec aux v = let v' = hnf env sigma v in match disc_subset sigma v' with | Some (u, p) -> let sigma, (f, ct, trace) = aux u in let p = hnf_nodelta env sigma p in let p1 = delayed_force sig_proj1 in let sigma, p1 = Evarutil.new_global sigma p1 in sigma, (Some (fun sigma x -> app_opt env sigma f (mkApp (p1, [| u; p; x |]))), ct, Coe {head=p1; args=[u;p]; previous=trace}) | None -> sigma, (None, v, IdCoe) in aux t (* Try to coerce to a funclass; raise NoCoercion if not possible *) let inh_app_fun_core ~program_mode env sigma j = let t = whd_all env sigma j.uj_type in match EConstr.kind sigma t with | Prod _ -> (sigma,j,IdCoe) | Evar ev -> let (sigma,t) = Evardefine.define_evar_as_product env sigma ev in (sigma,{ uj_val = j.uj_val; uj_type = t },IdCoe) | _ -> try let t,p = lookup_path_to_fun_from env sigma j.uj_type in apply_coercion env sigma p j t with (Not_found | NoCoercion) as exn -> let _, info = Exninfo.capture exn in if program_mode then try let sigma, (coercef, t, trace) = mu env sigma t in let sigma, uj_val = app_opt env sigma coercef j.uj_val in let res = { uj_val ; uj_type = t } in (sigma, res, trace) with NoSubtacCoercion | NoCoercion -> (sigma,j,IdCoe) else Exninfo.iraise (NoCoercion,info) (* Try to coerce to a funclass; returns [j] if no coercion is applicable *) let inh_app_fun ~program_mode resolve_tc env sigma j = try inh_app_fun_core ~program_mode env sigma j with | NoCoercion when not resolve_tc || not (get_use_typeclasses_for_conversion ()) -> (sigma, j, IdCoe) | NoCoercion -> try inh_app_fun_core ~program_mode env (saturate_evd env sigma) j with NoCoercion -> (sigma, j, IdCoe) let type_judgment env sigma j = match EConstr.kind sigma (whd_all env sigma j.uj_type) with | Sort s -> {utj_val = j.uj_val; utj_type = ESorts.kind sigma s } | _ -> error_not_a_type env sigma j let inh_tosort_force ?loc env sigma j = try let t,p = lookup_path_to_sort_from env sigma j.uj_type in let sigma,j1,_trace = apply_coercion env sigma p j t in let j2 = Environ.on_judgment_type (whd_evar sigma) j1 in (sigma,type_judgment env sigma j2) with Not_found | NoCoercion -> error_not_a_type ?loc env sigma j let inh_coerce_to_sort ?loc env sigma j = let typ = whd_all env sigma j.uj_type in match EConstr.kind sigma typ with | Sort s -> (sigma,{ utj_val = j.uj_val; utj_type = ESorts.kind sigma s }) | Evar ev -> let (sigma,s) = Evardefine.define_evar_as_sort env sigma ev in (sigma,{ utj_val = j.uj_val; utj_type = s }) | _ -> inh_tosort_force ?loc env sigma j let inh_coerce_to_base ?loc ~program_mode env sigma j = if program_mode then let sigma, (ct, typ', _trace) = mu env sigma j.uj_type in let sigma, uj_val = app_coercion env sigma ct j.uj_val in let res = { uj_val; uj_type = typ' } in sigma, res else (sigma, j) let inh_coerce_to_prod ?loc ~program_mode env sigma t = if program_mode then let sigma, (_, typ', _trace) = mu env sigma t in sigma, typ' else (sigma, t) let inh_coerce_to_fail flags env sigma rigidonly v t c1 = if rigidonly && not (Heads.is_rigid env (EConstr.Unsafe.to_constr c1) && Heads.is_rigid env (EConstr.Unsafe.to_constr t)) then raise NoCoercion else let sigma, v', t', trace = try let t2,t1,p = lookup_path_between env sigma (t,c1) in let sigma,j,trace = apply_coercion env sigma p {uj_val = v; uj_type = t} t2 in sigma, j.uj_val, j.uj_type, trace with Not_found -> raise NoCoercion in try (unify_leq_delay ~flags env sigma t' c1, v', trace) with Evarconv.UnableToUnify _ as exn -> let _, info = Exninfo.capture exn in Exninfo.iraise (NoCoercion,info) let default_flags_of env = default_flags_of TransparentState.full let rec inh_conv_coerce_to_fail ?loc env sigma ?