package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.20.0.tar.gz
md5=66e57ea55275903bef74d5bf36fbe0f1
sha512=1a7eac6e2f58724a3f9d68bbb321e4cfe963ba1a5551b9b011db4b3f559c79be433d810ff262593d753770ee41ea68fbd6a60daa1e2319ea00dff64c8851d70b
doc/src/coq-core.vernac/indschemes.ml.html
Source file indschemes.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Hugo Herbelin from contents related to inductive schemes initially developed by Christine Paulin (induction schemes), Vincent Siles (decidable equality and boolean equality) and Matthieu Sozeau (combined scheme) in file command.ml, Sep 2009 *) (* This file provides entry points for manually or automatically declaring new schemes *) open Pp open Util open Declarations open Term open Goptions open Vernacexpr open Ind_tables open Auto_ind_decl open Eqschemes open Elimschemes (** Data of an inductive scheme with name resolved *) type resolved_scheme = Names.Id.t CAst.t * Indrec.dep_flag * Names.inductive * Sorts.family (** flag for internal message display *) type internal_flag = | UserAutomaticRequest (* kernel action, a message is displayed *) | UserIndividualRequest (* user action, a message is displayed *) (* Flags governing automatic synthesis of schemes *) let elim_flag = ref true let () = declare_bool_option { optstage = Summary.Stage.Interp; optdepr = None; optkey = ["Elimination";"Schemes"]; optread = (fun () -> !elim_flag) ; optwrite = (fun b -> elim_flag := b) } let bifinite_elim_flag = ref false let () = declare_bool_option { optstage = Summary.Stage.Interp; optdepr = None; optkey = ["Nonrecursive";"Elimination";"Schemes"]; optread = (fun () -> !bifinite_elim_flag) ; optwrite = (fun b -> bifinite_elim_flag := b) } let case_flag = ref false let () = declare_bool_option { optstage = Summary.Stage.Interp; optdepr = None; optkey = ["Case";"Analysis";"Schemes"]; optread = (fun () -> !case_flag) ; optwrite = (fun b -> case_flag := b) } let eq_flag = ref false let () = declare_bool_option { optstage = Summary.Stage.Interp; optdepr = None; optkey = ["Boolean";"Equality";"Schemes"]; optread = (fun () -> !eq_flag) ; optwrite = (fun b -> eq_flag := b) } let is_eq_flag () = !eq_flag let eq_dec_flag = ref false let () = declare_bool_option { optstage = Summary.Stage.Interp; optdepr = None; optkey = ["Decidable";"Equality";"Schemes"]; optread = (fun () -> !eq_dec_flag) ; optwrite = (fun b -> eq_dec_flag := b) } let rewriting_flag = ref false let () = declare_bool_option { optstage = Summary.Stage.Interp; optdepr = None; optkey = ["Rewriting";"Schemes"]; optread = (fun () -> !rewriting_flag) ; optwrite = (fun b -> rewriting_flag := b) } (* Util *) let define ~poly name sigma c types = let univs = Evd.univ_entry ~poly sigma in let entry = Declare.definition_entry ~univs ?types c in let kind = Decls.(IsDefinition Scheme) in let kn = Declare.declare_constant ~kind ~name (Declare.DefinitionEntry entry) in Declare.definition_message name; kn (* Boolean equality *) let declare_beq_scheme_gen ?locmap names kn = ignore (define_mutual_scheme ?locmap beq_scheme_kind names kn) let debug = CDebug.create ~name:"indschemes" () let alarm what internal msg = match internal with | UserAutomaticRequest -> debug Pp.(fun () -> hov 0 msg ++ fnl () ++ what ++ str " not defined."); None | UserIndividualRequest -> Some msg let try_declare_scheme ?locmap what f internal names kn = try f ?locmap names kn with e -> let e = Exninfo.capture e in let rec extract_exn = function Logic_monad.TacticFailure e -> extract_exn e | e -> e in let msg = match extract_exn (fst e) with | ParameterWithoutEquality cst -> alarm what internal (str "Boolean equality not found for parameter " ++ Printer.pr_global cst ++ str".") | InductiveWithProduct -> alarm what internal (str "Unable to decide equality of functional arguments.") | InductiveWithSort -> alarm what internal (str "Unable to decide equality of type arguments.") | NonSingletonProp ind -> alarm what internal (str "Cannot extract computational