package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.20.1.tar.gz
md5=0cfaa70f569be9494d24c829e6555d46
sha512=8ee967c636b67b22a4f34115871d8f9b9114df309afc9ddf5f61275251088c6e21f6cf745811df75554d30f4cebb6682f23eeb2e88b771330c4b60ce3f6bf5e2
doc/src/coq-core.vernac/comInductive.ml.html
Source file comInductive.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) module CVars = Vars open Pp open CErrors open Sorts open Util open Context open Environ open Names open Libnames open Constrexpr open Constrexpr_ops open Constrintern open Type_errors open Pretyping open Context.Rel.Declaration open Entries open EConstr module RelDecl = Context.Rel.Declaration (* 3b| Mutual inductive definitions *) let warn_auto_template = CWarnings.create ~name:"auto-template" ~default:CWarnings.Disabled (fun id -> Pp.(strbrk "Automatically declaring " ++ Id.print id ++ strbrk " as template polymorphic. Use attributes or " ++ strbrk "disable Auto Template Polymorphism to avoid this warning.")) let should_auto_template = let open Goptions in let auto = ref true in let () = declare_bool_option { optstage = Summary.Stage.Interp; optdepr = None; optkey = ["Auto";"Template";"Polymorphism"]; optread = (fun () -> !auto); optwrite = (fun b -> auto := b); } in fun id would_auto -> let b = !auto && would_auto in if b then warn_auto_template id; b let push_types env idl rl tl = List.fold_left3 (fun env id r t -> EConstr.push_rel (LocalAssum (make_annot (Name id) r,t)) env) env idl rl tl type structured_one_inductive_expr = { ind_name : Id.t; ind_arity_explicit : bool; ind_arity : constr_expr; ind_lc : (Id.t * constr_expr) list } exception Same of Id.t let check_all_names_different indl = let rec elements = function | [] -> Id.Set.empty | id :: l -> let s = elements l in if Id.Set.mem id s then raise (Same id) else Id.Set.add id s in let ind_names = List.map (fun ind -> ind.ind_name) indl in let cstr_names = List.map_append (fun ind -> List.map fst ind.ind_lc) indl in let ind_names = match elements ind_names with | s -> s | exception (Same t) -> raise (InductiveError (SameNamesTypes t)) in let cstr_names = match elements cstr_names with | s -> s | exception (Same c) -> raise (InductiveError (SameNamesConstructors c)) in let l = Id.Set.inter ind_names cstr_names in if not (Id.Set.is_empty l) then raise (InductiveError (SameNamesOverlap (Id.Set.elements l))) (** Make the arity conclusion flexible to avoid generating an upper bound universe now, only if the universe does not appear anywhere else. This is really a hack to stay compatible with the semantics of template polymorphic inductives which are recognized when a "Type" appears at the end of the conlusion in the source syntax. *) let rec check_type_conclusion ind = let open Glob_term in match DAst.get ind with | GSort s -> (* not sure what this check is expected to be exactly *) begin match s with | (None, UAnonymous {rigid=UnivRigid}) -> (* should have been made flexible *) assert false | (None, UAnonymous {rigid=UnivFlexible _}) -> false | _ -> true end | GProd (_, _, _, _, e) | GLetIn (_, _, _, _, e) -> check_type_conclusion e | _ -> false let rec make_anonymous_conclusion_flexible ind = let open Glob_term in match DAst.get ind with | GSort (None, UAnonymous {rigid=UnivRigid}) -> Some (DAst.make ?loc:ind.loc (GSort (None, UAnonymous {rigid=UnivFlexible true}))) | GSort _ -> None | GProd (a, b, c, d, e) -> begin match make_anonymous_conclusion_flexible e with | None -> None | Some e -> Some (DAst.make ?loc:ind.loc (GProd (a, b, c, d, e))) end | GLetIn (a, b, c, d, e) -> begin match make_anonymous_conclusion_flexible e with | None -> None | Some e -> Some (DAst.make ?loc:ind.loc (GLetIn (a, b, c, d, e))) end | _ -> None type syntax_allows_template_poly = SyntaxAllowsTemplatePoly | SyntaxNoTemplatePoly let intern_ind_arity env sigma ind = let c = intern_gen IsType env sigma ind.ind_arity in let impls = Implicit_quantifiers.implicits_of_glob_constr ~with_products:true c in let pseudo_poly, c = match make_anonymous_conclusion_flexible c with | None -> check_type_conclusion c, c | Some c -> true, c in let template_syntax = if pseudo_poly then SyntaxAllowsTemplatePoly else SyntaxNoTemplatePoly in (constr_loc ind.ind_arity, c, impls, template_syntax) let pretype_ind_arity ~unconstrained_sorts env sigma (loc, c, impls, template_syntax) = let flags = { Pretyping.all_no_fail_flags with unconstrained_sorts } in let sigma,t = understand_tcc ~flags env sigma ~expected_type:IsType c in match Reductionops.sort_of_arity env sigma t with | exception Reduction.NotArity -> user_err ?loc (str "Not an arity") | s -> sigma, (t, Retyping.relevance_of_sort s, template_syntax, impls) (* ind_rel is the Rel for this inductive in the context without params. n is how many arguments there are in the constructor. *) let model_conclusion env sigma ind_rel params n arity_indices = let model_head = EConstr.mkRel (n + Context.Rel.length params + ind_rel) in let model_params = Context.Rel.instance EConstr.mkRel n params in let sigma,model_indices = List.fold_right (fun (_,t) (sigma, subst) -> let t = EConstr.Vars.substl subst (EConstr.Vars.liftn n (List.length subst + 1) t) in let sigma, c = Evarutil.new_evar env sigma t in sigma, c::subst) arity_indices (sigma, []) in sigma, mkApp (mkApp (model_head, model_params), Array.of_list (List.rev model_indices)) let interp_cstrs env (sigma, ind_rel) impls params ind arity = let cnames,ctyps = List.split ind.ind_lc in let arity_indices, cstr_sort = Reductionops.splay_arity env sigma arity in (* Interpret the constructor types *) let interp_cstr sigma ctyp = let flags = Pretyping.{ all_no_fail_flags with use_typeclasses = UseTCForConv; solve_unification_constraints = false } in let sigma, (ctyp, cimpl) = interp_type_evars_impls ~flags env sigma ~impls ctyp in let ctx, concl = Reductionops.whd_decompose_prod_decls env sigma ctyp in let concl_env = EConstr.push_rel_context ctx env in let sigma_with_model_evars, model = model_conclusion concl_env sigma ind_rel params (Context.Rel.length ctx) arity_indices in (* unify the expected with the provided conclusion *) let sigma = try Evarconv.unify concl_env sigma_with_model_evars Conversion.CONV concl model with Evarconv.UnableToUnify (sigma,e) -> user_err (Himsg.explain_pretype_error concl_env sigma (Pretype_errors.CannotUnify (concl, model, (Some e)))) in sigma, (ctyp, cimpl) in let sigma, (ctyps, cimpls) = on_snd List.split @@ List.fold_left_map interp_cstr sigma ctyps in (sigma, pred ind_rel), (cnames, ctyps, cimpls) (***** Generate constraints from constructor arguments *****) let compute_constructor_levels env evd sign = fst (List.fold_right (fun d (lev,env) -> match d with | LocalDef _ -> lev, EConstr.push_rel d env | LocalAssum _ -> let s = Retyping.get_sort_of env evd (RelDecl.get_type d) in (s :: lev, EConstr.push_rel d env)) sign ([],env)) let do_auto_prop_lowering = ref true let () = Goptions.declare_bool_option { optstage = Interp; optdepr = None; optkey = ["Automatic";"Proposition";"Inductives"]; optread = (fun () -> !do_auto_prop_lowering); optwrite = (fun b -> do_auto_prop_lowering := b); } let warn_auto_prop_lowering = CWarnings.create ~name:"automatic-prop-lowering" ~category:Deprecation.Version.v8_20 Pp.(fun na -> strbrk "Automatically putting " ++ Id.print na ++ strbrk " in Prop" ++ spc() ++ strbrk "even though it was declared with Type." ++ fnl() ++ strbrk "Unset Automatic Proposition Inductives to prevent this" ++ spc() ++ strbrk "(it will become the default in a future version)." ++ fnl() ++ strbrk "If you instead put " ++ Id.print na ++ strbrk " explicitly in Prop," ++ spc() ++ strbrk "set Dependent Proposition Eliminators around the declaration for full backwards compatibility.") let is_flexible_sort evd s = match ESorts.kind evd s with | Set | Prop | SProp -> false | Type u | QSort (_, u) -> match Univ.Universe.level u with | Some l -> Evd.is_flexible_level evd l | None -> false let prop_lowering_candidates evd ~arities_explicit inds = let less_than_2 = function [] | [_] -> true | _ :: _ :: _ -> false in (* handle automatic lowering to Prop We repeatedly add information about which inductives should not be Prop until no more progress can be made *) let is_prop_candidate_arity (raw_arity,(_,s),indices,ctors) = less_than_2 ctors && EConstr.isArity evd raw_arity && is_flexible_sort evd s && not (Evd.check_leq evd ESorts.set s) in let candidates = List.filter_map (fun (explicit,(_,(_,s),_,_ as ind)) -> if (!do_auto_prop_lowering || not explicit) && is_prop_candidate_arity