package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.20.1.tar.gz
md5=0cfaa70f569be9494d24c829e6555d46
sha512=8ee967c636b67b22a4f34115871d8f9b9114df309afc9ddf5f61275251088c6e21f6cf745811df75554d30f4cebb6682f23eeb2e88b771330c4b60ce3f6bf5e2
doc/src/coq-core.vernac/record.ml.html
Source file record.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Term open Util open Names open Constr open Context open Environ open Declarations open Entries open Type_errors open Constrexpr open Constrexpr_ops open Context.Rel.Declaration open Structures module RelDecl = Context.Rel.Declaration (********** definition d'un record (structure) **************) let { Goptions.get = typeclasses_strict } = Goptions.declare_bool_option_and_ref ~key:["Typeclasses";"Strict";"Resolution"] ~value:false () let { Goptions.get = typeclasses_unique } = Goptions.declare_bool_option_and_ref ~key:["Typeclasses";"Unique";"Instances"] ~value:false () let interp_fields_evars env sigma ~ninds ~nparams impls_env nots l = let _, sigma, impls, newfs, _ = List.fold_left2 (fun (env, sigma, uimpls, params, impls_env) no d -> let sigma, (i, b, t), impl = match d with | Vernacexpr.AssumExpr({CAst.v=id},bl,t) -> (* Temporary compatibility with the type-classes heuristics *) (* which are applied after the interpretation of bl and *) (* before the one of t otherwise (see #13166) *) let t = if bl = [] then t else mkCProdN bl t in let sigma, t, impl = ComAssumption.interp_assumption ~program_mode:false env sigma impls_env [] t in sigma, (id, None, t), impl | Vernacexpr.DefExpr({CAst.v=id},bl,b,t) -> let sigma, (b, t), impl = ComDefinition.interp_definition ~program_mode:false env sigma impls_env bl None b t in let t = match t with Some t -> t | None -> Retyping.get_type_of env sigma b in sigma, (id, Some b, t), impl in let r = Retyping.relevance_of_type env sigma t in let impls_env = match i with | Anonymous -> impls_env | Name id -> Id.Map.add id (Constrintern.compute_internalization_data env sigma id Constrintern.Method t impl) impls_env in let d = match b with | None -> LocalAssum (make_annot i r,t) | Some b -> LocalDef (make_annot i r,b,t) in List.iter (Metasyntax.set_notation_for_interpretation env impls_env) no; (EConstr.push_rel d env, sigma, impl :: uimpls, d::params, impls_env)) (env, sigma, [], [], impls_env) nots l in let _, _, sigma = Context.Rel.fold_outside ~init:(env,0,sigma) (fun f (env,k,sigma) -> let sigma = RelDecl.fold_constr (fun c sigma -> ComInductive.maybe_unify_params_in env sigma ~ninds ~nparams ~binders:k c) f sigma in EConstr.push_rel f env, k+1, sigma) newfs in sigma, (impls, newfs) let check_anonymous_type ind = match ind with | { CAst.v = CSort s } -> Constrexpr_ops.(sort_expr_eq expr_Type_sort s) | _ -> false let error_parameters_must_be_named bk {CAst.loc; v=name} = match bk, name with | Default _, Anonymous -> CErrors.user_err ?loc (str "Record parameters must be named.") | _ -> () let check_parameters_must_be_named = function | CLocalDef (b, _, _, _) -> error_parameters_must_be_named default_binder_kind b | CLocalAssum (ls, _, bk, _ce) -> List.iter (error_parameters_must_be_named bk) ls | CLocalPattern {CAst.loc} -> Loc.raise ?loc (Gramlib.Grammar.Error "pattern with quote not allowed in record parameters") (** [DataI.t] contains the information used in record interpretation, it is a strict subset of [Ast.t] thus this should be eventually removed or merged with [Ast.t] *) module DataI = struct type t = { name : Id.t ; arity : Constrexpr.constr_expr option (** declared sort for the record *) ; nots : Metasyntax.notation_interpretation_decl list list (** notations for fields *) ; fs : Vernacexpr.local_decl_expr list } end (** [DataR.t] contains record data after interpretation / type-inference *) module DataR = struct type t = { arity : Constr.t ; default_dep_elim : DeclareInd.default_dep_elim ; implfs : Impargs.manual_implicits list ; fields : Constr.rel_declaration list } end module Data = struct type projection_flags = { pf_coercion: bool; pf_reversible: bool; pf_instance: bool; pf_priority: int option; pf_locality: Goptions.option_locality; pf_canonical: bool; } type raw_data = DataR.t type t = { id : Id.t ; idbuild : Id.t ; is_coercion : bool ; proj_flags : projection_flags list ; rdata : raw_data ; inhabitant_id : Id.t } end (** Is [s] a single local level (type or qsort)? If so return it. *) let is_sort_variable sigma s = match EConstr.ESorts.kind sigma s with | SProp | Prop | Set -> None | Type u | QSort (_, u) -> match Univ.Universe.level u with | None -> None | Some l -> if Univ.Level.Set.mem l (fst (Evd.universe_context_set sigma)) then Some l else None let build_type_telescope ~unconstrained_sorts newps env0 sigma { DataI.arity; _ } = match arity with | None -> let sigma, s = Evd.new_sort_variable Evd.univ_flexible_alg sigma in sigma, (EConstr.mkSort s, s) | Some { CAst.v = CSort s; loc } when Constrexpr_ops.