package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.20.1.tar.gz
md5=0cfaa70f569be9494d24c829e6555d46
sha512=8ee967c636b67b22a4f34115871d8f9b9114df309afc9ddf5f61275251088c6e21f6cf745811df75554d30f4cebb6682f23eeb2e88b771330c4b60ce3f6bf5e2
doc/src/coq-core.pretyping/indrec.ml.html
Source file indrec.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* File initially created by Christine Paulin, 1996 *) (* This file builds various inductive schemes *) open Pp open CErrors open Util open Names open Libnames open Nameops open Term open Constr open EConstr open Context open Vars open Namegen open Declarations open Declareops open Inductive open Inductiveops open Environ open Reductionops open Context.Rel.Declaration type dep_flag = bool (* Errors related to recursors building *) type recursion_scheme_error = | NotAllowedCaseAnalysis of (*isrec:*) bool * Sorts.t * pinductive | NotMutualInScheme of inductive * inductive | NotAllowedDependentAnalysis of (*isrec:*) bool * inductive exception RecursionSchemeError of env * recursion_scheme_error let ident_hd env ids t na = let na = named_hd env (Evd.from_env env) t na in next_name_away na ids let named_hd env t na = Name (ident_hd env Id.Set.empty t na) let name_assumption env = function | LocalAssum (na,t) -> LocalAssum (map_annot (named_hd env t) na, t) | LocalDef (na,c,t) -> LocalDef (map_annot (named_hd env c) na, c, t) let mkLambda_or_LetIn_name env d b = mkLambda_or_LetIn (name_assumption env d) b let mkProd_or_LetIn_name env d b = mkProd_or_LetIn (name_assumption env d) b let mkLambda_name env (n,a,b) = mkLambda_or_LetIn_name env (LocalAssum (n,a)) b let mkProd_name env (n,a,b) = mkProd_or_LetIn_name env (LocalAssum (n,a)) b module RelEnv = struct type t = { env : Environ.env; avoid : Id.Set.t } let make env = let avoid = Id.Set.of_list (Termops.ids_of_rel_context (rel_context env)) in { env; avoid } let avoid_decl avoid decl = match get_name decl with | Anonymous -> avoid | Name id -> Id.Set.add id avoid let push_rel decl env = { env = EConstr.push_rel decl env.env; avoid = avoid_decl env.avoid decl } let push_rel_context ctx env = let avoid = List.fold_left avoid_decl env.avoid ctx in { env = EConstr.push_rel_context ctx env.env; avoid } end let (!!) env = env.RelEnv.env let set_names env l = let ids = env.RelEnv.avoid in let fold d (ids, l) = let id = ident_hd !!env ids (get_type d) (get_name d) in (Id.Set.add id ids, set_name (Name id) d :: l) in snd (List.fold_right fold l (ids,[])) let it_mkLambda_or_LetIn_name env b l = it_mkLambda_or_LetIn b (set_names env l) let it_mkProd_or_LetIn_name env b l = it_mkProd_or_LetIn b (set_names env l) let make_prod_dep dep env = if dep then mkProd_name env else mkProd let make_name env s r = let id = next_ident_away (Id.of_string s) env.RelEnv.avoid in make_annot (Name id) r (*******************************************) (* Building curryfied elimination *) (*******************************************) let check_privacy_block specif = if Inductive.is_private specif then user_err (str"case analysis on a private inductive type") (**********************************************************************) (* Building case analysis schemes *) (* Christine Paulin, 1996 *) type case_analysis = { case_params : EConstr.rel_context; case_pred : Name.t EConstr.binder_annot * EConstr.types; case_branches : EConstr.rel_context; case_arity : EConstr.rel_context; case_body : EConstr.t; case_type : EConstr.t; } let eval_case_analysis case = let open