ind then Some s else None) (List.combine arities_explicit inds) in let in_candidates s candidates = List.mem_f (ESorts.equal evd) s candidates in let is_prop_candidate_size candidates (_,_,indices,ctors) = List.for_all (List.for_all (fun s -> match ESorts.kind evd s with | SProp | Prop -> true | Set -> false | Type _ | QSort _ -> not (Evd.check_leq evd ESorts.set s) && in_candidates s candidates)) (Option.List.cons indices ctors) in let rec spread_nonprop candidates = let (changed, candidates) = List.fold_left (fun (changed, candidates as acc) (raw_arity,(_,s),indices,ctors as ind) -> if is_prop_candidate_size candidates ind then acc (* still a Prop candidate *) else if in_candidates s candidates then (true, List.remove (ESorts.equal evd) s candidates) else acc) (false,candidates) inds in if changed then spread_nonprop candidates else candidates in let candidates = spread_nonprop candidates in candidates let include_constructor_argument env evd ~poly ~ctor_sort ~inductive_sort = if poly then (* We ignore the quality when comparing the sorts: it has an impact on squashing in the kernel but cannot cause a universe error. *) let univ_of_sort s = match ESorts.kind evd s with | SProp | Prop -> None | Set -> Some Univ.Universe.type0 | Type u | QSort (_,u) -> Some u in match univ_of_sort ctor_sort, univ_of_sort inductive_sort with | _, None -> (* This function is only called when [s] is not impredicative *) assert false | None, Some _ -> evd | Some uctor, Some uind -> let mk u = ESorts.make (Sorts.sort_of_univ u) in Evd.set_leq_sort env evd (mk uctor) (mk uind) else match ESorts.kind evd ctor_sort with | SProp | Prop -> evd | Set | Type _ | QSort _ -> Evd.set_leq_sort env evd ctor_sort inductive_sort type default_dep_elim = DeclareInd.default_dep_elim = DefaultElim | PropButDepElim let inductive_levels env evd ~poly ~indnames ~arities_explicit arities ctors = let inds = List.map2 (fun x ctors -> let ctx, s = Reductionops.dest_arity env evd x in x, (ctx, s), List.map (compute_constructor_levels env evd) ctors) arities ctors in (* Inductives explicitly put in an impredicative sort can be squashed, so there are no constraints to get from them. *) let is_impredicative_sort evd s = is_impredicative_sort env (ESorts.kind evd s) in (* Inductives with >= 2 constructors are >= Set *) let less_than_2 = function [] | [_] -> true | _ :: _ :: _ -> false in let evd = List.fold_left (fun evd (raw_arity,(_,s),ctors) -> if less_than_2 ctors || is_impredicative_sort evd s then evd else (* >=2 constructors is like having a bool argument *) include_constructor_argument env evd ~poly ~ctor_sort:ESorts.set ~inductive_sort:s) evd inds in (* If indices_matter, the index telescope acts like an extra constructor except for constructor count checks. *) let inds = List.map (fun (raw_arity,(ctx,_ as arity),ctors) -> let indices = if indices_matter env then Some (compute_constructor_levels env evd ctx) else None in (raw_arity,arity,indices,ctors)) inds in let candidates = prop_lowering_candidates evd ~arities_explicit inds in (* Do the lowering. We forget about the generated universe for the lowered inductive and rely on universe restriction to get rid of it. NB: it would probably be less hacky to use the sort polymorphism system ie lowering to Prop by setting a qvar equal to prop. However this means we wouldn't lower "Inductive foo : Type := ." as "Type" doesn't produce a qvar. Perhaps someday we can stop lowering these explicit ": Type". *) let inds = List.map3 (fun na explicit (raw_arity,(ctx,s),indices,ctors) -> if List.mem_f (ESorts.equal evd) s candidates then (* NB: is_prop_candidate requires is_flexible_sort so in this branch we know s <> Prop *) let () = if explicit then warn_auto_prop_lowering na in ((PropButDepElim, mkArity (ctx, ESorts.prop)),ESorts.prop,indices,ctors) else ((DefaultElim, raw_arity), s, indices, ctors)) indnames arities_explicit inds in (* Add constraints from constructor arguments and indices. We must do this after Prop lowering as otherwise we risk unifying sorts eg on "Box (A:Type)" we risk unifying the parameter sort and the output sort then ESorts.equal would make us believe that the constructor argument is a lowering candidate. *) let evd = List.fold_left (fun evd (_,s,indices,ctors) -> if is_impredicative_sort evd s then evd else List.fold_left (List.fold_left (fun evd ctor_sort -> include_constructor_argument env evd ~poly ~ctor_sort ~inductive_sort:s)) evd (Option.List.cons indices ctors)) evd inds in let arities = List.map (fun (arity,_,_,_) -> arity) inds in evd, List.split arities (** Template poly ***) let check_named {CAst.loc;v=na} = match na with | Name _ -> () | Anonymous -> let msg = str "Parameters must be named." in user_err ?loc msg (* Returns the list [x_1, ..., x_n] of levels contributing to template polymorphism. The elements x_k is None if the k-th parameter (starting from the most recent and ignoring let-definitions) is not contributing to the inductive type's sort or is Some u_k if its level is u_k and is contributing. *) let template_polymorphic_univs ~ctor_levels uctx paramsctxt u = let unbounded_from_below u cstrs = let open Univ in Univ.Constraints.for_all (fun (l, d, r) -> match d with | Eq -> not (Univ.Level.equal l u) && not (Univ.Level.equal r u) | Lt | Le -> not (Univ.Level.equal r u)) cstrs in let fold_params accu decl = match decl with | LocalAssum (_, p) -> let c = Term.strip_prod_decls p in begin match Constr.kind c with | Constr.Sort (Type u) -> begin match Univ.Universe.level u with | Some l -> Univ.Level.Set.add l accu | None -> accu end | _ -> accu end | LocalDef _ -> accu in let paramslevels = List.fold_left fold_params Univ.Level.Set.empty paramsctxt in let check_level l = Univ.Level.Set.mem l (Univ.ContextSet.levels uctx) && Univ.Level.Set.mem l paramslevels && (let () = assert (not @@ Univ.Level.is_set l) in true) && unbounded_from_below l (Univ.ContextSet.constraints uctx) && not (Univ.Level.Set.mem l ctor_levels) in let univs = Univ.Universe.levels u in let univs = Univ.Level.Set.filter (fun l -> check_level l) univs in univs let template_polymorphism_candidate uctx params entry template_syntax = match template_syntax with | SyntaxNoTemplatePoly -> Univ.Level.Set.empty | SyntaxAllowsTemplatePoly -> let _, concl = Term.destArity entry.mind_entry_arity in match concl with | Set | SProp | Prop -> Univ.Level.Set.empty | Type u -> let ctor_levels = let add_levels c levels = Univ.Level.Set.union levels (CVars.universes_of_constr c) in let param_levels = List.fold_left (fun levels d -> match d with | LocalAssum _ -> levels | LocalDef (_,b,t) -> add_levels b (add_levels t levels)) Univ.Level.Set.empty params in List.fold_left (fun levels c -> add_levels c levels) param_levels entry.mind_entry_lc in let univs = template_polymorphic_univs ~ctor_levels uctx params u in univs | QSort _ -> assert false let split_universe_context subset (univs, csts) = let subfilter (l, _, r) = let () = assert (not @@ Univ.Level.Set.mem r subset) in Univ.Level.Set.mem l subset in let subcst = Univ.Constraints.filter subfilter csts in let rem = Univ.Level.Set.diff univs subset in let remfilter (l, _, r) = not (Univ.Level.Set.mem l subset) && not (Univ.Level.Set.mem r subset) in let remcst = Univ.Constraints.filter remfilter csts in (subset, subcst), (rem, remcst) let warn_no_template_universe = CWarnings.create ~name:"no-template-universe" (fun () -> Pp.str "This inductive type has no template universes.") let compute_template_inductive ~user_template ~ctx_params ~univ_entry entry template_syntax = match user_template, univ_entry with | Some false, UState.Monomorphic_entry uctx -> Monomorphic_ind_entry, uctx | Some false, UState.Polymorphic_entry uctx -> Polymorphic_ind_entry uctx, Univ.ContextSet.empty | Some true, UState.Monomorphic_entry uctx -> let template_universes = template_polymorphism_candidate uctx ctx_params entry template_syntax in let template, global = split_universe_context template_universes uctx in let () = if Univ.Level.Set.is_empty (fst template) then warn_no_template_universe () in Template_ind_entry template, global | Some true, UState.Polymorphic_entry _ -> user_err Pp.