(sort_expr_eq expr_Type_sort s) -> (* special case: the user wrote ": Type". We want to allow it to become algebraic (and Prop but that may change in the future) *) let sigma, s = Evd.new_sort_variable ?loc UState.univ_flexible_alg sigma in sigma, (EConstr.mkSort s, s) | Some t -> let env = EConstr.push_rel_context newps env0 in let impls = Constrintern.empty_internalization_env in let sigma, s = let t = Constrintern.intern_gen IsType ~impls env sigma t in let flags = { Pretyping.all_no_fail_flags with program_mode = false; unconstrained_sorts } in Pretyping.understand_tcc ~flags env sigma ~expected_type:IsType t in let sred = Reductionops.whd_allnolet env sigma s in (match EConstr.kind sigma sred with | Sort s' -> (sigma, (s, s')) | _ -> user_err ?loc:(constr_loc t) (str"Sort expected.")) type tc_result = Impargs.manual_implicits (* Part relative to closing the definitions *) * UState.named_universes_entry * Entries.variance_entry * Constr.rel_context * DataR.t list (* returned DefaultElim value will eventually be discarded *) let def_class_levels ~def env_ar sigma aritysorts ctors = let s, ctor = match aritysorts, ctors with | [s], [_,ctor] -> begin match ctor with | [LocalAssum (_,t)] -> s, t | _ -> assert false end | _ -> CErrors.user_err Pp.(str "Mutual definitional classes are not supported.") in let ctor_sort = Retyping.get_sort_of env_ar sigma ctor in let is_prop_ctor = EConstr.ESorts.is_prop sigma ctor_sort in let sigma = Evd.set_leq_sort env_ar sigma ctor_sort s in if Option.cata (Evd.is_flexible_level sigma) false (is_sort_variable sigma s) && is_prop_ctor then (* We assume that the level in aritysort is not constrained and clear it, if it is flexible *) let sigma = Evd.set_eq_sort env_ar sigma EConstr.ESorts.set s in (sigma, [DeclareInd.DefaultElim, EConstr.mkProp]) else sigma, [DefaultElim, EConstr.mkSort s] (* ps = parameter list *) let typecheck_params_and_fields def poly udecl ps (records : DataI.t list) : tc_result = let env0 = Global.env () in (* Special case elaboration for template-polymorphic inductives, lower bound on introduced universes is Prop so that we do not miss any Set <= i constraint for universes that might actually be instantiated with Prop. *) let is_template = List.exists (fun { DataI.arity; _} -> Option.cata check_anonymous_type true arity) records in let unconstrained_sorts = not poly && not def && is_template in let sigma, decl, variances = Constrintern.interp_cumul_univ_decl_opt env0 udecl in let () = List.iter check_parameters_must_be_named ps in let sigma, (impls_env, ((_env1,newps), imps)) = Constrintern.interp_context_evars ~program_mode:false ~unconstrained_sorts env0 sigma ps in let sigma, typs = List.fold_left_map (build_type_telescope ~unconstrained_sorts newps env0) sigma records in let typs, aritysorts = List.split typs in let arities = List.map (fun typ -> EConstr.it_mkProd_or_LetIn typ newps) typs in let relevances = List.map (fun s -> EConstr.ESorts.relevance_of_sort s) aritysorts in let fold accu { DataI.name; _ } arity r = EConstr.push_rel (LocalAssum (make_annot (Name name) r,arity)) accu in let env_ar = EConstr.push_rel_context newps (List.fold_left3 fold env0 records arities relevances) in let impls_env = let ids = List.map (fun { DataI.name; _ } -> name) records in let imps = List.map (fun _ -> imps) arities in Constrintern.compute_internalization_env env0 sigma ~impls:impls_env Constrintern.Inductive ids arities imps in let ninds = List.length arities in let nparams = List.length newps in let fold sigma { DataI.nots; fs; _ } = interp_fields_evars env_ar sigma ~ninds ~nparams impls_env nots fs in let (sigma, data) = List.fold_left_map fold sigma records in let sigma = Pretyping.solve_remaining_evars Pretyping.all_and_fail_flags env_ar sigma in let sigma, typs = if def then def_class_levels ~def env_ar sigma aritysorts data else (* each inductive has one constructor *) let ctors = List.map (fun (_,newfs) -> [newfs]) data in let indnames = List.map (fun x -> x.DataI.name) records in let arities_explicit = List.map (fun x -> Option.has_some x.DataI.arity) records in let sigma, (default_dep_elim, typs) = ComInductive.Internal.inductive_levels env_ar sigma ~poly ~indnames ~arities_explicit typs ctors in sigma, List.combine default_dep_elim typs in (* TODO: Have this use Declaredef.prepare_definition *) let lbound = if unconstrained_sorts then UGraph.Bound.Prop else UGraph.Bound.Set in let sigma, (newps, ans) = (* too complex for Evarutil.finalize as we normalize non-constr *) let sigma = Evd.minimize_universes ~lbound sigma in let uvars = ref Univ.Level.Set.empty in let nf c = let _, varsc = EConstr.universes_of_constr sigma c in let c = EConstr.to_constr sigma c in uvars := Univ.Level.Set.union !uvars varsc; c in let nf_rel r = EConstr.ERelevance.kind sigma r in let map_decl = RelDecl.map_constr_het nf_rel nf in let newps = List.map map_decl newps in let map (implfs, fields) (default_dep_elim, typ) = let fields = List.map map_decl fields in let arity = nf typ in { DataR.arity; default_dep_elim; implfs; fields } in let ans = List.map2 map data typs in let sigma = Evd.restrict_universe_context ~lbound sigma !uvars in sigma, (newps, ans) in let univs = Evd.check_univ_decl ~poly sigma decl in let ce t = Pretyping.check_evars env0 sigma (EConstr.of_constr t) in let () = List.iter (iter_constr ce) (List.rev newps) in imps, univs, variances, newps, ans type