package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.20.1.tar.gz
md5=0cfaa70f569be9494d24c829e6555d46
sha512=8ee967c636b67b22a4f34115871d8f9b9114df309afc9ddf5f61275251088c6e21f6cf745811df75554d30f4cebb6682f23eeb2e88b771330c4b60ce3f6bf5e2
doc/src/coq-core.engine/nameops.ml.html
Source file nameops.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names (* Utilities *) module Subscript = struct type t = { ss_zero : int; (** Number of leading zeros of the subscript *) ss_subs : int; (** Digital value of the subscript, zero meaning empty *) } let rec overflow n = Int.equal (n mod 10) 9 && (Int.equal (n / 10) 0 || overflow (n / 10)) let zero = { ss_subs = 0; ss_zero = 0 } let succ s = if Int.equal s.ss_subs 0 then if Int.equal s.ss_zero 0 then (* [] -> [0] *) { ss_zero = 1; ss_subs = 0 } else (* [0...00] -> [0..01] *) { ss_zero = s.ss_zero - 1; ss_subs = 1 } else if overflow s.ss_subs then if Int.equal s.ss_zero 0 then (* [9...9] -> [10...0] *) { ss_zero = 0; ss_subs = 1 + s.ss_subs } else (* [0...009...9] -> [0...010...0] *) { ss_zero = s.ss_zero - 1; ss_subs = 1 + s.ss_subs } else (* [0...0n] -> [0...0{n+1}] *) { ss_zero = s.ss_zero; ss_subs = s.ss_subs + 1 } let equal s1 s2 = Int.equal s1.ss_zero s2.ss_zero && Int.equal s1.ss_subs s2.ss_subs let compare s1 s2 = (* Lexicographic order is reversed in order to ensure that [succ] is strictly increasing. *) let c = Int.compare s1.ss_subs s2.ss_subs in if Int.equal c 0 then Int.compare s1.ss_zero s2.ss_zero else c end let code_of_0 = Char.code '0' let code_of_9 = Char.code '9' let cut_ident skip_quote s = let s = Id.to_string s in let slen = String.length s in (* [n'] is the position of the first non nullary digit *) let rec numpart n n' = if Int.equal n 0 then (* ident made of _ and digits only [and ' if skip_quote]: don't cut it *) slen else let c = Char.code (String.get s (n-1)) in if Int.equal c code_of_0 && not (Int.equal n slen) then numpart (n-1) n' else if code_of_0 <= c && c <= code_of_9 then numpart (n-1) (n-1) else if skip_quote && (Int.equal c (Char.code '\'') || Int.equal c (Char.code '_')) then numpart (n-1) (n-1) else n' in numpart slen slen let repr_ident s = let numstart = cut_ident false s in let s = Id.to_string s in let slen = String.length s in if Int.equal numstart slen then (s, None) else (String.sub s 0 numstart, Some (int_of_string (String.sub s numstart (slen - numstart)))) let make_ident sa = function | Some n -> let c = Char.code (String.get sa (String.length sa -1)) in let s = if c < code_of_0 || c > code_of_9 then sa ^ (string_of_int n) else sa ^ "_" ^ (string_of_int n) in Id.of_string s | None -> Id.of_string sa let root_of_id id = let suffixstart = cut_ident true id in Id.of_string (String.sub (Id.to_string id) 0 suffixstart) (* Return the same identifier as the original one but whose {i subscript} is incremented. If the original identifier does not have a suffix, [0] is appended to it. Example mappings: [bar] ↦ [bar0] [bar0] ↦ [bar1] [bar00] ↦ [bar01] [bar1] ↦ [bar2] [bar01] ↦ [bar02] [bar9] ↦ [bar10] [bar09] ↦ [bar10] [bar99] ↦ [bar100] *) let increment_subscript id = let id = Id.to_string id in let len = String.length id in let rec add carrypos = let c = id.[carrypos] in if is_digit c then if Int.equal (Char.code c) (Char.code '9') then begin assert (carrypos>0); add (carrypos-1) end else begin let newid = Bytes.of_string id in Bytes.fill newid (carrypos+1) (len-1-carrypos) '0'; Bytes.set newid carrypos (Char.chr (Char.code c + 1)); newid end else begin let newid = Bytes.of_string (id^"0") in if carrypos < len-1 then begin Bytes.fill newid (carrypos+1) (len-1-carrypos) '0'; Bytes.set newid (carrypos+1) '1' end; newid end in Id.of_bytes (add (len-1)) let has_subscript id = let id = Id.to_string id in is_digit (id.