(strbrk "Template-polymorphism and universe polymorphism are not compatible.") | None, UState.Polymorphic_entry uctx -> Polymorphic_ind_entry uctx, Univ.ContextSet.empty | None, UState.Monomorphic_entry uctx -> let template_candidate = template_polymorphism_candidate uctx ctx_params entry template_syntax in let has_template = not @@ Univ.Level.Set.is_empty template_candidate in let template = should_auto_template entry.mind_entry_typename has_template in if template then let template, global = split_universe_context template_candidate uctx in Template_ind_entry template, global else Monomorphic_ind_entry, uctx let check_param = function | CLocalDef (na, _, _, _) -> check_named na | CLocalAssum (nas, _, Default _, _) -> List.iter check_named nas | CLocalAssum (nas, _, Generalized _, _) -> () | CLocalPattern {CAst.loc} -> Loc.raise ?loc (Gramlib.Grammar.Error "pattern with quote not allowed here") let restrict_inductive_universes ~lbound sigma ctx_params arities constructors = let merge_universes_of_constr c = Univ.Level.Set.union (snd (EConstr.universes_of_constr sigma (EConstr.of_constr c))) in let uvars = Univ.Level.Set.empty in let uvars = Context.Rel.(fold_outside (Declaration.fold_constr merge_universes_of_constr) ctx_params ~init:uvars) in let uvars = List.fold_right merge_universes_of_constr arities uvars in let uvars = List.fold_right (fun (_,ctypes) -> List.fold_right merge_universes_of_constr ctypes) constructors uvars in Evd.restrict_universe_context ~lbound sigma uvars let check_trivial_variances variances = Array.iter (function | None | Some UVars.Variance.Invariant -> () | Some _ -> CErrors.user_err Pp.(strbrk "Universe variance was specified but this inductive will not be cumulative.")) variances let variance_of_entry ~cumulative ~variances uctx = match uctx with | Monomorphic_ind_entry | Template_ind_entry _ -> check_trivial_variances variances; None | Polymorphic_ind_entry uctx -> if not cumulative then begin check_trivial_variances variances; None end else let lvs = Array.length variances in let _, lus = UVars.UContext.size uctx in assert (lvs <= lus); Some (Array.append variances (Array.make (lus - lvs) None)) let interp_mutual_inductive_constr ~sigma ~template ~udecl ~variances ~ctx_params ~indnames ~arities_explicit ~arities ~template_syntax ~constructors ~env_ar_params ~cumulative ~poly ~private_ind ~finite = (* Compute renewed arities *) let ctor_args = List.map (fun (_,tys) -> List.map (fun ty -> let ctx = fst (Reductionops.whd_decompose_prod_decls env_ar_params sigma ty) in ctx) tys) constructors in let sigma, (default_dep_elim, arities) = inductive_levels env_ar_params sigma ~poly ~indnames ~arities_explicit arities ctor_args in let lbound = if poly then UGraph.Bound.Set else UGraph.Bound.Prop in let sigma = Evd.minimize_universes ~lbound sigma in let arities = List.map EConstr.(to_constr sigma) arities in let constructors = List.map (on_snd (List.map (EConstr.to_constr sigma))) constructors in let ctx_params = List.map (fun d -> EConstr.to_rel_decl sigma d) ctx_params in let sigma = restrict_inductive_universes ~lbound sigma ctx_params arities constructors in let univ_entry, binders = Evd.check_univ_decl ~poly sigma udecl in (* Build the inductive entries *) let entries = List.map3 (fun indname arity (cnames,ctypes) -> { mind_entry_typename = indname; mind_entry_arity = arity; mind_entry_consnames = cnames; mind_entry_lc = ctypes }) indnames arities constructors in let univ_entry, ctx = match entries, template_syntax with | [entry], [template_syntax] -> compute_template_inductive ~user_template:template ~ctx_params ~univ_entry entry template_syntax | _ -> let () = match template with | Some true -> user_err Pp.(str "Template-polymorphism not allowed with mutual inductives.") | _ -> () in match univ_entry with | UState.Monomorphic_entry ctx -> Monomorphic_ind_entry, ctx | UState.Polymorphic_entry uctx -> Polymorphic_ind_entry uctx, Univ.ContextSet.empty in let variance = variance_of_entry ~cumulative ~variances univ_entry in (* Build the mutual inductive entry *) let mind_ent = { mind_entry_params = ctx_params; mind_entry_record = None; mind_entry_finite = finite; mind_entry_inds = entries; mind_entry_private = if private_ind then Some false else None; mind_entry_universes = univ_entry; mind_entry_variance = variance; } in default_dep_elim, mind_ent, binders, ctx let interp_params ~unconstrained_sorts env udecl uparamsl paramsl = let sigma, udecl, variances = interp_cumul_univ_decl_opt env udecl in let sigma, (uimpls, ((env_uparams, ctx_uparams), useruimpls)) = interp_context_evars ~program_mode:false ~unconstrained_sorts env sigma uparamsl in let sigma, (impls, ((env_params, ctx_params), userimpls)) = interp_context_evars ~program_mode:false ~unconstrained_sorts ~impl_env:uimpls env_uparams sigma paramsl in (* Names of parameters as arguments of the inductive type (defs removed) *) sigma, env_params, (ctx_params, env_uparams, ctx_uparams, userimpls, useruimpls, impls, udecl, variances) (* When a hole remains for a param, pretend the param is uniform and do the unification. [env_ar_par] is [uparams; inds; params] *) let maybe_unify_params_in env_ar_par sigma ~ninds ~nparams ~binders:k c = let is_ind sigma k c = match EConstr.kind sigma c with | Constr.Rel n -> (* env is [uparams; inds; params; k other things] *) n > k + nparams && n <= k + nparams + ninds | _ -> false in let rec aux (env,k as envk) sigma c = match EConstr.kind sigma c with | Constr.App (h,args) when is_ind sigma k h -> Array.fold_left_i (fun i sigma arg -> if i >= nparams || not (EConstr.isEvar sigma arg) then sigma else begin try Evarconv.unify_delay env sigma arg (EConstr.mkRel (k+nparams-i)) with Evarconv.UnableToUnify _ -> (* ignore errors, we will get a "Cannot infer ..." error instead *) sigma end) sigma args | _ -> Termops.fold_constr_with_full_binders env sigma (fun d (env,k) -> EConstr.push_rel d env, k+1) aux envk sigma c in aux (env_ar_par,k) sigma c let interp_mutual_inductive_gen env0 ~template udecl (uparamsl,paramsl,indl) notations ~cumulative ~poly ~private_ind finite = check_all_names_different indl; List.iter check_param paramsl; if not (List.is_empty uparamsl) && not (List.is_empty notations) then user_err (str "Inductives with uniform parameters may not have attached notations."); let indnames = List.map (fun ind -> ind.ind_name) indl in let ninds = List.length indl in (* In case of template polymorphism, we need to compute more constraints *) let unconstrained_sorts = not poly in let sigma, env_params, (ctx_params, env_uparams, ctx_uparams, userimpls, useruimpls, impls, udecl, variances) = interp_params ~unconstrained_sorts env0 udecl uparamsl paramsl in (* Interpret the arities *) let arities = List.map (intern_ind_arity env_params sigma) indl in let sigma, arities = List.fold_left_map (pretype_ind_arity ~unconstrained_sorts env_params) sigma arities in let arities, relevances, template_syntax, indimpls = List.split4 arities in let lift_ctx n ctx = let t = EConstr.it_mkProd_or_LetIn EConstr.mkProp ctx in let t = EConstr.Vars.lift n t in let ctx, _ = EConstr.decompose_prod_decls sigma t in ctx in let ctx_params_lifted, fullarities = lift_ctx ninds ctx_params, CList.map_i (fun i c -> EConstr.Vars.lift i (EConstr.it_mkProd_or_LetIn c ctx_params)) 0 arities in let env_ar = push_types env_uparams indnames relevances fullarities in let env_ar_params = EConstr.push_rel_context ctx_params_lifted env_ar in (* Compute interpretation metadatas *) let indimpls = List.map (fun impls -> userimpls @ impls) indimpls in let impls = compute_internalization_env env_uparams sigma ~impls Inductive indnames fullarities indimpls in let ntn_impls = compute_internalization_env env_uparams sigma Inductive indnames fullarities indimpls in let (sigma, _), constructors = Metasyntax.with_syntax_protection (fun () -> (* Temporary declaration of notations and scopes *) List.iter (Metasyntax.set_notation_for_interpretation env_params ntn_impls) notations; (* Interpret the constructor types *) List.fold_left2_map (fun (sigma, ind_rel) ind arity -> interp_cstrs env_ar_params (sigma, ind_rel) impls ctx_params_lifted ind (EConstr.Vars.liftn ninds (Rel.length ctx_params + 1) arity)) (sigma, ninds) indl arities) () in let nparams = Context.Rel.length ctx_params in let sigma = List.fold_left (fun sigma (_,ctyps,_) -> List.fold_left (fun sigma ctyp -> maybe_unify_params_in env_ar_params sigma ~ninds ~nparams ~binders:0 ctyp) sigma ctyps) sigma constructors in (* generalize over the uniform parameters *) let nuparams = Context.Rel.length ctx_uparams in let uargs = Context.Rel.instance EConstr.mkRel 0 ctx_uparams in let uparam_subst = List.init ninds EConstr.(fun i -> mkApp (mkRel (i + 1 + nuparams), uargs)) @ List.init nuparams EConstr.