EConstr in let body = it_mkLambda_or_LetIn case.case_body case.case_arity in (* Expand let bindings in the type for backwards compatibility *) let bodyT = it_mkProd_wo_LetIn case.case_type case.case_arity in let body = it_mkLambda_or_LetIn body case.case_branches in let bodyT = it_mkProd_or_LetIn bodyT case.case_branches in let (nameP, typP) = case.case_pred in let body = mkLambda (nameP, typP, body) in let bodyT = mkProd (nameP, typP, bodyT) in let c = it_mkLambda_or_LetIn body case.case_params in let cT = it_mkProd_or_LetIn bodyT case.case_params in (c, cT) (* [p] is the predicate and [cs] a constructor summary *) let build_branch_type env sigma dep p cs = let open EConstr in let open EConstr.Vars in let base = mkApp (lift cs.cs_nargs p, cs.cs_concl_realargs) in if dep then Namegen.it_mkProd_or_LetIn_name env sigma (applist (base,[build_dependent_constructor cs])) cs.cs_args else it_mkProd_or_LetIn base cs.cs_args let check_valid_elimination env sigma (ind, u as pind) ~dep s = let specif = Inductive.lookup_mind_specif env ind in let () = if dep && not (Inductiveops.has_dependent_elim specif) then raise (RecursionSchemeError (env, NotAllowedDependentAnalysis (false, ind))) in let () = check_privacy_block specif in if not @@ Inductiveops.is_allowed_elimination sigma (specif,u) s then let s = EConstr.ESorts.kind sigma s in let pind = on_snd EConstr.Unsafe.to_instance pind in raise (RecursionSchemeError (env, NotAllowedCaseAnalysis (false, s, pind))) let mis_make_case_com dep env sigma (ind, u as pind) (mib, mip) s = let open EConstr in let () = check_valid_elimination env sigma pind ~dep s in let lnamespar = Vars.subst_instance_context u (of_rel_context mib.mind_params_ctxt) in let indf = make_ind_family(pind, Context.Rel.instance_list mkRel 0 lnamespar) in let constrs = get_constructors env indf in let projs = get_projections env ind in let relevance = Retyping.relevance_of_sort s in let ndepar = mip.mind_nrealdecls + 1 in (* Pas génant car env ne sert pas à typer mais juste à renommer les Anonym *) (* mais pas très joli ... (mais manque get_sort_of à ce niveau) *) let env = RelEnv.make env in let env' = RelEnv.push_rel_context lnamespar env in let typP = make_arity !!env' sigma dep indf s in let nameP = make_name env' "P" ERelevance.relevant in let rec get_branches env k accu = if Int.equal k (Array.length mip.mind_consnames) then accu else let cs = lift_constructor (k+1) constrs.(k) in let t = build_branch_type !!env sigma dep (mkRel (k+1)) cs in let namef = make_name env "f" relevance in let decl = LocalAssum (namef, t) in get_branches (RelEnv.push_rel decl env) (k + 1) (decl :: accu) in let env' = RelEnv.push_rel (LocalAssum (nameP,typP)) env' in let branches = get_branches env' 0 [] in let sigma, arity, body, bodyT = let env = RelEnv.push_rel_context branches env' in let nbprod = Array.length mip.mind_consnames + 1 in let indf' = lift_inductive_family nbprod indf in let arsign = get_arity !!env indf' in let r = Inductiveops.relevance_of_inductive_family !!env indf' in let depind = build_dependent_inductive !!env indf' in let deparsign = LocalAssum (make_annot Anonymous r,depind) :: arsign in let ci = make_case_info !!env (fst pind) RegularStyle in let pbody = mkApp (mkRel (ndepar + nbprod), if dep then Context.Rel.instance mkRel 0 deparsign else Context.Rel.instance mkRel 1 arsign) in let deparsign = set_names env deparsign in let pctx = if dep then deparsign else LocalAssum (make_annot Anonymous r, depind) :: List.tl