package coq-serapi

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file ser_constr.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(************************************************************************)
(* Coq serialization API/Plugin                                         *)
(* Copyright 2016-2019 MINES ParisTech                                  *)
(* Written by: Emilio J. Gallego Arias                                  *)
(************************************************************************)
(* Status: Very Experimental                                            *)
(************************************************************************)

(* Example of serialization to a sexp:

   Coq's main datatype, constr, is a private type so we need to define
   a serializable clone. Unfortunately, its main view is "zippy" so we
   need to recurse throu the constr to build the clone.
*)

open Sexplib
open Sexplib.Std

module Names   = Ser_names
module Sorts   = Ser_sorts
module Evar    = Ser_evar
module Univ    = Ser_univ
module Context = Ser_context
module Uint63  = Ser_uint63
module Float64 = Ser_float64

type metavariable =
  [%import: Constr.metavariable]
  [@@deriving sexp, yojson]

type pconstant =
  [%import: Constr.pconstant]
  [@@deriving sexp, yojson]

type pinductive =
  [%import: Constr.pinductive]
  [@@deriving sexp, yojson]

type pconstructor =
  [%import: Constr.pconstructor]
  [@@deriving sexp, yojson]

type cast_kind =
  [%import: Constr.cast_kind]
  [@@deriving sexp,yojson]

type case_style =
  [%import: Constr.case_style]
  [@@deriving sexp,yojson]

type case_printing =
  [%import: Constr.case_printing]
  [@@deriving sexp,yojson]

type case_info =
  [%import: Constr.case_info]
  [@@deriving sexp,yojson]

type 'constr pexistential =
  [%import: 'constr Constr.pexistential]
  [@@deriving sexp,yojson]

type ('constr, 'types) prec_declaration =
  [%import: ('constr, 'types) Constr.prec_declaration]
  [@@deriving sexp,yojson]

type ('constr, 'types) pfixpoint =
  [%import: ('constr, 'types) Constr.pfixpoint]
  [@@deriving sexp,yojson]

type ('constr, 'types) pcofixpoint =
  [%import: ('constr, 'types) Constr.pcofixpoint]
  [@@deriving sexp,yojson]

type constr = Constr.constr
type types  = Constr.constr

type ('constr, 'univs) case_invert =
  [%import: ('constr, 'univs) Constr.case_invert]
  [@@deriving sexp,yojson]

let map_case_invert f = function
  | NoInvert -> NoInvert
  | CaseInvert { univs; args } ->
    CaseInvert { univs; args = Array.map f args }

type _constr =
  | Rel       of int
  | Var       of Names.Id.t
  | Meta      of int
  | Evar      of _constr pexistential
  | Sort      of Sorts.t
  | Cast      of _constr * cast_kind * _types
  | Prod      of Names.Name.t Context.binder_annot * _types * _types
  | Lambda    of Names.Name.t Context.binder_annot * _types * _constr
  | LetIn     of Names.Name.t Context.binder_annot * _constr * _types * _constr
  | App       of _constr * _constr array
  | Const     of pconstant
  | Ind       of pinductive
  | Construct of pconstructor
  | Case      of case_info * _constr * (_constr, Univ.Instance.t) case_invert *  _constr * _constr array
  | Fix       of (_constr, _types) pfixpoint
  | CoFix     of (_constr, _types) pcofixpoint
  | Proj      of Names.Projection.t * _constr
  | Int       of Uint63.t
  | Float     of Float64.t
  | Array     of Univ.Instance.t * _constr array * _constr * _types
[@@deriving sexp,yojson]
and _types = _constr
[@@deriving sexp,yojson]