[String.length id - 1]) let get_subscript id = let id0 = id in let id = Id.to_string id in let len = String.length id in let rec get_suf accu pos = if pos < 0 then (pos, accu) else let c = id.[pos] in if is_digit c then get_suf (Char.code c - Char.code '0' :: accu) (pos - 1) else (pos, accu) in let (pos, suf) = get_suf [] (len - 1) in if Int.equal pos (len - 1) then (id0, Subscript.zero) else let id = String.sub id 0 (pos + 1) in let rec compute_zeros accu = function | [] -> (accu, []) | 0 :: l -> compute_zeros (succ accu) l | _ :: _ as l -> (accu, l) in let (ss_zero, suf) = compute_zeros 0 suf in let rec compute_suf accu = function | [] -> accu | n :: l -> compute_suf (10 * accu + n) l in let ss_subs = compute_suf 0 suf in (Id.of_string id, { Subscript.ss_subs; ss_zero; }) let add_subscript id ss = if Subscript.equal Subscript.zero ss then id else if Int.equal ss.Subscript.ss_subs 0 then let id = Id.to_string id in let pad = String.make ss.Subscript.ss_zero '0' in Id.of_string (Printf.sprintf "%s%s" id pad) else let id = Id.to_string id in let pad = String.make ss.Subscript.ss_zero '0' in let suf = ss.Subscript.ss_subs in Id.of_string (Printf.sprintf "%s%s%i" id pad suf) let forget_subscript id = let numstart = cut_ident false id in let newid = Bytes.make (numstart+1) '0' in String.blit (Id.to_string id) 0 newid 0 numstart; (Id.of_bytes newid) let add_suffix id s = Id.of_string (Id.to_string id ^ s) let add_prefix s id = Id.of_string (s ^ Id.to_string id) let atompart_of_id id = fst (repr_ident id) (** Segment trees: efficient lookup of the next free integer *) module SegTree : sig type t val empty : t val mem : int -> t -> bool val add : int -> t -> t val remove : int -> t -> t val next : int -> t -> int (** [next n s] returns the smallest integer [k] not in [s] s.t. [n <= k] *) val fresh : int -> t -> int * t (** Efficient composition of [next] and [add] *) end = struct module Segment = struct type t = int * int (* segment [p, q[, in particular p < q *) let compare (p, _) (q, _) = Int.compare p q end module SegSet = Set.Make(Segment) type t = SegSet.t (* Invariants: forall [p1, q1[, [p2, q2[ in such a set, either: - p1 = p2 and q1 = q2 - p1 < q1 < p2 < q2 - p2 < q2 < p1 < q1 *) let empty = SegSet.empty let mem n s = let find (_p, q) = n < q in match SegSet.find_first_opt find s with | None -> false | Some (p, _q) -> p <= n let add n s = let find_min (_p, q) = n < q in let find_max (_p, q) = q <= n in match SegSet.find_first_opt find_min s with | None -> (* n larger than all elements *) begin match SegSet.max_elt_opt s with | None -> SegSet.add (n, n + 1) s | Some (pl, ql) -> if Int.equal n ql then SegSet.add (pl, n + 1) (SegSet.remove (pl, ql) s) else SegSet.add (n, n + 1) s end | Some (pr, qr) -> if pr <= n then s (* already present *) else match SegSet.find_last_opt find_max s with | None -> (* n smaller than all elements *) if Int.equal pr (n + 1) then SegSet.add (n, qr) (SegSet.remove (pr, qr) s) else SegSet.add (n, n + 1) s | Some (pl, ql) -> (* pl < ql <= n < pr < qr *) if Int.equal ql n && Int.equal pr (n + 1) then SegSet.add (pl, qr) (SegSet.remove (pl, ql) (SegSet.remove (pr, qr) s)) else if Int.equal ql n then SegSet.add (pl, n + 1) (SegSet.remove (pl, ql) s) else if Int.equal pr (n + 1) then SegSet.add (n, qr) (SegSet.remove (pr, qr) s) else SegSet.add (n, n + 1) s let remove n s = let find_min (_p, q) = n < q in match SegSet.find_first_opt find_min s with | None -> s | Some (pr, qr) -> if pr <= n then let s = SegSet.remove (pr, qr) s in if Int.equal (pr + 1) qr then s else if Int.equal pr n then SegSet.add (n + 1, qr) s else if Int.equal (n + 1) qr then SegSet.add (pr, n) s else SegSet.add (pr, n) (SegSet.add (n + 1, qr) s) else s let next