deparsign in let sigma, obj, objT = match projs with | None -> let pms = Context.Rel.instance mkRel (ndepar + nbprod) lnamespar in let iv = if Typeops.should_invert_case !!env (ERelevance.kind sigma relevance) ci then CaseInvert { indices = Context.Rel.instance mkRel 1 arsign } else NoInvert in let ncons = Array.length mip.mind_consnames in let mk_branch i = (* we need that to get the generated names for the branch *) let ft = get_type (lookup_rel (ncons - i) !!env) in let (ctx, _) = EConstr.decompose_prod_decls sigma ft in let brnas = Array.of_list (List.rev_map get_annot ctx) in let n = mkRel (List.length ctx + ndepar + ncons - i) in let args = Context.Rel.instance mkRel 0 ctx in (brnas, mkApp (n, args)) in let br = Array.init ncons mk_branch in let pnas = Array.of_list (List.rev_map get_annot pctx) in let obj = mkCase (ci, u, pms, ((pnas, liftn ndepar (ndepar + 1) pbody), relevance), iv, mkRel 1, br) in sigma, obj, pbody | Some ps -> let term = mkApp (mkRel 2, Array.map (fun (p,r) -> let r = EConstr.Vars.subst_instance_relevance u (ERelevance.make r) in mkProj (Projection.make p true, r, mkRel 1)) ps) in if dep then let ty = mkApp (mkRel 3, [| mkRel 1 |]) in sigma, mkCast (term, DEFAULTcast, ty), ty else sigma, term, mkRel 3 in (sigma, deparsign, obj, objT) in let params = set_names env lnamespar in let case = { case_params = params; case_pred = (nameP, typP); case_branches = branches; case_arity = arity; case_body = body; case_type = bodyT; } in (sigma, case) (* check if the type depends recursively on one of the inductive scheme *) (**********************************************************************) (* Building the recursive elimination *) (* Christine Paulin, 1996 *) (* * t is the type of the constructor co and recargs is the information on * the recursive calls. (It is assumed to be in form given by the user). * build the type of the corresponding branch of the recurrence principle * assuming f has this type, branch_rec gives also the term * [x1]..[xk](f xi (F xi) ...) to be put in the corresponding branch of * the case operation * FPvect gives for each inductive definition if we want an elimination * on it with which predicate and which recursive function. *) let type_rec_branch is_rec dep env sigma (vargs,depPvect,decP) (mind,tyi) cs recargs = let open EConstr in let make_prod = make_prod_dep dep in let nparams = List.length vargs in let process_pos env depK pk = let rec prec env i sign p = let p',largs = whd_allnolet_stack env sigma p in match kind sigma p' with | Prod (n,t,c) -> let d = LocalAssum (n,t) in make_prod env (n,t,prec (push_rel d env) (i+1) (d::sign) c) | LetIn (n,b,t,c) when List.is_empty largs -> let d = LocalDef (n,b,t) in mkLetIn (n,b,t,prec (push_rel d env) (i+1) (d::sign) c) | Ind (_,_) -> let realargs = List.skipn nparams largs in let base = applist (lift i pk,realargs) in if depK then Reductionops.beta_applist sigma (base, [applist (mkRel (i+1), Context.Rel.instance_list mkRel 0 sign)]) else base | _ -> let t' = whd_all env sigma p in if EConstr.eq_constr sigma p' t' then assert false else prec env i sign t' in prec env 0 [] in let rec process_constr env i c recargs nhyps li = if nhyps > 0 then match EConstr.kind sigma c with | Prod (n,t,c_0) -> let (optionpos,rest) = match recargs with | [] -> None,[] | ra::rest -> (match dest_recarg ra with | Mrec (RecArgInd (mind',j)) -> ((if is_rec && QMutInd.equal env mind mind' then depPvect.