(fun i -> mkRel (i + 1)) in let generalize_constructor c = EConstr.Vars.substnl uparam_subst nparams c in let cimpls = List.map pi3 constructors in let constructors = List.map (fun (cnames,ctypes,cimpls) -> (cnames,List.map generalize_constructor ctypes)) constructors in let ctx_params = ctx_params @ ctx_uparams in let userimpls = useruimpls @ userimpls in let indimpls = List.map (fun iimpl -> useruimpls @ iimpl) indimpls in let fullarities = List.map (fun c -> EConstr.it_mkProd_or_LetIn c ctx_uparams) fullarities in let env_ar = push_types env0 indnames relevances fullarities in let env_ar_params = EConstr.push_rel_context ctx_params env_ar in (* Try further to solve evars, and instantiate them *) let sigma = solve_remaining_evars all_and_fail_flags env_params sigma in let impls = List.map2 (fun indimpls cimpls -> indimpls, List.map (fun impls -> userimpls @ impls) cimpls) indimpls cimpls in let arities_explicit = List.map (fun ar -> ar.ind_arity_explicit) indl in let default_dep_elim, mie, binders, ctx = interp_mutual_inductive_constr ~template ~sigma ~ctx_params ~udecl ~variances ~arities_explicit ~arities ~template_syntax ~constructors ~env_ar_params ~poly ~finite ~cumulative ~private_ind ~indnames in (default_dep_elim, mie, binders, impls, ctx) (* Very syntactical equality *) let eq_local_binders bl1 bl2 = List.equal local_binder_eq bl1 bl2 let eq_params (up1,p1) (up2,p2) = eq_local_binders up1 up2 && Option.equal eq_local_binders p1 p2 let extract_coercions indl = let mkqid (_,({CAst.v=id},_)) = qualid_of_ident id in let iscoe (_, coe, inst) = match inst with (* remove BackInstanceWarning after deprecation phase *) | Vernacexpr.(NoInstance | BackInstanceWarning) -> coe = Vernacexpr.AddCoercion | _ -> user_err (Pp.str "'::' not allowed in inductives.") in let extract lc = List.filter (fun (coe,_) -> iscoe coe) lc in List.map mkqid (List.flatten(List.map (fun (_,_,_,lc) -> extract lc) indl)) exception DifferingParams of string (* inductive or record *) * (Id.t * Vernacexpr.inductive_params_expr) * (Id.t * Vernacexpr.inductive_params_expr) let explain_differing_params kind (ind,p) (ind',p') = let pr_params = function | ([],None) -> str "no parameters" | (up,p) -> let env = Global.env() in let sigma = Evd.from_env env in let pr_binders = Ppconstr.pr_binders env sigma in str "parameters" ++ spc() ++ hov 1 (quote (pr_binders up ++ pr_opt (fun p -> str "|" ++ spc() ++ pr_binders p) p)) in v 0 (str "Parameters should be syntactically the same for each " ++ str kind ++ str " type." ++ spc() ++ hov 0 (str "Type " ++ quote (Id.print ind) ++ str " has " ++ pr_params p) ++ spc() ++ hov 0 (str "but type " ++ quote (Id.print ind') ++ str " has " ++ pr_params p') ++ str ".") let () = CErrors.register_handler (function | DifferingParams (kind, a, b) -> Some (explain_differing_params kind a b) | _ -> None) let error_differing_params ~kind (ind,p) (ind',p') = Loc.raise ?loc:ind'.CAst.loc (DifferingParams (kind, (ind.CAst.v,p), (ind'.CAst.v,p'))) let extract_params indl = match indl with | [] -> anomaly (Pp.str "empty list of inductive types.") | (ind,params,_,_)::rest -> match List.find_opt (fun (_,p',_,_) -> not @@ eq_params params p') rest with | None -> params | Some (ind',p',_,_) -> error_differing_params ~kind:"inductive" (ind,params) (ind',p') let extract_inductive indl = List.map (fun ({CAst.v=indname},_,ar,lc) -> { ind_name = indname; ind_arity_explicit = Option.has_some ar; ind_arity = Option.default (CAst.make @@ CSort Constrexpr_ops.expr_Type_sort) ar; ind_lc = List.map (fun (_,({CAst.v=id},t)) -> (id,t)) lc }) indl let extract_mutual_inductive_declaration_components indl = let indl,ntnl = List.split indl in let params = extract_params indl in let coes = extract_coercions indl in let indl = extract_inductive indl in (params,indl), coes, List.flatten ntnl type uniform_inductive_flag = | UniformParameters | NonUniformParameters module Mind_decl = struct type t = { mie : Entries.mutual_inductive_entry; default_dep_elim : default_dep_elim list; nuparams : int option; univ_binders : UnivNames.universe_binders; implicits : DeclareInd.one_inductive_impls list; uctx : Univ.ContextSet.t; where_notations : Metasyntax.notation_interpretation_decl list; coercions : Libnames.qualid list; indlocs : Loc.t option list; } end let rec count_binder_expr = function | [] -> 0 | CLocalAssum(l,_,_,_) :: rest -> List.length l + count_binder_expr rest | CLocalDef _ :: rest -> 1 + count_binder_expr rest | CLocalPattern {CAst.loc} :: _ -> Loc.raise ?loc (Gramlib.Grammar.Error "pattern with quote not allowed here") let interp_mutual_inductive ~env ~template udecl indl ~cumulative ~poly ?typing_flags ~private_ind ~uniform finite = let indlocs = List.map (fun ((n,_,_,_),_) -> n.CAst.loc) indl in let (params,indl),coercions,ntns = extract_mutual_inductive_declaration_components indl in let where_notations = List.map Metasyntax.prepare_where_notation ntns in (* Interpret the types *) let indl, nuparams = match params with | uparams, Some params -> (uparams, params, indl), Some (count_binder_expr params) | params, None -> match uniform with | UniformParameters -> (params, [], indl), Some 0 | NonUniformParameters -> ([], params, indl), None in let env = Environ.update_typing_flags ?typing_flags env in let default_dep_elim, mie, univ_binders, implicits, uctx = interp_mutual_inductive_gen env ~template udecl indl where_notations ~cumulative ~poly ~private_ind finite in let open Mind_decl in { mie; default_dep_elim; nuparams; univ_binders; implicits; uctx; where_notations; coercions; indlocs } let do_mutual_inductive ~template udecl indl ~cumulative ~poly ?typing_flags ~private_ind ~uniform finite = let open Mind_decl in let env = Global.env () in let { mie; default_dep_elim; univ_binders; implicits; uctx; where_notations; coercions; indlocs} = interp_mutual_inductive ~env ~template udecl indl ~cumulative ~poly ?typing_flags ~private_ind ~uniform finite in (* Slightly hackish global universe declaration due to template types. *) let binders = match mie.mind_entry_universes with | Monomorphic_ind_entry -> (UState.Monomorphic_entry uctx, univ_binders) | Template_ind_entry ctx -> (UState.Monomorphic_entry ctx, univ_binders) | Polymorphic_ind_entry uctx -> (UState.Polymorphic_entry uctx, UnivNames.empty_binders) in (* Declare the global universes *) Global.push_context_set ~strict:true uctx; (* Declare the mutual inductive block with its associated schemes *) ignore (DeclareInd.declare_mutual_inductive_with_eliminations ~default_dep_elim ?typing_flags ~indlocs mie binders implicits); (* Declare the possible notations of inductive types *) List.iter (Metasyntax.add_notation_interpretation ~local:false (Global.env ())) where_notations; (* Declare the coercions *) List.iter (fun qid -> ComCoercion.try_add_new_coercion (Nametab.locate qid) ~local:false ~reversible:true) coercions (** Prepare a "match" template for a given inductive type. For each branch of the match, we list the constructor name followed by enough pattern variables. [Not_found] is raised if the given string isn't the qualid of a known inductive type. *) (* HH notes in PR #679: The Show Match could also be made more robust, for instance in the presence of let in the branch of a constructor. A decompose_prod_decls would probably suffice for that, but then, it is a Context.Rel.Declaration.t which needs to be matched and not just a pair (name,type). Otherwise, this is OK. After all, the API on inductive types is not so canonical in general, and in this simple case, working at the low-level of mind_nf_lc seems reasonable (compared to working at the higher-level of Inductiveops). *) let make_cases ind = let open Declarations in let mib, mip = Global.lookup_inductive ind in Util.Array.fold_right_i (fun i (ctx, _) l -> let al = Util.List.skipn (List.length mib.mind_params_ctxt) (List.rev ctx) in let rec rename avoid = function | [] -> [] | RelDecl.LocalDef _ :: l -> "_" :: rename avoid l | RelDecl.LocalAssum (n, _)::l -> let n' = Namegen.next_name_away_with_default (Id.to_string Namegen.default_dependent_ident) n.Context.binder_name avoid in Id.to_string n' :: rename (Id.Set.add n' avoid) l in let al' = rename Id.Set.empty al in let consref = GlobRef.ConstructRef (ith_constructor_of_inductive ind (i + 1)) in (Libnames.string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty consref) :: al') :: l) mip.mind_nf_lc [] module Internal = struct let inductive_levels = inductive_levels let do_auto_prop_lowering = do_auto_prop_lowering let error_differing_params = error_differing_params end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>