package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.14.0.tar.gz
sha256=b1501d686c21836302191ae30f610cca57fb309214c126518ca009363ad2cd3c
doc/src/coq-core.kernel/inferCumulativity.ml.html
Source file inferCumulativity.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Reduction open Declarations open Constr open Univ open Variance open Util exception TrivialVariance (** Not the same as Type_errors.BadVariance because we don't have the env where we raise. *) exception BadVariance of Level.t * Variance.t * Variance.t (* some ocaml bug is triggered if we make this an inline record *) module Inf : sig type variances val infer_level_eq : Level.t -> variances -> variances val infer_level_leq : Level.t -> variances -> variances val start : (Level.t * Variance.t option) array -> variances val finish : variances -> Variance.t array end = struct type inferred = IrrelevantI | CovariantI type mode = Check | Infer (** Each local universe is either in the [univs] map or is Invariant. If [univs] is empty all universes are Invariant and there is nothing more to do, so we stop by raising [TrivialVariance]. The [soft] check comes before that. *) type variances = { orig_array : (Level.t * Variance.t option) array; univs : (mode * inferred) LMap.t; } let to_variance = function | IrrelevantI -> Irrelevant | CovariantI -> Covariant let to_variance_opt o = Option.cata to_variance Invariant o let infer_level_eq u variances = match LMap.find_opt u variances.univs with | None -> variances | Some (Check, expected) -> let expected = to_variance expected in raise (BadVariance (u, expected, Invariant)) | Some (Infer, _) -> let univs = LMap.remove u variances.univs in if LMap.is_empty univs then raise TrivialVariance; {variances with univs} let infer_level_leq u variances = (* can only set Irrelevant -> Covariant so no TrivialVariance *) let univs = LMap.update u (function | None -> None | Some (_,CovariantI) as x -> x | Some (Infer,IrrelevantI) -> Some (Infer,CovariantI) | Some (Check,IrrelevantI) -> raise (BadVariance (u, Irrelevant, Covariant))) variances.univs in if univs == variances.univs then variances else {variances with univs} let start us = let univs = Array.fold_left (fun univs (u,variance) -> match variance with | None -> LMap.add u (Infer,IrrelevantI) univs | Some Invariant -> univs | Some Covariant -> LMap.add u (Check,CovariantI) univs | Some Irrelevant -> LMap.add u (Check,IrrelevantI) univs) LMap.empty us in if LMap.is_empty univs then raise TrivialVariance; {univs; orig_array=us} let finish variances = Array.map (fun (u,_check) -> to_variance_opt (Option.map snd (LMap.find_opt u variances.univs))) variances.orig_array end open Inf let infer_generic_instance_eq variances u = Array.fold_left (fun variances u -> infer_level_eq u variances) variances (Instance.to_array u) let infer_cumulative_ind_instance cv_pb mind_variance variances u = Array.fold_left2 (fun variances varu u -> match cv_pb, varu with | _, Irrelevant -> variances | _, Invariant | CONV, Covariant -> infer_level_eq u variances | CUMUL, Covariant -> infer_level_leq u variances) variances mind_variance (Instance.to_array u) let infer_inductive_instance cv_pb env variances ind nargs u = let mind = Environ.lookup_mind (fst ind) env in match mind.mind_variance with | None -> infer_generic_instance_eq variances u | Some mind_variance -> if not (Int.equal (inductive_cumulativity_arguments (mind,snd ind)) nargs) then infer_generic_instance_eq variances u else infer_cumulative_ind_instance cv_pb mind_variance variances u let infer_constructor_instance_eq env variances ((mi,ind),ctor) nargs u = let mind = Environ.lookup_mind mi env in match mind.mind_variance with | None -> infer_generic_instance_eq variances u | Some _ -> if not (Int.equal (constructor_cumulativity_arguments (mind,ind,ctor)) nargs) then infer_generic_instance_eq variances u else variances (* constructors are convertible at common supertype *) let infer_sort cv_pb variances s = match cv_pb with | CONV -> LSet.fold infer_level_eq (Universe.levels (Sorts.univ_of_sort s)) variances | CUMUL -> LSet.fold infer_level_leq (Universe.levels (Sorts.univ_of_sort s)) variances let infer_table_key variances c = let open Names in match c with | ConstKey (_, u) -> infer_generic_instance_eq variances u | VarKey _ | RelKey _ -> variances let whd_stack (infos, tab) hd stk = CClosure.whd_stack infos tab hd stk let rec infer_fterm cv_pb infos variances hd stk = Control.check_for_interrupt (); let hd,stk = whd_stack infos hd stk in let open CClosure in match fterm_of hd with | FAtom a -> begin match kind a with | Sort s -> infer_sort cv_pb variances s | Meta _ -> infer_stack infos variances stk | _ -> assert false end | FEvar ((_,args),e) -> let variances = infer_stack infos variances stk in infer_list infos variances (List.map (mk_clos e) args) | FRel _ -> infer_stack