(j) else None),rest) | Norec | Mrec (RecArgPrim _) -> (None,rest)) in (match optionpos with | None -> make_prod env (n,t, process_constr (push_rel (LocalAssum (n,t)) env) (i+1) c_0 rest (nhyps-1) (i::li)) | Some(dep',p) -> let nP = lift (i+1+decP) p in let env' = push_rel (LocalAssum (n,t)) env in let t_0 = process_pos env' dep' nP (lift 1 t) in let r_0 = Retyping.relevance_of_type env' sigma t_0 in make_prod_dep (dep || dep') env (n,t, mkArrow t_0 r_0 (process_constr (push_rel (LocalAssum (make_annot Anonymous n.binder_relevance,t_0)) env') (i+2) (lift 1 c_0) rest (nhyps-1) (i::li)))) | LetIn (n,b,t,c_0) -> mkLetIn (n,b,t, process_constr (push_rel (LocalDef (n,b,t)) env) (i+1) c_0 recargs (nhyps-1) li) | _ -> assert false else if dep then let realargs = List.rev_map (fun k -> mkRel (i-k)) li in let params = List.map (lift i) vargs in let co = applist (mkConstructU cs.cs_cstr,params@realargs) in Reductionops.beta_applist sigma (c, [co]) else c in let nhyps = List.length cs.cs_args in let nP = match depPvect.(tyi) with | Some(_,p) -> lift (nhyps+decP) p | _ -> assert false in let base = mkApp (nP,cs.cs_concl_realargs) in let c = it_mkProd_or_LetIn base cs.cs_args in process_constr env 0 c recargs nhyps [] let make_rec_branch_arg env sigma (nparrec,fvect,decF) mind f cstr recargs = let open EConstr in let process_pos env fk = let rec prec env i hyps p = let p',largs = whd_allnolet_stack env sigma p in match kind sigma p' with | Prod (n,t,c) -> let d = LocalAssum (n,t) in mkLambda_name env (n,t,prec (push_rel d env) (i+1) (d::hyps) c) | LetIn (n,b,t,c) when List.is_empty largs -> let d = LocalDef (n,b,t) in mkLetIn (n,b,t,prec (push_rel d env) (i+1) (d::hyps) c) | Ind _ -> let realargs = List.skipn nparrec largs and arg = mkApp (mkRel (i+1), Context.Rel.instance mkRel 0 hyps) in applist(lift i fk,realargs@[arg]) | _ -> let t' = whd_all env sigma p in if EConstr.eq_constr sigma t' p' then assert false else prec env i hyps t' in prec env 0 [] in (* ici, cstrprods est la liste des produits du constructeur instantié *) let rec process_constr env i f = function | (LocalAssum (n,t) as d)::cprest, recarg::rest -> let optionpos = match dest_recarg recarg with | Norec | Mrec (RecArgPrim _) -> None | Mrec (RecArgInd (mind',i)) -> if QMutInd.equal env mind mind' then fvect.(i) else None in (match optionpos with | None -> let env' = push_rel d env in mkLambda_name env (n,t,process_constr env' (i+1) (whd_beta env' Evd.empty (applist (lift 1 f, [(mkRel 1)]))) (cprest,rest)) | Some(_,f_0) -> let nF = lift (i+1+decF) f_0 in let env' = push_rel d env in let arg = process_pos env' nF (lift 1 t) in mkLambda_name env (n,t,process_constr env' (i+1) (whd_beta env' Evd.empty (applist (lift 1 f, [(mkRel 1); arg]))) (cprest,rest))) | (LocalDef (n,c,t) as d)::cprest, rest -> mkLetIn (n,c,t, process_constr (push_rel d env) (i+1) (lift 1 f) (cprest,rest)) | [],[] -> f | _,[] | [],_ -> anomaly (Pp.str "process_constr.") in process_constr env 0 f (List.rev cstr.cs_args, recargs) (* Main function *) let mis_make_indrec env sigma ?