record_error = | MissingProj of Id.t * Id.t list | BadTypedProj of Id.t * env * Type_errors.type_error let warn_cannot_define_projection = CWarnings.create ~name:"cannot-define-projection" ~category:CWarnings.CoreCategories.records (fun msg -> hov 0 msg) type arity_error = | NonInformativeToInformative | StrongEliminationOnNonSmallType let error_elim_explain kp ki = let open Sorts in match kp,ki with | (InType | InSet), InProp -> Some NonInformativeToInformative | InType, InSet -> Some StrongEliminationOnNonSmallType (* if Set impredicative *) | _ -> None (* If a projection is not definable, we throw an error if the user asked it to be a coercion or instance. Otherwise, we just print an info message. The user might still want to name the field of the record. *) let warning_or_error ~info flags indsp err = let st = match err with | MissingProj (fi,projs) -> let s,have = if List.length projs > 1 then "s","were" else "","was" in (Id.print fi ++ strbrk" cannot be defined because the projection" ++ str s ++ spc () ++ prlist_with_sep pr_comma Id.print projs ++ spc () ++ str have ++ strbrk " not defined.") | BadTypedProj (fi,env,te) -> let err = match te with | ElimArity (_, _, Some s) -> error_elim_explain (Sorts.family s) (Inductiveops.elim_sort (Global.lookup_inductive indsp)) | _ -> None in match err with | Some NonInformativeToInformative -> (Id.print fi ++ strbrk" cannot be defined because it is informative and " ++ Printer.pr_inductive (Global.env()) indsp ++ strbrk " is not.") | Some StrongEliminationOnNonSmallType -> (Id.print fi ++ strbrk" cannot be defined because it is large and " ++ Printer.pr_inductive (Global.env()) indsp ++ strbrk " is not.") | None -> (Id.print fi ++ str " cannot be defined because it is not typable:" ++ spc() ++ Himsg.explain_type_error env (Evd.from_env env) (Pretype_errors.of_type_error te)) in if flags.Data.pf_coercion || flags.Data.pf_instance then user_err ~info st; warn_cannot_define_projection (hov 0 st) type field_status = | NoProjection of Name.t | Projection of constr exception NotDefinable of record_error (* This replaces previous projection bodies in current projection *) (* Undefined projs are collected and, at least one undefined proj occurs *) (* in the body of current projection then the latter can not be defined *) (* [c] is defined in ctxt [[params;fields]] and [l] is an instance of *) (* [[fields]] defined in ctxt [[params;x:ind]] *) let subst_projection fid l c = let lv = List.length l in let bad_projs = ref [] in let rec substrec depth c = match Constr.kind c with | Rel k -> (* We are in context [[params;fields;x:ind;...depth...]] *) if k <= depth+1 then c else if k-depth-1 <= lv then match List.nth l (k-depth-2) with | Projection t -> lift depth t | NoProjection (Name id) -> bad_projs := id :: !bad_projs; mkRel k | NoProjection Anonymous -> user_err (str "Field " ++ Id.print fid ++ str " depends on the " ++ pr_nth (k-depth-1) ++ str " field which has no name.") else mkRel (k-lv) | _ -> Constr.map_with_binders succ substrec depth c in let c' = lift 1 c in (* to get [c] defined in ctxt [[params;fields;x:ind]] *) let c'' = substrec 0 c' in if not (List.is_empty !bad_projs) then raise (NotDefinable (MissingProj (fid,List.rev !bad_projs))); c'' let instantiate_possibly_recursive_type ind u ntypes paramdecls fields = let subst = List.map_i (fun i _ -> mkRel i) 1 paramdecls in let subst' = List.init ntypes (fun i -> mkIndU ((ind, ntypes - i - 1), u)) in Vars.substl_rel_context (subst @ subst') fields (* We build projections *) (** Declare projection [ref] over [from] a coercion or a typeclass instance according to [flags]. *) (* remove the last argument (it will become alway true) after deprecation phase (started in 8.17, c.f. https://github.com/coq/coq/pull/16230) *) let declare_proj_coercion_instance ~flags ref from ~with_coercion = if with_coercion && flags.Data.pf_coercion then begin let cl = ComCoercion.class_of_global from in let local = flags.Data.pf_locality = Goptions.OptLocal in ComCoercion.try_add_new_coercion_with_source ref ~local ~reversible:flags.Data.pf_reversible ~source:cl end; if flags.Data.pf_instance then begin let env = Global.env () in let sigma = Evd.from_env env in let info = Typeclasses.{ hint_priority = flags.Data.pf_priority; hint_pattern = None } in let local = match flags.Data.pf_locality with | Goptions.OptLocal -> Hints.Local | Goptions.