package coq-lsp

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file agent.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
(************************************************************************)
(* Flèche => RL agent: petanque                                         *)
(* Copyright 2019 MINES ParisTech -- Dual License LGPL 2.1 / GPL3+      *)
(* Copyright 2019-2024 Inria      -- Dual License LGPL 2.1 / GPL3+      *)
(* Written by: Emilio J. Gallego Arias & coq-lsp contributors           *)
(************************************************************************)

let pet_debug = false

module State = struct
  type t = Coq.State.t

  let hash = Coq.State.hash
  let name = "state"

  module Inspect = struct
    type t =
      | Physical  (** Flèche-based "almost physical" state eq *)
      | Goals
          (** Full goal equality; must faster than calling goals as it won't
              unelaborate them. Note that this may not fully capture proof state
              equality (it is possible to have similar goals but different
              evar_maps, but should be enough for all practical users. *)
  end

  let equal ?(kind = Inspect.Physical) =
    match kind with
    | Physical -> Coq.State.equal
    | Goals ->
      fun st1 st2 ->
        let st1, st2 = (Coq.State.lemmas ~st:st1, Coq.State.lemmas ~st:st2) in
        Option.equal Coq.Goals.Equality.equal_goals st1 st2

  module Proof = struct
    type t = Coq.State.Proof.t

    let equal ?(kind = Inspect.Physical) =
      match kind with
      | Physical -> Coq.State.Proof.equal
      | Goals -> Coq.Goals.Equality.equal_goals

    let hash = Coq.State.Proof.hash
  end

  let lemmas st = Coq.State.lemmas ~st
end

(** Petanque errors *)
module Error = struct
  type t =
    | Interrupted
    | Parsing of string
    | Coq of string
    | Anomaly of string
    | System of string
    | Theorem_not_found of string

  let to_string = function
    | Interrupted -> Format.asprintf "Interrupted"
    | Parsing msg -> Format.asprintf "Parsing: %s" msg
    | Coq msg -> Format.asprintf "Coq: %s" msg
    | Anomaly msg -> Format.asprintf "Anomaly: %s" msg
    | System msg -> Format.asprintf "System: %s" msg
    | Theorem_not_found msg -> Format.asprintf "Theorem_not_found: %s" msg

  (* JSON-RPC server reserved codes *)
  let to_code = function
    | Interrupted -> -32001
    | Parsing _ -> -32002
    | Coq _ -> -32003
    | Anomaly _ -> -32004
    | System _ -> -32005
    | Theorem_not_found _ -> -32006

  let coq e = Coq e
  let system e = System e
end

module R = struct
  type 'a t = ('a, Error.t) Result.t
end

module Run_opts = struct
  type t =
    { memo : bool [@default true]
    ; hash : bool [@default true]
    }
end

module Run_result = struct
  type 'a t =
    { st : 'a
    ; hash : int option [@default None]
    ; proof_finished : bool
    }
end

let find_thm ~(doc : Fleche.Doc.t) ~thm =
  let { Fleche.Doc.toc; _ } = doc in
  match CString.Map.find_opt thm toc with
  | None ->
    let msg = Format.asprintf "@[[find_thm] Theorem not found!@]" in
    Error (Error.Theorem_not_found msg)
  | Some node ->
    if pet_debug then Format.eprintf "@[[find_thm] Theorem found!@\n@]%!";
    (* let point = (range.start.line, range.start.character) in *)
    Ok node

let execute_precommands ~token ~memo ~pre_commands ~(node : Fleche.Doc.Node.t) =
  match (pre_commands, node.prev, node.ast) with
  | Some pre_commands, Some prev, Some ast ->
    let st = prev.state in
    let open Coq.Protect.E.O in
    let* st = Fleche.Doc.run ~token ~memo ?loc:None ~st pre_commands in
    (* We re-interpret the lemma statement *)
    Fleche.Memo.Interp.eval ~token (st, ast.v)
  | _, _, _ -> Coq.Protect.E.ok node.state

let protect_to_result (r : _ Coq.Protect.E.t) : (_, _) Result.t =
  match r with
  | { r = Interrupted; feedback = _ } -> Error Error.Interrupted
  | { r = Completed (Error (User { msg; _ })); feedback = _ } ->
    Error (Error.Coq (Pp.string_of_ppcmds msg))
  | { r = Completed (Error (Anomaly { msg; _ })); feedback = _ } ->
    Error (Error.Anomaly (Pp.string_of_ppcmds msg))
  | { r = Completed (Ok r); feedback = _ } -> Ok r

let proof_finished { Coq.Goals.goals; stack; shelf; given_up; _ } =
  let check_stack stack =
    CList.(for_all (fun (l, r) -> is_empty l && is_empty r)) stack
  in
  List.for_all CList.is_empty [ goals; shelf; given_up ] && check_stack stack