content from proposition " ++ quote (Printer.pr_inductive (Global.env()) ind) ++ str ".") | EqNotFound ind' -> alarm what internal (str "Boolean equality on " ++ quote (Printer.pr_inductive (Global.env()) ind') ++ strbrk " is missing.") | UndefinedCst s -> alarm what internal (strbrk "Required constant " ++ str s ++ str " undefined.") | DeclareUniv.AlreadyDeclared (kind, id) as exn -> let msg = CErrors.print exn in alarm what internal msg | DecidabilityMutualNotSupported -> alarm what internal (str "Decidability lemma for mutual inductive types not supported.") | EqUnknown s -> alarm what internal (str "Found unsupported " ++ str s ++ str " while building Boolean equality.") | NoDecidabilityCoInductive -> alarm what internal (str "Scheme Equality is only for inductive types.") | DecidabilityIndicesNotSupported -> alarm what internal (str "Inductive types with indices not supported.") | ConstructorWithNonParametricInductiveType ind -> alarm what internal (strbrk "Unsupported constructor with an argument whose type is a non-parametric inductive type." ++ strbrk " Type " ++ quote (Printer.pr_inductive (Global.env()) ind) ++ str " is applied to an argument which is not a variable.") | InternalDependencies -> alarm what internal (strbrk "Inductive types with internal dependencies in constructors not supported.") | e when CErrors.noncritical e -> alarm what internal (str "Unexpected error during scheme creation: " ++ CErrors.print e) | _ -> Exninfo.iraise e in match msg with | None -> () | Some msg -> Exninfo.iraise (CErrors.UserError msg, snd e) let beq_scheme_msg mind = let mib = Global.lookup_mind mind in (* TODO: mutual inductive case *) str "Boolean equality on " ++ pr_enum (fun ind -> quote (Printer.pr_inductive (Global.env()) ind)) (List.init (Array.length mib.mind_packets) (fun i -> (mind,i))) let declare_beq_scheme_with ?locmap l kn = try_declare_scheme (beq_scheme_msg kn) declare_beq_scheme_gen UserIndividualRequest l kn let try_declare_beq_scheme ?locmap kn = (* TODO: handle Fix, eventually handle proof-irrelevance; improve decidability by depending on decidability for the parameters rather than on the bl and lb properties *) try_declare_scheme (beq_scheme_msg kn) declare_beq_scheme_gen UserAutomaticRequest [] kn let declare_beq_scheme ?locmap mi = declare_beq_scheme_with ?locmap [] mi (* Case analysis schemes *) let declare_one_case_analysis_scheme ?loc ind = let (mib, mip) as specif = Global.lookup_inductive ind in let kind = Indrec.pseudo_sort_family_for_elim ind mip in let dep, suff = if kind == InProp then case_nodep, Some "case" else if not (Inductiveops.has_dependent_elim specif) then case_nodep, None else case_dep, Some "case" in let id = match suff with | None -> None | Some suff -> (* the auto generated eliminator may be called "case" instead of eg "case_nodep" *) Some Names.(Id.of_string (Id.to_string mip.mind_typename ^ "_" ^ suff)) in let kelim = Inductiveops.elim_sort (mib,mip) in (* in case the inductive has a type elimination, generates only one induction scheme, the other ones share the same code with the appropriate type *) if Sorts.family_leq InType kelim then define_individual_scheme ?loc dep id ind (* Induction/recursion schemes *) let declare_one_induction_scheme ?loc ind = let (mib,mip) as specif = Global.lookup_inductive ind in let kind = Indrec.pseudo_sort_family_for_elim ind mip in let from_prop = kind == InProp in let depelim = Inductiveops.has_dependent_elim specif in let kelim = Inductiveops.sorts_below (Inductiveops.elim_sort (mib,mip)) in let kelim = if Global.sprop_allowed () then kelim else List.filter (fun s -> s <> InSProp) kelim in let elims = List.filter (fun (sort,_) -> List.mem_f Sorts.family_equal sort kelim) (* NB: the order is important, it makes it so that _rec is defined using _rect but _ind is not. *) [(InType, "rect"); (InProp, "ind"); (InSet, "rec"); (InSProp, "sind")] in let elims = List.map (fun (to_kind,dflt_suff) -> if from_prop then elim_scheme ~dep:false ~to_kind, Some dflt_suff else if depelim then elim_scheme ~dep:true ~to_kind, Some dflt_suff else elim_scheme ~dep:false ~to_kind, None) elims in List.iter (fun (kind, suff) -> let id = match suff with | None -> None | Some suff -> (* the auto generated eliminator may be called "rect" instead of eg "rect_dep" *) Some Names.