(OptDefault | OptExport) -> Hints.Export | Goptions.OptGlobal -> Hints.SuperGlobal in Classes.declare_instance ~warn:true env sigma (Some info) local ref end (* TODO: refactor the declaration part here; this requires some surgery as Evarutil.finalize is called too early in the path *) (** This builds and _declares_ a named projection, the code looks tricky due to the term manipulation. It also handles declaring the implicits parameters, coercion status, etc... of the projection; this could be refactored as noted above by moving to the higher-level declare constant API *) let build_named_proj ~primitive ~flags ~poly ~univs ~uinstance ~kind env paramdecls paramargs decl impls fid subst nfi ti i indsp mib lifted_fields x rp = let ccl = subst_projection fid subst ti in let body, p_opt = match decl with | LocalDef (_,ci,_) -> subst_projection fid subst ci, None | LocalAssum ({binder_relevance=rci},_) -> (* [ccl] is defined in context [params;x:rp] *) (* [ccl'] is defined in context [params;x:rp;x:rp] *) if primitive then let p = Projection.Repr.make indsp ~proj_npars:mib.mind_nparams ~proj_arg:i (Label.of_id fid) in mkProj (Projection.make p false, rci, mkRel 1), Some (p,rci) else let ccl' = liftn 1 2 ccl in let p = mkLambda (x, lift 1 rp, ccl') in let branch = it_mkLambda_or_LetIn (mkRel nfi) lifted_fields in let ci = Inductiveops.make_case_info env indsp LetStyle in (* Record projections are always NoInvert because they're at constant relevance *) mkCase (Inductive.contract_case env (ci, (p, rci), NoInvert, mkRel 1, [|branch|])), None in let proj = it_mkLambda_or_LetIn (mkLambda (x,rp,body)) paramdecls in let projtyp = it_mkProd_or_LetIn (mkProd (x,rp,ccl)) paramdecls in let univs = match fst univs with | Entries.Monomorphic_entry -> UState.Monomorphic_entry Univ.ContextSet.empty, snd univs | Entries.Polymorphic_entry uctx -> UState.Polymorphic_entry uctx, snd univs in let entry = Declare.definition_entry ~univs ~types:projtyp proj in let kind = Decls.IsDefinition kind in let kn = try Declare.declare_constant ~name:fid ~kind (Declare.DefinitionEntry entry) with Type_errors.TypeError (ctx,te) as exn when not primitive -> let _, info = Exninfo.capture exn in Exninfo.iraise (NotDefinable (BadTypedProj (fid,ctx,te)),info) in Declare.definition_message fid; let term = match p_opt with | Some (p,r) -> let _ = DeclareInd.declare_primitive_projection p kn in mkProj (Projection.make p false, r, mkRel 1) | None -> let proj_args = (*Rel 1 refers to "x"*) paramargs@[mkRel 1] in match decl with | LocalDef _ when primitive -> body | _ -> applist (mkConstU (kn,uinstance),proj_args) in let refi = GlobRef.ConstRef kn in Impargs.maybe_declare_manual_implicits false refi impls; declare_proj_coercion_instance ~flags refi (GlobRef.IndRef indsp) ~with_coercion:true; let i = if is_local_assum decl then i+1 else i in (Some kn, i, Projection term::subst) (** [build_proj] will build a projection for each field, or skip if the field is anonymous, i.e. [_ : t] *) let build_proj env mib indsp primitive x rp lifted_fields ~poly paramdecls paramargs ~uinstance ~kind ~univs (nfi,i,kinds,subst) flags decl impls = let fi = RelDecl.get_name decl in let ti = RelDecl.get_type decl in let (sp_proj,i,subst) = match fi with | Anonymous -> (None,i,NoProjection fi::subst) | Name fid -> try build_named_proj ~primitive ~flags ~poly ~univs ~uinstance ~kind env paramdecls paramargs decl impls fid subst nfi ti i indsp mib lifted_fields x rp with NotDefinable why as exn -> let _, info = Exninfo.capture exn in warning_or_error ~info flags indsp why; (None,i,NoProjection fi::subst) in (nfi - 1, i, { Structure.proj_name = fi ; proj_true = is_local_assum decl ; proj_canonical = flags.Data.pf_canonical ; proj_body = sp_proj } :: kinds , subst) (** [declare_projections] prepares the common context for all record projections and then calls [build_proj] for each one. *) let declare_projections indsp univs ?(kind=Decls.StructureComponent) inhabitant_id flags fieldimpls fields = let env = Global.env() in let (mib,mip) = Global.lookup_inductive indsp in let poly = Declareops.inductive_is_polymorphic mib in let uinstance = match fst univs with | Polymorphic_entry uctx -> UVars.UContext.instance uctx | Monomorphic_entry -> UVars.Instance.empty in let paramdecls = Inductive.inductive_paramdecls (mib, uinstance) in let r = mkIndU (indsp,uinstance) in let rp = applist (r, Context.Rel.instance_list mkRel 0 paramdecls) in let paramargs = Context.Rel.instance_list mkRel 1 paramdecls in (*def in [[params;x:rp]]*) let x = make_annot (Name inhabitant_id) (Inductive.relevance_of_ind_body mip uinstance) in let fields = instantiate_possibly_recursive_type (fst indsp) uinstance mib.mind_ntypes paramdecls fields in let lifted_fields = Vars.lift_rel_context 1 fields in let primitive = match mib.mind_record with | PrimRecord _ -> true | FakeRecord | NotRecord -> false in let (_,_,canonical_projections,_) = List.fold_left3 (build_proj env mib indsp primitive x rp lifted_fields ~poly paramdecls paramargs ~uinstance ~kind ~univs) (List.length fields,0,[],[]) flags (List.rev fields) (List.rev fieldimpls) in List.rev canonical_projections open Typeclasses let load_structure _ structure = Structure.register structure let cache_structure o = load_structure 1 o let subst_structure (subst, obj) = Structure.subst subst obj let discharge_structure x = Some x let rebuild_structure s = Structure.rebuild (Global.env()) s let inStruc : Structure.t -> Libobject.obj = let open Libobject in declare_object {(default_object "STRUCTURE") with cache_function = cache_structure; load_function = load_structure; subst_function = subst_structure; classify_function = (fun _ -> Substitute); discharge_function = discharge_structure; rebuild_function = rebuild_structure; } let declare_structure_entry o = Lib.add_leaf (inStruc o) (** In the type of every projection, the record is bound to a variable named using