(force_mutual=false) listdepkind mib u = let u = EConstr.Unsafe.to_instance u in let env = RelEnv.make env in let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in let evdref = ref sigma in let lnonparrec,lnamesparrec = Inductive.inductive_nonrec_rec_paramdecls (mib,u) in let lnamesparrec = EConstr.of_rel_context lnamesparrec in let nrec = List.length listdepkind in let depPvec = Array.make mib.mind_ntypes (None : (bool * constr) option) in let _ = let rec assign k = function | [] -> () | ((indi,u),mibi,mipi,dep,_)::rest -> (Array.set depPvec (snd indi) (Some(dep,mkRel k)); assign (k-1) rest) in assign nrec listdepkind in let recargsvec = Array.map (fun mip -> mip.mind_recargs) mib.mind_packets in (* recarg information for non recursive parameters *) let rec recargparn l n = if Int.equal n 0 then l else recargparn (mk_norec::l) (n-1) in let recargpar = recargparn [] (nparams-nparrec) in let make_one_rec p = let makefix nbconstruct = let rec mrec i ln lrelevance ltyp ldef = function | ((indi,u),mibi,mipi,dep,target_sort)::rest -> let tyi = snd indi in let nctyi = Array.length mipi.mind_consnames in (* nb constructeurs du type*) (* arity in the context of the fixpoint, i.e. P1..P_nrec f1..f_nbconstruct *) let args = Context.Rel.instance_list mkRel (nrec+nbconstruct) lnamesparrec in let indf = make_ind_family((indi,u),args) in let arsign = get_arity !!env indf in let r = Inductiveops.relevance_of_inductive_family !!env indf in let depind = build_dependent_inductive !!env indf in let deparsign = LocalAssum (make_annot Anonymous r,depind)::arsign in let nonrecpar = Context.Rel.length lnonparrec in let larsign = Context.Rel.length deparsign in let ndepar = larsign - nonrecpar in let dect = larsign+nrec+nbconstruct in (* constructors in context of the Cases expr, i.e. P1..P_nrec f1..f_nbconstruct F_1..F_nrec a_1..a_nar x:I *) let args' = Context.Rel.instance_list mkRel (dect+nrec) lnamesparrec in let args'' = Context.Rel.instance_list mkRel ndepar lnonparrec in let indf' = make_ind_family((indi,u),args'@args'') in let branches = let constrs = get_constructors !!env indf' in let fi = Termops.rel_vect (dect-i-nctyi) nctyi in let vecfi = Array.map (fun f -> mkApp (EConstr.of_constr f, Context.Rel.instance mkRel ndepar lnonparrec)) fi in Array.map3 (make_rec_branch_arg !!env !evdref (nparrec,depPvec,larsign) (fst indi)) vecfi constrs (dest_subterms recargsvec.(tyi)) in let j = (match depPvec.(tyi) with | Some (_,c) when isRel !evdref c -> destRel !evdref c | _ -> assert false) in (* Predicate in the context of the case *) let depind' = build_dependent_inductive !!env indf' in let arsign' = get_arity !!env indf' in let r = Inductiveops.relevance_of_inductive_family !!env indf' in let deparsign' = LocalAssum (make_annot Anonymous r,depind')::arsign' in let pargs = let nrpar = Context.Rel.instance_list mkRel (2*ndepar) lnonparrec and nrar = if dep then Context.Rel.instance_list mkRel 0 deparsign' else Context.Rel.instance_list mkRel 1 arsign' in nrpar@nrar in (* body of i-th component of the mutual fixpoint *) let target_relevance = Retyping.relevance_of_sort target_sort in let deftyi = let ci = make_case_info !!env indi RegularStyle in let concl = applist (mkRel (dect+j+ndepar),pargs) in let pred = it_mkLambda_or_LetIn_name env ((if dep then mkLambda_name !!env else mkLambda) (make_annot Anonymous r,depind',concl)) arsign' in let obj = let indty = find_rectype !!env sigma depind in Inductiveops.make_case_or_project !!env !evdref indty ci (pred, target_relevance) (EConstr.mkRel 1) branches in it_mkLambda_or_LetIn_name env obj (lift_rel_context nrec deparsign) in (* type of i-th component of the mutual fixpoint *) let typtyi = let concl = let pargs = if dep then Context.Rel.instance mkRel 0 deparsign else Context.Rel.instance mkRel 1 arsign in mkApp (mkRel (nbconstruct+ndepar+nonrecpar+j),pargs) in it_mkProd_or_LetIn_name env concl deparsign in mrec (i+nctyi) (Context.Rel.nhyps arsign ::ln) (target_relevance::lrelevance) (typtyi::ltyp) (deftyi::ldef) rest | [] -> let fixn = Array.of_list (List.rev ln) in let fixtyi = Array.of_list (List.rev ltyp) in let fixdef = Array.of_list (List.rev ldef) in let lrelevance = CArray.rev_of_list lrelevance in let names = Array.map (fun r -> make_annot (Name(Id.of_string "F")) r) lrelevance in mkFix ((fixn,p),(names,fixtyi,fixdef)) in mrec 0 [] [] [] [] in let rec make_branch env i = function | ((indi,u),mibi,mipi,dep,sfam)::rest -> let tyi = snd indi in let nconstr = Array.length mipi.mind_consnames in let rec onerec env j = if Int.equal j nconstr then make_branch env (i+j) rest else let recarg = (dest_subterms recargsvec.(tyi)).(j) in let recarg = recargpar@recarg in let vargs = Context.Rel.instance_list mkRel (nrec+i+j) lnamesparrec in let cs = get_constructor ((indi,u),mibi,mipi,vargs) (j+1) in let p_0 = type_rec_branch true dep !!env !evdref (vargs,depPvec,i+j) indi cs recarg in let r_0 = Retyping.relevance_of_sort sfam in let namef = make_name env "f" r_0 in mkLambda (namef, p_0, (onerec (RelEnv.push_rel (LocalAssum (namef,p_0)) env)) (j+1)) in onerec env 0 | [] -> makefix i listdepkind in let rec put_arity env i = function | ((indi,u),_,_,dep,s)::rest -> let indf = make_ind_family ((indi,u), Context.Rel.instance_list mkRel i lnamesparrec) in let typP = make_arity !!env !evdref dep indf s in let nameP = make_name env "P" ERelevance.relevant in mkLambda (nameP,typP, (put_arity (RelEnv.push_rel (LocalAssum (nameP,typP)) env)) (i+1) rest) | [] -> make_branch env 0 listdepkind in (* Body on make_one_rec *) let ((indi,u),mibi,mipi,dep,kind) = List.nth listdepkind p in if force_mutual || (mis_is_recursive_subset (List.map (fun ((indi,u),_,_,_,_) -> indi) listdepkind) mipi.mind_recargs) then let env' = RelEnv.push_rel_context lnamesparrec env in it_mkLambda_or_LetIn_name env (put_arity env' 0 listdepkind) lnamesparrec else let evd = !evdref in let (evd, c) = mis_make_case_com dep !!env evd (indi,u) (mibi,mipi) kind in let (c, _) = eval_case_analysis c in evdref := evd; c in (* Body of mis_make_indrec *) !evdref, List.init nrec make_one_rec (**********************************************************************) (* This builds elimination predicate for Case tactic *) let build_case_analysis_scheme env sigma pity dep kind = let specif = lookup_mind_specif env (fst pity) in mis_make_case_com dep env sigma pity specif kind let prop_but_default_dependent_elim = Summary.ref ~name:"prop_but_default_dependent_elim" Indset_env.empty let inPropButDefaultDepElim : inductive -> Libobject.obj = Libobject.declare_object @@ Libobject.superglobal_object "prop_but_default_dependent_elim" ~cache:(fun i -> prop_but_default_dependent_elim := Indset_env.add i !prop_but_default_dependent_elim) ~subst:(Some (fun (subst,i) -> Mod_subst.subst_ind subst i)) ~discharge:(fun i -> Some i) let declare_prop_but_default_dependent_elim i = Lib.add_leaf (inPropButDefaultDepElim i) let is_prop_but_default_dependent_elim i = Indset_env.mem i !prop_but_default_dependent_elim let pseudo_sort_family_for_elim ind mip = match mip.mind_arity with | RegularArity s when Sorts.is_prop s.mind_sort && is_prop_but_default_dependent_elim ind -> InType | RegularArity s -> Sorts.family s.mind_sort | TemplateArity _ -> InType let is_in_prop mip = match mip.mind_arity with | RegularArity s -> Sorts.is_prop s.mind_sort | TemplateArity _ -> false let default_case_analysis_dependence env ind = let _, mip as specif = lookup_mind_specif env ind in Inductiveops.has_dependent_elim