infos variances stk | FInt _ -> infer_stack infos variances stk | FFloat _ -> infer_stack infos variances stk | FFlex fl -> let variances = infer_table_key variances fl in infer_stack infos variances stk | FProj (_,c) -> let variances = infer_fterm CONV infos variances c [] in infer_stack infos variances stk | FLambda _ -> let (_,ty,bd) = destFLambda mk_clos hd in let variances = infer_fterm CONV infos variances ty [] in infer_fterm CONV infos variances bd [] | FProd (_,dom,codom,e) -> let variances = infer_fterm CONV infos variances dom [] in infer_fterm cv_pb infos variances (mk_clos (Esubst.subs_lift e) codom) [] | FInd (ind, u) -> let variances = if Instance.is_empty u then variances else let nargs = stack_args_size stk in infer_inductive_instance cv_pb (info_env (fst infos)) variances ind nargs u in infer_stack infos variances stk | FConstruct (ctor,u) -> let variances = if Instance.is_empty u then variances else let nargs = stack_args_size stk in infer_constructor_instance_eq (info_env (fst infos)) variances ctor nargs u in infer_stack infos variances stk | FFix ((_,(_,tys,cl)),e) | FCoFix ((_,(_,tys,cl)),e) -> let n = Array.length cl in let variances = infer_vect infos variances (Array.map (mk_clos e) tys) in let le = Esubst.subs_liftn n e in let variances = infer_vect infos variances (Array.map (mk_clos le) cl) in infer_stack infos variances stk | FArray (u,elemsdef,ty) -> let variances = infer_generic_instance_eq variances u in let variances = infer_fterm CONV infos variances ty [] in let elems, def = Parray.to_array elemsdef in let variances = infer_fterm CONV infos variances def [] in let variances = infer_vect infos variances elems in infer_stack infos variances stk | FCaseInvert (ci, u, pms, p, _, _, br, e) -> let mib = Environ.lookup_mind (fst ci.ci_ind) (info_env (fst infos)) in let (_, p, _, _, br) = Inductive.expand_case_specif mib (ci, u, pms, p, NoInvert, mkProp, br) in let infer c variances = infer_fterm CONV infos variances (mk_clos e c) [] in let variances = infer p variances in Array.fold_right infer br variances (* Removed by whnf *) | FLOCKED | FCaseT _ | FLetIn _ | FApp _ | FLIFT _ | FCLOS _ -> assert false and infer_stack infos variances (stk:CClosure.stack) = match stk with | [] -> variances | z :: stk -> let open CClosure in let variances = match z with | Zapp v -> infer_vect infos variances v | Zproj _ -> variances | Zfix (fx,a) -> let variances = infer_fterm CONV infos variances fx [] in infer_stack infos variances a | ZcaseT (ci,u,pms,p,br,e) -> let dummy = mkProp in let case = (ci, u, pms, p, NoInvert, dummy, br) in let (_, p, _, _, br) = Inductive.expand_case (info_env (fst infos)) case in let variances = infer_fterm CONV infos variances (mk_clos e p) [] in infer_vect infos variances (Array.map (mk_clos e) br) | Zshift _ -> variances | Zupdate _ -> variances | Zprimitive (_,_,rargs,kargs) -> let variances = List.fold_left (fun variances c -> infer_fterm CONV infos variances c []) variances rargs in let variances = List.fold_left (fun variances (_,c) -> infer_fterm CONV infos variances c []) variances kargs in variances in infer_stack infos variances stk and infer_vect infos variances v = Array.fold_left (fun variances c -> infer_fterm CONV infos variances c []) variances v and infer_list infos variances v = List.fold_left (fun variances c -> infer_fterm CONV infos variances c []) variances v let infer_term cv_pb env variances c = let open CClosure in let infos = (create_clos_infos all env, create_tab ()) in infer_fterm cv_pb infos variances (CClosure.inject c) [] let infer_arity_constructor is_arity env variances arcn = let infer_typ typ (env,variances) = match typ with | Context.Rel.Declaration.LocalAssum (_, typ') -> (Environ.push_rel typ env, infer_term CUMUL env variances typ') | Context.Rel.Declaration.LocalDef _ -> assert false in let typs, codom = Reduction.dest_prod env arcn in let env, variances = Context.Rel.fold_outside infer_typ typs ~init:(env, variances) in (* If we have Inductive foo@{i j} : ... -> Type@{i} := C : ... -> foo Type@{j} i is irrelevant, j is invariant. *) if not is_arity then infer_term CUMUL env variances codom else variances open Entries let infer_inductive_core env univs entries = let variances = Inf.start univs in let variances = List.fold_left (fun variances entry -> let variances = infer_arity_constructor true env variances entry.mind_entry_arity in List.fold_left (infer_arity_constructor false env) variances entry.mind_entry_lc) variances entries in Inf.finish variances let infer_inductive ~env_params univs entries = try infer_inductive_core env_params univs entries with | TrivialVariance -> Array.make (Array.length univs) Invariant | BadVariance (lev, expected, actual) -> Type_errors.error_bad_variance env_params ~lev ~expected ~actual
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>