the first character of the record type. We rename it to avoid collisions with names already used in the field types. *) (** Get all names bound at the head of [t]. *) let rec add_bound_names_constr (names : Id.Set.t) (t : constr) : Id.Set.t = match destProd t with | (b, _, t) -> let names = match b.binder_name with | Name.Anonymous -> names | Name.Name n -> Id.Set.add n names in add_bound_names_constr names t | exception DestKO -> names (** Get all names bound in any record field. *) let bound_names_rdata { DataR.fields; _ } : Id.Set.t = let add_names names field = add_bound_names_constr names (RelDecl.get_type field) in List.fold_left add_names Id.Set.empty fields (** Main record declaration part: The entry point is [definition_structure], which will match on the declared [kind] and then either follow the regular record declaration path to [declare_structure] or handle the record as a class declaration with [declare_class]. *) (** [declare_structure] does two principal things: - prepares and declares the low-level (mutual) inductive corresponding to [record_data] - prepares and declares the corresponding record projections, mainly taken care of by [declare_projections] *) module Record_decl = struct type t = { mie : Entries.mutual_inductive_entry; default_dep_elim : DeclareInd.default_dep_elim list; records : Data.t list; primitive_proj : bool; impls : DeclareInd.one_inductive_impls list; globnames : UState.named_universes_entry; global_univ_decls : Univ.ContextSet.t option; projunivs : Entries.universes_entry; ubinders : UnivNames.universe_binders; projections_kind : Decls.definition_object_kind; poly : bool; indlocs : Loc.t option list; } end module Ast = struct open Vernacexpr type t = { name : Names.lident ; is_coercion : coercion_flag ; binders: local_binder_expr list ; cfs : (local_decl_expr * record_field_attr) list ; idbuild : Id.t ; sort : constr_expr option ; default_inhabitant_id : Id.t option } let to_datai { name; cfs; sort; _ } = let fs = List.map fst cfs in { DataI.name = name.CAst.v ; arity = sort ; nots = List.map (fun (_, { rf_notation }) -> List.map Metasyntax.prepare_where_notation rf_notation) cfs ; fs } end let check_unique_names records = let extract_name acc (rf_decl, _) = match rf_decl with Vernacexpr.AssumExpr({CAst.v=Name id},_,_) -> id::acc | Vernacexpr.DefExpr ({CAst.v=Name id},_,_,_) -> id::acc | _ -> acc in let indlocs = records |> List.map (fun { Ast.name; _ } -> name ) in let fields_names = records |> List.fold_left (fun acc { Ast.cfs; _ } -> List.fold_left extract_name acc cfs) [] in let allnames = fields_names @ (indlocs |> List.map (fun x -> x.CAst.v)) in match List.duplicates Id.equal allnames with | [] -> List.map (fun x -> x.CAst.loc) indlocs | id :: _ -> user_err (str "Two objects have the same name" ++ spc () ++ quote (Id.print id) ++ str ".") type kind_class = NotClass | RecordClass | DefClass let kind_class = let open Vernacexpr in function Class true -> DefClass | Class false -> RecordClass | Inductive_kw | CoInductive | Variant | Record | Structure -> NotClass (** Pick a variable name for a record, avoiding names bound in its fields. *) let canonical_inhabitant_id ~isclass ind_id = if isclass then ind_id else Id.of_string (Unicode.lowercase_first_char (Id.to_string ind_id)) let check_priorities kind records = let open Vernacexpr in let isnot_class = kind_class kind <> RecordClass in let has_priority { Ast.cfs; _ } = List.exists (fun (_, { rf_priority }) -> not (Option.is_empty rf_priority)) cfs in if isnot_class && List.exists has_priority records then user_err Pp.(str "Priorities only allowed for type class substructures.") let extract_record_data records = let data = List.map Ast.to_datai records in let ps = match records with | [] -> CErrors.anomaly (str "Empty record block.") | r :: rem -> let eq_local_binders bl1 bl2 = List.equal local_binder_eq bl1 bl2 in match List.find_opt (fun r' -> not @@ eq_local_binders r.Ast.binders r'.Ast.binders) rem with | None -> r.Ast.binders | Some r' -> ComInductive.Internal.error_differing_params ~kind:"record" (r.name, (r.binders,None)) (r'.name, (r'.binders,None)) in ps, data let implicits_of_context ctx = List.map (fun name -> CAst.make (Some (name,true))) (List.rev (Anonymous :: (List.filter_map (function | LocalDef _ -> None | LocalAssum _ as d -> Some (RelDecl.get_name d)) ctx))) (* deprecated in 8.16, to be removed at the end of the deprecation phase (c.f., https://github.com/coq/coq/pull/15802 ) *) let warn_future_coercion_class_constructor = CWarnings.create ~name:"future-coercion-class-constructor" ~category:Deprecation.Version.v8_16 ~default:CWarnings.AsError Pp.(fun () -> str "'Class >' currently does nothing. Use 'Class' instead.") (* deprecated in 8.17, to be removed at the end of the deprecation phase (c.f., https://github.com/coq/coq/pull/16230 ) *) let warn_future_coercion_class_field = CWarnings.create ~name:"future-coercion-class-field" ~category:Deprecation.Version.v8_17 ~default:CWarnings.AsError Pp.