specif && (not (is_in_prop mip) || is_prop_but_default_dependent_elim ind) let build_case_analysis_scheme_default env sigma pity kind = let dep = default_case_analysis_dependence env (fst pity) in build_case_analysis_scheme env sigma pity dep kind (**********************************************************************) (* Interface to build complex Scheme *) (* Check inductive types only occurs once (otherwise we obtain a meaning less scheme) *) let check_arities env sigma listdepkind = let _ = List.fold_left (fun ln (((_,ni as mind),u),mibi,mipi,dep,s) -> if not @@ Inductiveops.is_allowed_elimination sigma ((mibi,mipi),u) s then let s = ESorts.kind sigma s in let u = EInstance.kind sigma u in raise (RecursionSchemeError (env, NotAllowedCaseAnalysis (true, s,(mind,u)))) else if Int.List.mem ni ln then raise (RecursionSchemeError (env, NotMutualInScheme (mind,mind))) else ni::ln) [] listdepkind in true let build_mutual_induction_scheme env sigma ?(force_mutual=false) = function | ((mind,u),dep,s)::lrecspec -> let mib, mip as specif = lookup_mind_specif env mind in if dep && not (Inductiveops.has_dependent_elim specif) then raise (RecursionSchemeError (env, NotAllowedDependentAnalysis (true, mind))); let (sp,tyi) = mind in let listdepkind = ((mind,u),mib,mip,dep,s):: (List.map (function ((mind',u'),dep',s') -> let (sp',_) = mind' in if QMutInd.equal env sp sp' then let (mibi',mipi') = lookup_mind_specif env mind' in ((mind',u'),mibi',mipi',dep',s') else raise (RecursionSchemeError (env, NotMutualInScheme (mind,mind')))) lrecspec) in let _ = check_arities env sigma listdepkind in mis_make_indrec env sigma ~force_mutual listdepkind mib u | _ -> anomaly (Pp.str "build_induction_scheme expects a non empty list of inductive types.") let build_induction_scheme env sigma pind dep kind = let (mib,mip) as specif = lookup_mind_specif env (fst pind) in if dep && not (Inductiveops.has_dependent_elim specif) then raise (RecursionSchemeError (env, NotAllowedDependentAnalysis (true, fst pind))); let sigma, l = mis_make_indrec env sigma [(pind,mib,mip,dep,kind)] mib (snd pind) in sigma, List.hd l (*s Eliminations. *) let elimination_suffix = function | InSProp -> "_sind" | InProp -> "_ind" | InSet -> "_rec" | InType | InQSort -> "_rect" let case_suffix = "_case" let make_elimination_ident id s = add_suffix id (elimination_suffix s) (* Look up function for the default elimination constant *) let lookup_eliminator env ind_sp s = let kn,i = ind_sp in let mpu = KerName.modpath @@ MutInd.user kn in let mpc = KerName.modpath @@ MutInd.canonical kn in let ind_id = (lookup_mind kn env).mind_packets.(i).mind_typename in let id = add_suffix ind_id (elimination_suffix s) in let l = Label.of_id id in let knu = KerName.make mpu l in let knc = KerName.make mpc l in (* Try first to get an eliminator defined in the same section as the *) (* inductive type *) let cst = Constant.make knu knc in if mem_constant cst env then GlobRef.ConstRef cst else (* Then try to get a user-defined eliminator in some other places *) (* using short name (e.g. for "eq_rec") *) try Nametab.locate (qualid_of_ident id) with Not_found -> user_err (strbrk "Cannot find the elimination combinator " ++ Id.print id ++ strbrk ", the elimination of the inductive definition " ++ Nametab.pr_global_env Id.Set.empty (GlobRef.IndRef ind_sp) ++ strbrk " on sort " ++ Sorts.pr_sort_family s ++ strbrk " is probably not allowed.")
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>