package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.14.0.tar.gz
sha256=b1501d686c21836302191ae30f610cca57fb309214c126518ca009363ad2cd3c
doc/src/coq-core.kernel/esubst.ml.html
Source file esubst.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Bruno Barras for Coq V7.0, Mar 2001 *) (* Support for explicit substitutions *) open Util (*********************) (* Lifting *) (*********************) (* Explicit lifts and basic operations *) (* Invariant to preserve in this module: no lift contains two consecutive [ELSHFT] nor two consecutive [ELLFT]. *) type lift = | ELID | ELSHFT of lift * int (* ELSHFT(l,n) == lift of n, then apply lift l *) | ELLFT of int * lift (* ELLFT(n,l) == apply l to de Bruijn > n *) (* i.e under n binders *) let el_id = ELID (* compose a relocation of magnitude n *) let el_shft_rec n = function | ELSHFT(el,k) -> ELSHFT(el,k+n) | el -> ELSHFT(el,n) let el_shft n el = if Int.equal n 0 then el else el_shft_rec n el (* cross n binders *) let el_liftn_rec n = function | ELID -> ELID | ELLFT(k,el) -> ELLFT(n+k, el) | el -> ELLFT(n, el) let el_liftn n el = if Int.equal n 0 then el else el_liftn_rec n el let el_lift el = el_liftn_rec 1 el (* relocation of de Bruijn n in an explicit lift *) let rec reloc_rel n = function | ELID -> n | ELLFT(k,el) -> if n <= k then n else (reloc_rel (n-k) el) + k | ELSHFT(el,k) -> (reloc_rel (n+k) el) let rec is_lift_id = function | ELID -> true | ELSHFT(e,n) -> Int.equal n 0 && is_lift_id e | ELLFT (_,e) -> is_lift_id e (*********************) (* Substitutions *) (*********************) (* Variant of skewed lists enriched w.r.t. a monoid. See the Range module. In addition to the indexed data, every node contains a monoid element, in our case, integers. It corresponds to the number of partial shifts to apply when reaching this subtree. The total shift is obtained by summing all the partial shifts encountered in the tree traversal. For efficiency, we also cache the sum of partial shifts of the whole subtree as the last argument of the [Node] constructor. A more intuitive but inefficient representation of this data structure would be a list of terms interspeded with shifts, as in type 'a subst = NIL | CONS of 'a or_var * 'a subst | SHIFT of 'a subst On this inefficient representation, the typing rules would be: · ⊢ NIL : · Γ ⊢ σ : Δ and Γ ⊢ t : A{σ} implies Γ ⊢ CONS (t, σ) : Δ, A Γ ⊢ σ : Δ implies Γ, A ⊢ SHIFT σ : Δ The efficient representation is isomorphic to this naive variant, except that shifts are grouped together, and we use skewed lists instead of lists. *) type shf = int let cmp n m = n + m let idn = 0 type 'a or_var = Arg of 'a | Var of int type 'a tree = | Leaf of shf * 'a or_var | Node of shf * 'a or_var * 'a tree * 'a tree * shf (* Invariants: - All trees are complete. - Define get_shift inductively as [get_shift (Leaf (w, _)) := w] and [get_shift (Node (w, _, t1, t2, _)) := w + t1 + t2] then for every tree of the form Node (_, _, t1, t2, sub), we must have sub = get_shift t1 + get_shift t2. In the naive semantics: Leaf (w, x) := SHIFT^w (CONS (x, NIL)) Node (w, x, t1, t2, _) := SHIFT^w (CONS (x, t1 @ t2)) *) type 'a subs = Nil of shf * int | Cons of int * 'a tree * 'a subs (* In the naive semantics mentioned above, we have the following. Nil (w, n) stands for SHIFT^w (ID n) where ID n is a compact form of identity substitution, defined inductively as ID 0 := NIL ID (S n) := CONS (Var 1, SHIFT (ID n)) Cons (h, t, s) stands for (t @ s) and h is the total number of values in the tree t. In particular, it is always of the form 2^n - 1 for some n. *) (* Returns the number of shifts contained in the whole tree. *) let eval = function | Leaf (w, _) -> w | Node (w1, _, _, _, w2) -> cmp w1 w2 let leaf x = Leaf (idn, x) let node x t1 t2 = Node (idn, x, t1, t2, cmp (eval t1) (eval