(fun definitional -> strbrk "A coercion will be introduced instead of an instance in future versions when using ':>' in 'Class' declarations. " ++ strbrk "Replace ':>' with '::' (or use '#[global] Existing Instance field.' for compatibility with Coq < 8.18). Beware that the default locality for '::' is #[export], as opposed to #[global] for ':>' currently." ++ strbrk (if definitional then " Add an explicit #[global] attribute if you need to keep the current behavior. For example: \"Class foo := #[global] baz :: bar.\"" else " Add an explicit #[global] attribute to the field if you need to keep the current behavior. For example: \"Class foo := { #[global] field :: bar }.\"")) let check_proj_flags kind rf = let open Vernacexpr in let pf_coercion, pf_reversible = match rf.rf_coercion with (* replace "kind_class kind = NotClass" with true after deprecation phase *) | AddCoercion -> kind_class kind = NotClass, Option.default true rf.rf_reversible | NoCoercion -> if rf.rf_reversible <> None then Attributes.(unsupported_attributes [CAst.make ("reversible (without :>)",VernacFlagEmpty)]); false, false in let pf_instance = match rf.rf_instance with NoInstance -> false | BackInstance -> true | BackInstanceWarning -> kind_class kind <> NotClass in let pf_priority = rf.rf_priority in let pf_locality = begin match rf.rf_coercion, rf.rf_instance with | NoCoercion, NoInstance -> if rf.rf_locality <> Goptions.OptDefault then Attributes.(unsupported_attributes [CAst.make ("locality (without :> or ::)",VernacFlagEmpty)]) | AddCoercion, NoInstance -> if rf.rf_locality = Goptions.OptExport then Attributes.(unsupported_attributes [CAst.make ("export (without ::)",VernacFlagEmpty)]) | _ -> () end; rf.rf_locality in (* remove following let after deprecation phase (started in 8.17, c.f., https://github.com/coq/coq/pull/16230 ) *) let pf_locality = match rf.rf_instance, rf.rf_locality with | BackInstanceWarning, Goptions.OptDefault -> Goptions.OptGlobal | _ -> pf_locality in let pf_canonical = rf.rf_canonical in Data.{ pf_coercion; pf_reversible; pf_instance; pf_priority; pf_locality; pf_canonical } (* remove the definitional argument at the end of the deprecation phase (started in 8.17) (c.f., https://github.com/coq/coq/pull/16230 ) *) let pre_process_structure ?(definitional=false) udecl kind ~poly (records : Ast.t list) = let indlocs = check_unique_names records in let () = check_priorities kind records in let ps, data = extract_record_data records in let impargs, univs, variances, params, data = (* In theory we should be able to use [Notation.with_notation_protection], due to the call to Metasyntax.set_notation_for_interpretation, however something is messing state beyond that. *) Vernacstate.System.protect (fun () -> typecheck_params_and_fields (kind = Class true) poly udecl ps data) () in let adjust_impls impls = match kind_class kind with | NotClass -> impargs @ [CAst.make None] @ impls | _ -> implicits_of_context params @ impls in let data = List.map (fun ({ DataR.implfs; _ } as d) -> { d with DataR.implfs = List.map adjust_impls implfs }) data in let map rdata { Ast.name; is_coercion; cfs; idbuild; default_inhabitant_id; _ } = let proj_flags = List.map (fun (_, rf) -> check_proj_flags kind rf) cfs in let inhabitant_id = match default_inhabitant_id with | Some n -> n | None -> let canonical_inhabitant_id = canonical_inhabitant_id ~isclass:(kind_class kind != NotClass) name.CAst.v in Namegen.next_ident_away canonical_inhabitant_id (bound_names_rdata rdata) in let is_coercion = match is_coercion with AddCoercion -> true | NoCoercion -> false in if kind_class kind <> NotClass then begin if is_coercion then warn_future_coercion_class_constructor (); if List.exists (function (_, Vernacexpr.{ rf_instance = BackInstanceWarning; _ }) -> true | _ -> false) cfs then warn_future_coercion_class_field definitional end; { Data.id = name.CAst.v; idbuild; rdata; is_coercion; proj_flags; inhabitant_id } in let data = List.map2 map data records in let projections_kind = Decls.(match kind_class kind with NotClass -> StructureComponent | _ -> Method) in impargs, params, univs, variances, projections_kind, data, indlocs let interp_structure_core ~cumulative finite ~univs ~variances ~primitive_proj impargs params template ~projections_kind ~indlocs data = let nparams = List.length params in let (univs, ubinders) = univs in let poly, projunivs = match univs with | UState.Monomorphic_entry _ -> false, Entries.Monomorphic_entry | UState.Polymorphic_entry uctx -> true, Entries.Polymorphic_entry uctx in let ntypes = List.length data in let mk_block i { Data.id; idbuild; rdata = { DataR.arity; fields; _ }; _ } = let nfields = List.length fields in let args = Context.Rel.instance_list mkRel nfields params in let ind = applist (mkRel (ntypes - i + nparams + nfields), args) in let type_constructor = it_mkProd_or_LetIn ind fields in { mind_entry_typename = id; mind_entry_arity = arity; mind_entry_consnames = [idbuild]; mind_entry_lc = [type_constructor] } in let blocks = List.mapi mk_block data in let ind_univs, global_univ_decls = match blocks, data with | [entry], [data] -> ComInductive.compute_template_inductive ~user_template:template ~ctx_params:params ~univ_entry:univs entry (if Term.isArity entry.mind_entry_arity then SyntaxAllowsTemplatePoly else SyntaxNoTemplatePoly) | _ -> begin match template with | Some true -> user_err Pp.