(flags=default_flags_of env) rigidonly v t c1 = try (unify_leq_delay ~flags env sigma t c1, v, IdCoe) with UnableToUnify (best_failed_sigma,e) -> try inh_coerce_to_fail flags env sigma rigidonly v t c1 with NoCoercion as exn -> let _, info = Exninfo.capture exn in match EConstr.kind sigma (whd_all env sigma t), EConstr.kind sigma (whd_all env sigma c1) with | Prod (name,t1,t2), Prod (_,u1,u2) -> (* Conversion did not work, we may succeed with a coercion. *) (* We eta-expand (hence possibly modifying the original term!) *) (* and look for a coercion c:u1->t1 s.t. fun x:u1 => v' (c x)) *) (* has type forall (x:u1), u2 (with v' recursively obtained) *) (* Note: we retype the term because template polymorphism may have *) (* weakened its type *) let name = map_annot (function | Anonymous -> Name Namegen.default_dependent_ident | na -> na) name in let open Context.Rel.Declaration in let env1 = push_rel (LocalAssum (name,u1)) env in let (sigma, v1, trace1) = inh_conv_coerce_to_fail ?loc env1 sigma rigidonly (mkRel 1) (lift 1 u1) (lift 1 t1) in let v2 = beta_applist sigma (lift 1 v,[v1]) in let t2 = Retyping.get_type_of env1 sigma v2 in let (sigma,v2',trace2) = inh_conv_coerce_to_fail ?loc env1 sigma rigidonly v2 t2 u2 in let trace = ProdCoe { na=name; ty=u1; dom=trace1; body=trace2 } in (sigma, mkLambda (name, u1, v2'), trace) | _ -> Exninfo.iraise (NoCoercionNoUnifier (best_failed_sigma,e), info) (* Look for cj' obtained from cj by inserting coercions, s.t. cj'.typ = t *) let inh_conv_coerce_to_gen ?loc ~program_mode resolve_tc rigidonly flags env sigma cj t = let (sigma, val', otrace) = try let (sigma, val', trace) = inh_conv_coerce_to_fail ?loc env sigma ~flags rigidonly cj.uj_val cj.uj_type t in (sigma, val', Some trace) with NoCoercionNoUnifier (best_failed_sigma,e) as exn -> let _, info = Exninfo.capture exn in try if program_mode then let (sigma, val') = coerce_itf ?loc env sigma cj.uj_val cj.uj_type t in (sigma, val', None) else Exninfo.iraise (NoSubtacCoercion,info) with | NoSubtacCoercion as exn when not resolve_tc || not (get_use_typeclasses_for_conversion ()) -> let _, info = Exninfo.capture exn in error_actual_type ?loc ~info env best_failed_sigma cj t e | NoSubtacCoercion as exn -> let _, info = Exninfo.capture exn in let sigma' = saturate_evd env sigma in try if sigma' == sigma then error_actual_type ?loc ~info env best_failed_sigma cj t e else let sigma = sigma' in let (sigma, val', trace) = inh_conv_coerce_to_fail ?loc env sigma rigidonly cj.uj_val cj.uj_type t in (sigma, val', Some trace) with NoCoercionNoUnifier (_sigma,_error) as exn -> let _, info = Exninfo.capture exn in error_actual_type ?loc ~info env best_failed_sigma cj t e in (sigma,{ uj_val = val'; uj_type = t },otrace) let inh_conv_coerce_to ?loc ~program_mode resolve_tc env sigma ?(flags=default_flags_of env) = inh_conv_coerce_to_gen ?loc ~program_mode resolve_tc false flags env sigma let inh_conv_coerce_rigid_to ?loc ~program_mode resolve_tc env sigma ?(flags=default_flags_of env) = inh_conv_coerce_to_gen ?loc ~program_mode resolve_tc true flags env sigma
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>