n s = let find (_p, q) = n < q in match SegSet.find_first_opt find s with | None -> n | Some (p, q) -> if p <= n then q else n let fresh n s = let find_min (_p, q) = n < q in let find_max (_p, q) = q <= n in match SegSet.find_first_opt find_min s with | None -> let s = match SegSet.max_elt_opt s with | None -> SegSet.add (n, n + 1) s | Some (pl, ql) -> if Int.equal n ql then SegSet.add (pl, n + 1) (SegSet.remove (pl, ql) s) else SegSet.add (n, n + 1) s in n, s | Some (pr, qr) -> if pr <= n then (* equivalent to adding qr *) let next = SegSet.find_first_opt (fun (p, _q) -> qr < p) s in let s = match next with | None -> SegSet.add (pr, qr + 1) (SegSet.remove (pr, qr) s) | Some (pk, qk) -> if Int.equal (qr + 1) pk then SegSet.add (pr, qk) (SegSet.remove (pk, qk) (SegSet.remove (pr, qr) s)) else SegSet.add (pr, qr + 1) (SegSet.remove (pr, qr) s) in qr, s else let s = match SegSet.find_last_opt find_max s with | None -> if Int.equal pr (n + 1) then SegSet.add (n, qr) (SegSet.remove (pr, qr) s) else SegSet.add (n, n + 1) s | Some (pl, ql) -> if Int.equal ql n && Int.equal pr (n + 1) then SegSet.add (pl, qr) (SegSet.remove (pl, ql) (SegSet.remove (pr, qr) s)) else if Int.equal ql n then SegSet.add (pl, n + 1) (SegSet.remove (pl, ql) s) else if Int.equal pr (n + 1) then SegSet.add (n, qr) (SegSet.remove (pr, qr) s) else SegSet.add (n, n + 1) s in n, s end module SubSet = struct type t = { num : SegTree.t; pre : SegTree.t list; (* lists are OK because we are already logarithmic *) } (* We represent sets of subscripts by case-splitting on ss_zero. If it is zero, we store the number in the [num] set. Otherwise, we know the set of possible values is finite. At position k, [pre] contains a set of maximum size 10^k representing k-digit numbers with at least one leading zero. *) let empty = { num = SegTree.empty; pre = []; } let rec pow10 k accu = if k <= 0 then accu else pow10 (k - 1) (10 * accu) let rec log10 n accu = if n <= 0 then accu else log10 (n / 10) (accu + 1) let max_subscript ss = let exp = log10 ss.Subscript.ss_subs 0 + ss.Subscript.ss_zero - 1 in pow10 exp 1 let add ss s = let open Subscript in if Int.equal ss.ss_zero 0 then { s with num = SegTree.add ss.ss_subs s.num } else let pre = let len = List.length s.pre in if len < ss.ss_zero then s.pre @ List.make (ss.ss_zero - len) SegTree.empty else s.pre in let set = match List.nth_opt pre (ss.ss_zero - 1) with | None -> assert false | Some m -> SegTree.add ss.ss_subs m in { s with pre = List.assign pre (ss.ss_zero - 1) set } let remove ss s = let open Subscript in if Int.equal ss.ss_zero 0 then { s with num = SegTree.remove ss.ss_subs s.num } else match List.nth_opt s.pre (ss.ss_zero - 1) with | None -> s | Some m -> let m = SegTree.remove ss.ss_subs m in { s with pre = List.assign s.pre (ss.ss_zero - 1) m } let mem ss s = let open Subscript in if Int.equal ss.ss_zero 0 then SegTree.mem ss.ss_subs s.num else match List.nth_opt s.pre (ss.ss_zero - 1) with | None -> false | Some m -> SegTree.mem ss.ss_subs m let ss_O = { Subscript.ss_zero = 1; ss_subs = 0 } (* [0] *) let next ss s = let open Subscript in if ss.ss_zero > 0 then match List.nth_opt s.pre (ss.ss_zero - 1) with | None -> ss | Some m -> let next = SegTree.next ss.ss_subs m in let max = max_subscript ss in if max <= next then (* overflow *) { ss_zero = 0; ss_subs = SegTree.next max s.num } else { ss_zero = ss.ss_zero; ss_subs = next } else if Int.equal ss.ss_subs 0 then (* Handle specially [] *) if not @@ SegTree.mem 0 s.num then Subscript.zero else match s.pre with | [] -> ss_O | m :: _ -> if SegTree.mem 0 m then { ss_zero = 0; ss_subs = SegTree.next 1 s.num } else ss_O else { ss_zero = 0; ss_subs = SegTree.next ss.ss_subs s.num } let fresh ss s = let open Subscript in if