(str "Template-polymorphism not allowed with mutual records.") | Some false | None -> match univs with | UState.Polymorphic_entry uctx -> Polymorphic_ind_entry uctx, Univ.ContextSet.empty | UState.Monomorphic_entry uctx -> Monomorphic_ind_entry, uctx end in let primitive = primitive_proj && List.for_all (fun { Data.rdata = { DataR.fields; _ }; _ } -> List.exists is_local_assum fields) data in let globnames, global_univ_decls = match ind_univs with | Monomorphic_ind_entry -> (univs, ubinders), Some global_univ_decls | Template_ind_entry _ -> (univs, ubinders), Some global_univ_decls | Polymorphic_ind_entry _ -> (univs, UnivNames.empty_binders), None in let univs = ind_univs in let variance = ComInductive.variance_of_entry ~cumulative ~variances univs in let mie = { mind_entry_params = params; mind_entry_record = Some (if primitive then Some (Array.map_of_list (fun a -> a.Data.inhabitant_id) data) else None); mind_entry_finite = finite; mind_entry_inds = blocks; mind_entry_private = None; mind_entry_universes = univs; mind_entry_variance = variance; } in let impls = List.map (fun _ -> impargs, []) data in let default_dep_elim = List.map (fun d -> d.Data.rdata.default_dep_elim) data in let open Record_decl in { mie; default_dep_elim; primitive_proj; impls; globnames; global_univ_decls; projunivs; ubinders; projections_kind; poly; records = data; indlocs; } let interp_structure udecl kind ~template ~cumulative ~poly ~primitive_proj finite records = assert (kind <> Vernacexpr.Class true); let impargs, params, univs, variances, projections_kind, data, indlocs = pre_process_structure udecl kind ~poly records in interp_structure_core ~cumulative finite ~univs ~variances ~primitive_proj impargs params template ~projections_kind ~indlocs data let declare_structure { Record_decl.mie; default_dep_elim; primitive_proj; impls; globnames; global_univ_decls; projunivs; ubinders; projections_kind; poly; records; indlocs } = Option.iter (Global.push_context_set ~strict:true) global_univ_decls; let kn = DeclareInd.declare_mutual_inductive_with_eliminations mie globnames impls ~primitive_expected:primitive_proj ~indlocs ~default_dep_elim in let map i { Data.is_coercion; proj_flags; rdata = { DataR.implfs; fields; _}; inhabitant_id; _ } = let rsp = (kn, i) in (* This is ind path of idstruc *) let cstr = (rsp, 1) in let projections = declare_projections rsp (projunivs,ubinders) ~kind:projections_kind inhabitant_id proj_flags implfs fields in let build = GlobRef.ConstructRef cstr in let () = if is_coercion then ComCoercion.try_add_new_coercion build ~local:false ~reversible:false in let struc = Structure.make (Global.env ()) rsp projections in let () = declare_structure_entry struc in GlobRef.IndRef rsp in List.mapi map records, [] let get_class_params : Data.t list -> Data.t = function | [data] -> data | _ -> CErrors.user_err (str "Mutual definitional classes are not supported.") (* declare definitional class (typeclasses that are not record) *) (* [data] is a list with a single [Data.t] with a single field (in [Data.rdata]) and [Data.is_coercion] must be [NoCoercion] *) let declare_class_constant ~univs paramimpls params data = let {Data.id; rdata; is_coercion; proj_flags; inhabitant_id} = get_class_params data in assert (not is_coercion); (* should be ensured by caller *) let implfs = rdata.DataR.implfs in let field, binder, proj_name, proj_flags = match rdata.DataR.fields, proj_flags with | [ LocalAssum ({binder_name=Name proj_name} as binder, field) | LocalDef ({binder_name=Name proj_name} as binder, _, field) ], [proj_flags] -> let binder = {binder with binder_name=Name inhabitant_id} in field, binder, proj_name, proj_flags | _ -> assert false in (* should be ensured by caller *) let class_body = it_mkLambda_or_LetIn field params in let class_type = it_mkProd_or_LetIn rdata.DataR.arity params in let class_entry = Declare.definition_entry ~types:class_type ~univs class_body in let cst = Declare.declare_constant ~name:id (Declare.DefinitionEntry class_entry) ~kind:Decls.(IsDefinition Definition) in let inst, univs = match univs with | UState.Monomorphic_entry _, ubinders -> UVars.Instance.empty, (UState.Monomorphic_entry Univ.ContextSet.empty, ubinders) | UState.Polymorphic_entry uctx, _ -> UVars.UContext.instance uctx, univs in let cstu = (cst, inst) in let inst_type = appvectc (mkConstU cstu) (Context.Rel.instance mkRel 0 params) in let proj_type = it_mkProd_or_LetIn (mkProd(binder, inst_type, lift 1 field)) params in let proj_body = it_mkLambda_or_LetIn (mkLambda (binder, inst_type, mkRel 1)) params in let proj_entry = Declare.definition_entry ~types:proj_type ~univs proj_body in let proj_cst = Declare.declare_constant ~name:proj_name (Declare.DefinitionEntry proj_entry) ~kind:Decls.