(Id.of_string (Id.to_string mip.mind_typename ^ "_" ^ suff)) in define_individual_scheme ?loc kind id ind) elims let declare_induction_schemes ?(locmap=Locmap.default None) kn = let mib = Global.lookup_mind kn in if mib.mind_finite <> Declarations.CoFinite then begin for i = 0 to Array.length mib.mind_packets - 1 do let loc = Ind_tables.Locmap.lookup ~locmap (kn,i) in declare_one_induction_scheme (kn,i) ?loc; done; end (* Decidable equality *) let declare_eq_decidability_gen ?locmap names kn = let mib = Global.lookup_mind kn in if mib.mind_finite <> Declarations.CoFinite then define_mutual_scheme ?locmap eq_dec_scheme_kind names kn let eq_dec_scheme_msg ind = (* TODO: mutual inductive case *) str "Decidable equality on " ++ quote (Printer.pr_inductive (Global.env()) ind) let declare_eq_decidability_scheme_with ?locmap l kn = try_declare_scheme ?locmap (eq_dec_scheme_msg (kn,0)) declare_eq_decidability_gen UserIndividualRequest l kn let try_declare_eq_decidability ?locmap kn = try_declare_scheme ?locmap (eq_dec_scheme_msg (kn,0)) declare_eq_decidability_gen UserAutomaticRequest [] kn let declare_eq_decidability ?locmap mi = declare_eq_decidability_scheme_with ?locmap [] mi let ignore_error f x = try f x with e when CErrors.noncritical e -> () let declare_rewriting_schemes ?loc ind = if Hipattern.is_inductive_equality (Global.env ()) ind then begin define_individual_scheme ?loc rew_r2l_scheme_kind None ind; define_individual_scheme ?loc rew_r2l_dep_scheme_kind None ind; define_individual_scheme ?loc rew_r2l_forward_dep_scheme_kind None ind; (* These ones expect the equality to be symmetric; the first one also *) (* needs eq *) ignore_error (define_individual_scheme rew_l2r_scheme_kind None) ind; ignore_error (define_individual_scheme ?loc sym_involutive_scheme_kind None) ind; ignore_error (define_individual_scheme ?loc rew_l2r_dep_scheme_kind None) ind; ignore_error (define_individual_scheme ?loc rew_l2r_forward_dep_scheme_kind None) ind end let warn_cannot_build_congruence = CWarnings.create ~name:"cannot-build-congruence" ~category:CWarnings.CoreCategories.automation (fun () -> strbrk "Cannot build congruence scheme because eq is not found") let declare_congr_scheme ?loc ind = let env = Global.env () in if Hipattern.is_inductive_equality env ind then begin if try Coqlib.check_required_library Coqlib.logic_module_name; true with e when CErrors.noncritical e -> false then define_individual_scheme ?loc congr_scheme_kind None ind else warn_cannot_build_congruence () end let declare_sym_scheme ?loc ind = if Hipattern.is_inductive_equality (Global.env ()) ind then (* Expect the equality to be symmetric *) ignore_error (define_individual_scheme ?loc sym_scheme_kind None) ind (* Scheme command *) (* Boolean on scheme_type cheking if it considered dependent *) let sch_isdep = function | SchemeInduction | SchemeElimination -> true | SchemeMinimality | SchemeCase -> false let sch_isrec = function | SchemeInduction | SchemeMinimality -> true | SchemeElimination | SchemeCase -> false (* Generate suffix for scheme given a target sort *) let scheme_suffix_gen {sch_type; sch_sort} sort = (* The _ind/_rec_/case suffix *) let ind_suffix = match sch_isrec sch_type, sch_sort with | true , InSProp | true , InProp -> "_ind" | true , _ -> "_rec" | false , _ -> "_case" in (* SProp and Type have an auxillary ending to the _ind suffix *) let aux_suffix = match sch_sort with | InSProp -> "s" | InType -> "t" | _ -> "" in (* Some schemes are deliminated with _dep or no_dep *) let dep_suffix = match sch_isdep sch_type , sort with | true , InProp -> "_dep" | false , InSet | false , InType | false , InSProp -> "_nodep" | _ , _ -> "" in ind_suffix ^ aux_suffix ^ dep_suffix let smart_ind qid = let ind = Smartlocate.smart_global_inductive qid in if Dumpglob.dump() then Dumpglob.add_glob ?loc:qid.loc (IndRef ind); ind (* Resolve the name of a scheme using an environment and extract some important data such as the inductive type involved, whether it is a dependent eliminator and its sort. *) let name_and_process_scheme env = function | (Some id, {sch_type; sch_qualid; sch_sort}) -> (id, sch_isdep sch_type, smart_ind sch_qualid, sch_sort) | (None, ({sch_type; sch_qualid; sch_sort} as sch)) -> (* If no name has been provided, we build one from the types of the ind requested *) let ind = smart_ind sch_qualid in let sort_of_ind = Indrec.pseudo_sort_family_for_elim ind (snd (Inductive.lookup_mind_specif env ind)) in let suffix = scheme_suffix_gen sch sort_of_ind in let newid = Nameops.add_suffix (Nametab.basename_of_global (Names.GlobRef.IndRef ind)) suffix in let newref = CAst.make newid in (newref, sch_isdep sch_type, ind, sch_sort) let do_mutual_induction_scheme ?(force_mutual=false) env ?(isrec=true) l = let sigma, inst = let _,_,ind,_ = match l with | x::_ -> x | [] -> assert false in let _, ctx = Typeops.type_of_global_in_context env (Names.GlobRef.IndRef ind) in let u, ctx = UnivGen.fresh_instance_from ctx None in let u = EConstr.EInstance.make u in let sigma = Evd.from_ctx (UState.of_context_set ctx) in sigma, u in let sigma, lrecspec = List.fold_left_map (fun sigma (_,dep,ind,sort) -> let sigma, sort = Evd.fresh_sort_in_family ~rigid:UnivRigid sigma sort in (sigma, ((ind,inst),dep,sort))) sigma l in let sigma, listdecl = if isrec then Indrec.build_mutual_induction_scheme env sigma ~force_mutual lrecspec else List.fold_left_map (fun sigma (ind,dep,sort) -> let sigma, c = Indrec.build_case_analysis_scheme env sigma ind dep sort in let c, _ = Indrec.eval_case_analysis c in sigma, c) sigma lrecspec in let poly = (* NB: build_mutual_induction_scheme forces nonempty list of mutual inductives (force_mutual is about the generated schemes) *) let _,_,ind,_ = List.hd l in Global.is_polymorphic (Names.GlobRef.IndRef ind) in let declare decl ({CAst.v=fi},dep,ind,sort) = let decltype = Retyping.get_type_of env sigma decl in let decltype = EConstr.to_constr sigma decltype in let decl = EConstr.to_constr sigma decl in let cst = define ~poly fi sigma decl (Some decltype) in let kind = let open Elimschemes in if isrec then Some (elim_scheme ~dep ~to_kind:sort) else match sort with | InType -> Some (if dep then case_dep else case_nodep) | InProp -> Some (if dep then casep_dep else casep_nodep) | InSProp | InSet | InQSort -> (* currently we don't have standard scheme kinds for this *) None in match kind with | None -> () | Some kind -> DeclareScheme.declare_scheme (Ind_tables.scheme_kind_name kind) (ind,cst) in let () = List.iter2 declare listdecl l in let lrecnames = List.map (fun ({CAst.v},_,_,_) -> v) l in Declare.fixpoint_message None lrecnames let do_scheme env l = let isrec = match l with | [_, sch] -> sch_isrec sch.sch_type | _ -> if List.for_all (fun (_,sch) -> sch_isrec sch.sch_type) l then true else CErrors.user_err Pp.(str "Mutually defined schemes should be recursive.") in let lnamedepindsort = List.map (name_and_process_scheme env) l in do_mutual_induction_scheme env ~isrec lnamedepindsort let do_scheme_equality ?locmap sch id = let mind,_ = smart_ind id in let dec = match sch with SchemeBooleanEquality -> false | SchemeEquality -> true in declare_beq_scheme ?locmap mind; if dec then declare_eq_decidability ?locmap mind (**********************************************************************) (* Combined scheme *) (* Matthieu Sozeau, Dec 2006 *) let list_split_rev_at index l = let rec aux i acc = function hd :: tl when Int.equal i index -> acc, tl | hd :: tl -> aux (succ i) (hd :: acc) tl | [] -> failwith "List.split_when: Invalid argument" in aux 0 [] l let fold_left' f = function [] -> invalid_arg "fold_left'" | hd :: tl -> List.fold_left f hd tl let mk_coq_and sigma = Evd.fresh_global (Global.env ()) sigma (Coqlib.lib_ref "core.and.type") let mk_coq_conj sigma = Evd.fresh_global (Global.env ()) sigma (Coqlib.lib_ref "core.and.conj") let mk_coq_prod sigma = Evd.fresh_global (Global.env ()) sigma (Coqlib.lib_ref "core.prod.type") let mk_coq_pair sigma = Evd.fresh_global (Global.env ()) sigma (Coqlib.lib_ref "core.prod.intro") let build_combined_scheme env schemes = let sigma = Evd.from_env env in let sigma, defs = List.fold_left_map (fun sigma cst -> let sigma, c = Evd.fresh_constant_instance env sigma cst in sigma, (c, Typeops.type_of_constant_in env c)) sigma schemes in let find_inductive ty = let (ctx, arity) = decompose_prod ty in let (_, last) = List.hd ctx in match Constr.kind last with | Constr.App (ind, args) -> let ind = Constr.destInd ind in let (_,spec) = Inductive.lookup_mind_specif env (fst ind) in ctx, ind, spec.mind_nrealargs | _ -> ctx, Constr.destInd last, 0 in let (c, t) = List.hd defs in let ctx, ind, nargs = find_inductive t in (* We check if ALL the predicates are in Prop, if so we use propositional conjunction '/\', otherwise we use the simple product '*'. *) let inprop = let inprop (_,t) = Retyping.get_sort_family_of env sigma (EConstr.of_constr t) == Sorts.InProp in List.for_all inprop defs in let mk_and, mk_conj = if inprop then (mk_coq_and, mk_coq_conj) else (mk_coq_prod, mk_coq_pair) in (* Number of clauses, including the predicates quantification *) let prods = Termops.nb_prod sigma (EConstr.of_constr t) - (nargs + 1) in let sigma, coqand = mk_and sigma in let sigma, coqconj = mk_conj sigma in let relargs = Termops.rel_vect 0 prods in let concls = List.rev_map (fun (cst, t) -> Constr.mkApp(Constr.mkConstU cst, relargs), snd (decompose_prod_n prods t)) defs in let concl_bod, concl_typ = fold_left' (fun (accb, acct) (cst, x) -> Constr.mkApp (EConstr.to_constr sigma coqconj, [| x; acct; cst; accb |]), Constr.mkApp (EConstr.to_constr sigma coqand, [| x; acct |])) concls in let ctx, _ = list_split_rev_at prods (List.rev_map (fun (x, y) -> Context.Rel.Declaration.LocalAssum (x, y)) ctx) in let typ = List.fold_left (fun d c -> Term.mkProd_wo_LetIn c d) concl_typ ctx in let body = it_mkLambda_or_LetIn concl_bod ctx in let sigma = Typing.check env sigma (EConstr.of_constr body) (EConstr.of_constr typ) in (sigma, body, typ) let do_combined_scheme name csts = let open CAst in let sigma,body,typ = build_combined_scheme (Global.env ()) csts in (* It is possible for the constants to have different universe polymorphism from each other, however that is only when the user manually defined at least one of them (as Scheme would pick the polymorphism of the inductive block). In that case if they want some other polymorphism they can also manually define the combined scheme. *) let poly = Global.is_polymorphic (Names.GlobRef.ConstRef (List.hd csts)) in ignore (define ~poly name.v sigma body (Some typ)); Declare.fixpoint_message None [name.v] (**********************************************************************) let map_inductive_block ?(locmap=Locmap.default None) f kn n = for i=0 to n-1 do let loc = Ind_tables.Locmap.lookup ~locmap (kn,i) in f ?loc (kn,i) done let declare_default_schemes ?locmap kn = let mib = Global.lookup_mind kn in let n = Array.length mib.mind_packets in if !elim_flag && (mib.mind_finite <> Declarations.BiFinite || !bifinite_elim_flag) && mib.mind_typing_flags.check_positive then declare_induction_schemes kn ?locmap; if !case_flag then map_inductive_block ?locmap declare_one_case_analysis_scheme kn n; if is_eq_flag() then try_declare_beq_scheme kn ?locmap; if !eq_dec_flag then try_declare_eq_decidability kn ?locmap; if !rewriting_flag then map_inductive_block ?locmap declare_congr_scheme kn n; if !rewriting_flag then map_inductive_block ?locmap declare_sym_scheme kn n; if !rewriting_flag then map_inductive_block ?locmap declare_rewriting_schemes kn n
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>