(* At some point we want to return both hashes *)
module Hash_kind = struct
  type t =
    | Full
    | Proof
  [@@warning "-37"]

  let hash ~kind st =
    match kind with
    | Full -> Some (State.hash st)
    | Proof -> Option.map State.Proof.hash (State.lemmas st)
end

let hash_mode = Hash_kind.Proof

let analyze_after_run ~hash st =
  let proof_finished =
    let goals = Fleche.Info.Goals.get_goals_unit ~st in
    match goals with
    | None -> true
    | Some goals when proof_finished goals -> true
    | _ -> false
  in
  let hash = if hash then Hash_kind.hash ~kind:hash_mode st else None in
  Run_result.{ st; hash; proof_finished }

(* Would be nice to keep this in sync with the type annotations. *)
let default_opts = function
  | None -> { Run_opts.memo = true; hash = true }
  | Some opts -> opts

let start ~token ~doc ?opts ?pre_commands ~thm () =
  let open Coq.Compat.Result.O in
  let* node = find_thm ~doc ~thm in
  (* Usually single shot, so we don't memoize *)
  let opts = default_opts opts in
  let memo, hash = (opts.memo, opts.hash) in
  let execution =
    let open Coq.Protect.E.O in
    let+ st = execute_precommands ~token ~memo ~pre_commands ~node in
    (* Note this runs on the resulting state, anyways it is purely functional *)
    analyze_after_run ~hash st
  in
  protect_to_result execution

let run ~token ?opts ~st ~tac () : (_ Run_result.t, Error.t) Result.t =
  let opts = default_opts opts in
  (* Improve with thm? *)
  let memo, hash = (opts.memo, opts.hash) in
  let execution =
    let open Coq.Protect.E.O in
    let+ st = Fleche.Doc.run ~token ~memo ?loc:None ~st tac in
    (* Note this runs on the resulting state, anyways it is purely functional *)
    analyze_after_run ~hash st
  in
  protect_to_result execution

let goals ~token ~st =
  let f goals =
    let f = Coq.Goals.Reified_goal.map ~f:Pp.string_of_ppcmds in
    let g = Pp.string_of_ppcmds in
    Option.map (Coq.Goals.map ~f ~g) goals
  in
  Coq.Protect.E.map ~f (Fleche.Info.Goals.goals ~token ~st) |> protect_to_result

module Premise = struct
  module Info = struct
    type t =
      { kind : string (* type of object *)
      ; range : Lang.Range.t option (* a range *)
      ; offset : int * int (* a offset in the file *)
      ; raw_text : (string, string) Result.t (* raw text of the premise *)
      }
  end

  type t =
    { full_name : string
          (* should be a Coq DirPath, but let's go step by step *)
    ; file : string (* file (in FS format) where the premise is found *)
    ; info : (Info.t, string) Result.t (* Info about the object, if available *)
    }
end

(* We need some caching here otherwise it is very expensive to re-parse the glob
   files all the time.

   XXX move this caching to Flèche. *)
module Memo = struct
  module H = Hashtbl.Make (CString)

  let table_glob = H.create 1000

  let open_file glob =
    match H.find_opt table_glob glob with
    | Some g -> g
    | None ->
      let g = Coq.Glob.open_file glob in
      H.add table_glob glob g;
      g

  let table_source = H.create 1000

  let input_source file =
    match H.find_opt table_source file with
    | Some res -> res
    | None ->
      if Sys.file_exists file then (
        let res =
          Ok Coq.Compat.Ocaml_414.In_channel.(with_open_text file input_all)
        in
        H.add table_source file res;
        res)
      else
        let res = Error "source file is not available" in
        H.add table_source file res;
        res
end

let info_of ~glob ~name =
  let open Coq.Compat.Result.O in
  let* g = Memo.open_file glob in
  Ok
    (Option.map
       (fun { Coq.Glob.Info.kind; offset } -> (kind, offset))
       (Coq.Glob.get_info g name))

let raw_of ~file ~offset =
  let bp, ep = offset in
  let open Coq.Compat.Result.O in
  let* c = Memo.input_source file in
  if String.length c < ep then Error "offset out of bounds"
  else Ok (String.sub c bp (ep - bp + 1))

let to_premise (p : Coq.Library_file.Entry.t) : Premise.t =
  let { Coq.Library_file.Entry.name; typ = _; file } = p in
  let file = Filename.(remove_extension file ^ ".v") in
  let glob = Filename.(remove_extension file ^ ".glob") in
  let info =
    match info_of ~glob ~name with
    | Ok None -> Error "not in glob table"
    | Error err -> Error err
    | Ok (Some (kind, offset)) ->
      let range = None in
      let raw_text = raw_of ~file ~offset in
      Ok { Premise.Info.kind; range; offset; raw_text }
  in
  { Premise.full_name = name; file; info }

let premises ~token ~st =
  (let open Coq.Protect.E.O in
   let* all_libs = Coq.Library_file.loaded ~token ~st in
   let+ all_premises = Coq.Library_file.toc ~token ~st all_libs in
   List.map to_premise all_premises)
  |> protect_to_result
OCaml

Innovation. Community. Security.