(IsDefinition Definition) in let cref = GlobRef.ConstRef cst in Impargs.declare_manual_implicits false cref paramimpls; Impargs.declare_manual_implicits false (GlobRef.ConstRef proj_cst) (List.hd implfs); Classes.set_typeclass_transparency ~locality:Hints.SuperGlobal [Evaluable.EvalConstRef cst] false; let () = declare_proj_coercion_instance ~flags:proj_flags (GlobRef.ConstRef proj_cst) cref ~with_coercion:false in let m = { meth_name = Name proj_name; meth_info = None; meth_const = Some proj_cst; } in [cref], [m] (** [declare_class] will prepare and declare a [Class]. This is done in 2 steps: 1. two markedly different paths are followed depending on whether the class declaration refers to a constant "definitional classes" (with [declare_class_constant]) or to a record (with [declare_structure]), that is to say: Class foo := bar : T. which is equivalent to Definition foo := T. Definition bar (x:foo) : T := x. Existing Class foo. vs Class foo := { ... }. 2. now, declare the class, using the information ([inds] and [def]) from 1. in the form of [Classes.typeclass] *) let declare_class ~univs params inds def data = let { Data.rdata } = get_class_params data in let fields = rdata.DataR.fields in let map ind = let map decl y = { meth_name = RelDecl.get_name decl; meth_info = None; meth_const = y; } in let l = match ind with | GlobRef.IndRef ind -> List.map2 map (List.rev fields) (Structure.find_projections ind) | _ -> def in ind, l in let data = List.map map inds in let univs, params, fields = match fst univs with | UState.Polymorphic_entry uctx -> let usubst, auctx = UVars.abstract_universes uctx in let usubst = UVars.make_instance_subst usubst in let map c = Vars.subst_univs_level_constr usubst c in let fields = Context.Rel.map map fields in let params = Context.Rel.map map params in auctx, params, fields | UState.Monomorphic_entry _ -> UVars.AbstractContext.empty, params, fields in let map (impl, projs) = let k = { cl_univs = univs; cl_impl = impl; cl_strict = typeclasses_strict (); cl_unique = typeclasses_unique (); cl_context = params; cl_props = fields; cl_projs = projs } in Classes.add_class k in List.iter map data let add_constant_class cst = let env = Global.env () in let ty, univs = Typeops.type_of_global_in_context env (GlobRef.ConstRef cst) in let r = (Environ.lookup_constant cst env).const_relevance in let ctx, _ = decompose_prod_decls ty in let args = Context.Rel.instance Constr.mkRel 0 ctx in let t = mkApp (mkConstU (cst, UVars.make_abstract_instance univs), args) in let tc = { cl_univs = univs; cl_impl = GlobRef.ConstRef cst; cl_context = ctx; cl_props = [LocalAssum (make_annot Anonymous r, t)]; cl_projs = []; cl_strict = typeclasses_strict (); cl_unique = typeclasses_unique () } in Classes.add_class tc; Classes.set_typeclass_transparency ~locality:Hints.SuperGlobal [Evaluable.EvalConstRef cst] false let add_inductive_class ind = let env = Global.env () in let mind, oneind = Inductive.lookup_mind_specif env ind in let k = let ctx = oneind.mind_arity_ctxt in let univs = Declareops.inductive_polymorphic_context mind in let inst = UVars.make_abstract_instance univs in let ty = Inductive.type_of_inductive ((mind, oneind), inst) in let r = oneind.mind_relevance in { cl_univs = univs; cl_impl = GlobRef.IndRef ind; cl_context = ctx; cl_props = [LocalAssum (make_annot Anonymous r, ty)]; cl_projs = []; cl_strict = typeclasses_strict (); cl_unique = typeclasses_unique () } in Classes.add_class k let warn_already_existing_class = CWarnings.create ~name:"already-existing-class" ~category:CWarnings.CoreCategories.automation Pp.(fun g -> Printer.pr_global g ++ str " is already declared as a typeclass.") let declare_existing_class g = if Typeclasses.is_class g then warn_already_existing_class g else match g with | GlobRef.ConstRef x -> add_constant_class x | GlobRef.IndRef x -> add_inductive_class x | _ -> user_err (Pp.str"Unsupported class type, only constants and inductives are allowed.") (** [fs] corresponds to fields and [ps] to parameters; [proj_flags] is a list telling if the corresponding fields must me declared as coercions or subinstances. *) let definition_structure udecl kind ~template ~cumulative ~poly ~primitive_proj finite (records : Ast.t list) : GlobRef.t list = let impargs, params, univs, variances, projections_kind, data, indlocs = let definitional = kind_class kind = DefClass in pre_process_structure ~definitional udecl kind ~poly records in let inds, def = match kind_class kind with | DefClass -> declare_class_constant ~univs impargs params data | RecordClass | NotClass -> (* remove the following block after deprecation phase (started in 8.16, c.f., https://github.com/coq/coq/pull/15802 ) *) let data = if kind_class kind = NotClass then data else List.map (fun d -> { d with Data.is_coercion = false }) data in let structure = interp_structure_core ~cumulative finite ~univs ~variances ~primitive_proj impargs params template ~projections_kind ~indlocs data in declare_structure structure in if kind_class kind <> NotClass then declare_class ~univs params inds def data; inds module Internal = struct type nonrec projection_flags = Data.projection_flags = { pf_coercion: bool; pf_reversible: bool; pf_instance: bool; pf_priority: int option; pf_locality: Goptions.option_locality; pf_canonical: bool; } let declare_projections = declare_projections let declare_structure_entry = declare_structure_entry end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>