t2)) let rec tree_get h w t i = match t with | Leaf (w', x) -> let w = cmp w w' in if i = 0 then w, Inl x else assert false | Node (w', x, t1, t2, _) -> let w = cmp w w' in if i = 0 then w, Inl x else let h = h / 2 in if i <= h then tree_get h w t1 (i - 1) else tree_get h (cmp w (eval t1)) t2 (i - h - 1) let rec get w l i = match l with | Nil (w', n) -> let w = cmp w w' in if i < n then w, Inl (Var (i + 1)) else n + w, Inr (i - n) (* FIXME: double check *) | Cons (h, t, rem) -> if i < h then tree_get h w t i else get (cmp (eval t) w) rem (i - h) let get l i = get idn l i let tree_write w = function | Leaf (w', x) -> Leaf (cmp w w', x) | Node (w', x, t1, t2, wt) -> Node (cmp w w', x, t1, t2, wt) let write w l = match l with | Nil (w', n) -> Nil (cmp w w', n) | Cons (h, t, rem) -> Cons (h, tree_write w t, rem) let cons x l = match l with | Cons (h1, t1, Cons (h2, t2, rem)) -> if Int.equal h1 h2 then Cons (1 + h1 + h2, node x t1 t2, rem) else Cons (1, leaf x, l) | _ -> Cons (1, leaf x, l) let expand_rel n s = let k, v = get s (n - 1) in match v with | Inl (Arg v) -> Inl (k, v) | Inl (Var i) -> Inr (k + i, None) | Inr i -> Inr (k + i + 1, Some (i + 1)) let is_subs_id = function | Nil (w, _) -> Int.equal w 0 | Cons (_, _, _) -> false let subs_cons v s = cons (Arg v) s let rec push_vars i s = if Int.equal i 0 then s else push_vars (pred i) (cons (Var i) s) let subs_liftn n s = if Int.equal n 0 then s else match s with | Nil (0, m) -> Nil (0, m + n) (* Preserve identity substitutions *) | Nil _ | Cons _ -> let s = write n s in push_vars n s let subs_lift s = match s with | Nil (0, m) -> Nil (0, m + 1) (* Preserve identity substitutions *) | Nil _ | Cons _ -> cons (Var 1) (write 1 s) let subs_id n = Nil (0, n) let subs_shft (n, s) = write n s (* pop is the n-ary tailrec variant of a function whose typing rules would be given as follows. Assume Γ ⊢ e : Δ, A, then - Γ := Ξ, A, Ω for some Ξ and Ω with |Ω| := fst (pop e) - Ξ ⊢ snd (pop e) : Δ *) let rec pop n i e = if Int.equal n 0 then i, e else match e with | ELID -> i, e | ELLFT (k, e) -> if k <= n then pop (n - k) i e else i, ELLFT (k - n, e) | ELSHFT (e, k) -> pop n (i + k) e let apply mk e = function | Var i -> Var (reloc_rel i e) | Arg v -> Arg (mk e v) let rec tree_map mk e = function | Leaf (w, x) -> let (n, e) = pop w 0 e in Leaf (w + n, apply mk e x), e | Node (w, x, t1, t2, _) -> let (n, e) = pop w 0 e in let x = apply mk e x in let t1, e = tree_map mk e t1 in let t2, e = tree_map mk e t2 in Node (w + n, x, t1, t2, cmp (eval t1) (eval t2)), e let rec lift_id e n = match e with | ELID -> Nil (0, n) | ELSHFT (e, k) -> write k (lift_id e n) | ELLFT (k, e) -> if k <= n then subs_liftn k (lift_id e (n - k)) else assert false let rec lift_subst mk e s = match s with | Nil (w, m) -> let (n, e) = pop w 0 e in write (w + n) (lift_id e m) | Cons (h, t, rem) -> let t, e = tree_map mk e t in let rem = lift_subst mk e rem in Cons (h, t, rem) module Internal = struct type 'a or_rel = REL of int | VAL of int * 'a let to_rel shift = function | Var i -> REL (i + shift) | Arg v -> VAL (shift, v) let rec get_tree_subst shift accu = function | Leaf (w, x) -> to_rel (shift + w) x :: accu | Node (w, x, l, r, _) -> let accu = get_tree_subst (shift + w + eval l) accu r in let accu = get_tree_subst (shift + w) accu l in to_rel (shift + w) x :: accu let rec get_subst shift accu = function | Nil (w, n) -> List.init n (fun i -> REL (w + i + shift + 1)) | Cons (_, t, s) -> let accu = get_subst (shift + eval t) accu s in get_tree_subst shift accu t let rec get_shift accu = function | Nil (w, n) -> accu + w + n | Cons (_, t, s) -> get_shift (eval t + accu) s let repr (s : 'a subs) = let shift = get_shift 0 s in let subs = get_subst 0 [] s in subs, shift end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>