let rec _constr_put (c : constr) : _constr =
  let cr  = _constr_put           in
  let crl = List.map _constr_put  in
  let cra = Array.map _constr_put in
  let cru = map_case_invert _constr_put in
  let module C = Constr           in
  match C.kind c with
  | C.Rel i               -> Rel(i)
  | C.Var v               -> Var(v)
  | C.Meta(mv)            -> Meta mv
  | C.Evar(ek, csa)       -> Evar (ek, crl csa)
  | C.Sort(st)            -> Sort (st)
  | C.Cast(cs,k,ty)       -> Cast(cr cs, k, cr ty)
  | C.Prod(n,tya,tyr)     -> Prod(n, cr tya, cr tyr)
  | C.Lambda(n,ab,bd)     -> Lambda(n, cr ab, cr bd)
  | C.LetIn(n,u,ab,bd)    -> LetIn(n, cr u, cr ab, cr bd)
  | C.App(hd, al)         -> App(cr hd, cra al)
  | C.Const p             -> Const p
  | C.Ind(p,q)            -> Ind (p,q)
  | C.Construct(p)        -> Construct (p)
  | C.Case(ci, d, u, c, ca) -> Case(ci, cr d, cru u, cr c, cra ca)
  (* (int array * int) * (Name.t array * 'types array * 'constr array)) *)
  | C.Fix(p,(na,u1,u2))   -> Fix(p, (na, cra u1, cra u2))
  | C.CoFix(p,(na,u1,u2)) -> CoFix(p, (na, cra u1, cra u2))
  | C.Proj(p,c)           -> Proj(p, cr c)
  | C.Int i               -> Int i
  | C.Float i             -> Float i
  | C.Array (u,a,e,t)     -> Array(u, cra a, cr e, cr t)

let rec _constr_get (c : _constr) : constr =
  let cr  = _constr_get           in
  let crl = List.map _constr_get  in
  let cra = Array.map _constr_get in
  let cru = map_case_invert _constr_get in
  let module C = Constr           in
  match c with
  | Rel i               -> C.mkRel i
  | Var v               -> C.mkVar v
  | Meta(mv)            -> C.mkMeta mv
  | Evar(ek, csa)       -> C.mkEvar (ek, crl csa)
  | Sort(st)            -> C.mkSort (st)
  | Cast(cs,k,ty)       -> C.mkCast(cr cs, k, cr ty)
  | Prod(n,tya,tyr)     -> C.mkProd(n, cr tya, cr tyr)
  | Lambda(n,ab,bd)     -> C.mkLambda(n, cr ab, cr bd)
  | LetIn(n,u,ab,bd)    -> C.mkLetIn(n, cr u, cr ab, cr bd)
  | App(hd, al)         -> C.mkApp(cr hd, cra al)
  | Const p             -> C.mkConstU(p)
  | Ind(p,q)            -> C.mkIndU(p, q)
  | Construct(p)        -> C.mkConstructU(p)
  | Case(ci, d, u, c, ca)  -> C.mkCase(ci, cr d, cru u, cr c, cra ca)
  | Fix (p,(na,u1,u2))  -> C.mkFix(p, (na, cra u1, cra u2))
  | CoFix(p,(na,u1,u2)) -> C.mkCoFix(p, (na, cra u1, cra u2))
  | Proj(p,c)           -> C.mkProj(p, cr c)
  | Int i               -> C.mkInt i
  | Float f             -> C.mkFloat f
  | Array (u,a,e,t)     -> C.mkArray(u, cra a, cr e, cr t)

let constr_of_sexp (c : Sexp.t) : constr =
  _constr_get (_constr_of_sexp c)

let sexp_of_constr (c : constr) : Sexp.t =
  sexp_of__constr (_constr_put c)

let constr_of_yojson json = Ppx_deriving_yojson_runtime.(_constr_of_yojson json >|= _constr_get)
let constr_to_yojson level = _constr_to_yojson (_constr_put level)

let types_of_sexp = constr_of_sexp
let sexp_of_types = sexp_of_constr

let types_of_yojson = constr_of_yojson
let types_to_yojson = constr_to_yojson

type t = constr

let t_of_sexp = constr_of_sexp
let sexp_of_t = sexp_of_constr

let of_yojson = constr_of_yojson
let to_yojson = constr_to_yojson

type rec_declaration =
  [%import: Constr.rec_declaration]
  [@@deriving sexp]

type fixpoint =
  [%import: Constr.fixpoint]
  [@@deriving sexp]

type cofixpoint =
  [%import: Constr.cofixpoint]
  [@@deriving sexp]

type existential =
  [%import: Constr.existential]
  [@@deriving sexp]

type sorts_family = Sorts.family
let sorts_family_of_sexp = Sorts.family_of_sexp
let sexp_of_sorts_family = Sorts.sexp_of_family

type named_declaration =
  [%import: Constr.named_declaration]
  [@@deriving sexp]

type named_context =
  [%import: Constr.named_context]
  [@@deriving sexp]

type rel_declaration =
  [%import: Constr.rel_declaration]
  [@@deriving sexp]

type rel_context =
  [%import: Constr.rel_context]
  [@@deriving sexp]
OCaml

Innovation. Community. Security.