ss.ss_zero > 0 then match List.nth_opt s.pre (ss.ss_zero - 1) with | None -> ss, add ss s | Some m -> let subs, m = SegTree.fresh ss.ss_subs m in let max = max_subscript ss in if max <= subs then let subs, num = SegTree.fresh max s.num in { ss_zero = 0; ss_subs = subs }, { s with num } else let s = { s with pre = List.assign s.pre (ss.ss_zero - 1) m } in { ss_zero = ss.ss_zero; ss_subs = subs }, s else if Int.equal ss.ss_subs 0 then if not @@ SegTree.mem 0 s.num then Subscript.zero, { num = SegTree.add 0 s.num; pre = s.pre } else match s.pre with | [] -> ss_O, { num = s.num; pre = [SegTree.add 0 SegTree.empty] } | m :: rem -> if SegTree.mem 0 m then let subs, num = SegTree.fresh 1 s.num in { ss_zero = 0; ss_subs = subs }, { num; pre = s.pre } else ss_O, { num = s.num; pre = SegTree.add 0 SegTree.empty :: rem } else let subs, num = SegTree.fresh ss.ss_subs s.num in { ss_zero = 0; ss_subs = subs }, { s with num } end module Fresh = struct type t = SubSet.t Id.Map.t let empty = Id.Map.empty let add id m = let (id, s) = get_subscript id in let old = try Id.Map.find id m with Not_found -> SubSet.empty in Id.Map.add id (SubSet.add s old) m let remove id m = let (id, s) = get_subscript id in match Id.Map.find id m with | old -> Id.Map.add id (SubSet.remove s old) m | exception Not_found -> m let mem id m = let (id, s) = get_subscript id in try SubSet.mem s (Id.Map.find id m) with Not_found -> false let next id0 m = let (id, s) = get_subscript id0 in match Id.Map.find_opt id m with | None -> id0 | Some old -> let ss = SubSet.next s old in add_subscript id ss let fresh id0 m = let (id, s) = get_subscript id0 in match Id.Map.find_opt id m with | None -> id0, Id.Map.add id (SubSet.add s SubSet.empty) m | Some old -> let ss, n = SubSet.fresh s old in add_subscript id ss, Id.Map.add id n m let of_list l = List.fold_left (fun accu id -> add id accu) empty l let of_set s = Id.Set.fold add s empty let of_named_context_val s = of_set @@ Environ.ids_of_named_context_val s end (* Names *) module type ExtName = sig include module type of struct include Names.Name end exception IsAnonymous val fold_left : ('a -> Id.t -> 'a) -> 'a -> t -> 'a val fold_right : (Id.t -> 'a -> 'a) -> t -> 'a -> 'a val iter : (Id.t -> unit) -> t -> unit val map : (Id.t -> Id.t) -> t -> t val fold_left_map : ('a -> Id.t -> 'a * Id.t) -> 'a -> t -> 'a * t val fold_right_map : (Id.t -> 'a -> Id.t * 'a) -> Name.t -> 'a -> Name.t * 'a val get_id : t -> Id.t val pick : t -> t -> t val pick_annot : (t,'r) Context.pbinder_annot -> (t,'r) Context.pbinder_annot -> (t,'r) Context.pbinder_annot val cons : t -> Id.t list -> Id.t list val to_option : Name.t -> Id.t option end module Name : ExtName = struct include Names.Name exception IsAnonymous let fold_left f a = function | Name id -> f a id | Anonymous -> a let fold_right f na a = match na with | Name id -> f id a | Anonymous -> a let iter f na = fold_right (fun x () -> f x) na () let map f = function | Name id -> Name (f id) | Anonymous -> Anonymous let fold_left_map f a = function | Name id -> let (a, id) = f a id in (a, Name id) | Anonymous -> a, Anonymous let fold_right_map f na a = match na with | Name id -> let (id, a) = f id a in (Name id, a) | Anonymous -> Anonymous, a let get_id = function | Name id -> id | Anonymous -> raise IsAnonymous let pick na1 na2 = match na1 with | Name _ -> na1 | Anonymous -> na2 let pick_annot na1 na2 = let open Context in match na1.binder_name with | Name _ -> na1 | Anonymous -> na2 let cons na l = match na with | Anonymous -> l | Name id -> id::l let to_option = function | Anonymous -> None | Name id -> Some id end (* Metavariables *) let pr_meta = Pp.int let string_of_meta = string_of_int
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>