package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.20.0.tar.gz
md5=66e57ea55275903bef74d5bf36fbe0f1
sha512=1a7eac6e2f58724a3f9d68bbb321e4cfe963ba1a5551b9b011db4b3f559c79be433d810ff262593d753770ee41ea68fbd6a60daa1e2319ea00dff64c8851d70b
doc/src/coq-core.tactics/elimschemes.ml.html
Source file elimschemes.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Hugo Herbelin from contents related to inductive schemes initially developed by Christine Paulin (induction schemes), Vincent Siles (decidable equality and boolean equality) and Matthieu Sozeau (combined scheme) in file command.ml, Sep 2009 *) (* This file builds schemes related to case analysis and recursion schemes *) open Sorts open Constr open Indrec open Declarations open Typeops open Ind_tables (* Induction/recursion schemes *) let build_induction_scheme_in_type env dep sort ind = let sigma = Evd.from_env env in let sigma, pind = Evd.fresh_inductive_instance ~rigid:UState.univ_rigid env sigma ind in let pind = Util.on_snd EConstr.EInstance.make pind in let sigma, sort = Evd.fresh_sort_in_family ~rigid:UnivRigid sigma sort in let sigma, c = build_induction_scheme env sigma pind dep sort in EConstr.to_constr sigma c, Evd.evar_universe_context sigma (**********************************************************************) (* [modify_sort_scheme s rec] replaces the sort of the scheme [rec] by [s] *) let change_sort_arity sort = let rec drec a = match kind a with | Cast (c,_,_) -> drec c | Prod (n,t,c) -> let s, c' = drec c in s, mkProd (n, t, c') | LetIn (n,b,t,c) -> let s, c' = drec c in s, mkLetIn (n,b,t,c') | Sort s -> s, mkSort sort | _ -> assert false in drec (** [weaken_sort_scheme env sigma s n c t] derives by subtyping from [c:t] whose conclusion is quantified on [Type i] at position [n] of [t] a scheme quantified on sort [s]. [s] is declared less or equal to [i]. *) let weaken_sort_scheme env evd sort npars term ty = let open Context.Rel.Declaration in let evdref = ref evd in let rec drec ctx np elim = match kind elim with | Prod (n,t,c) -> let ctx = LocalAssum (n, t) :: ctx in if Int.equal np 0 then let osort, t' = change_sort_arity (EConstr.ESorts.kind !evdref sort) t in evdref := (if false then Evd.set_eq_sort else Evd.set_leq_sort) env !evdref sort (EConstr.ESorts.make osort); mkProd (n, t', c), mkLambda (n, t', mkApp(term, Context.Rel.instance mkRel 0 ctx)) else let c',term' = drec ctx (np-1) c in mkProd (n, t, c'), mkLambda (n, t, term') | LetIn (n,b,t,c) -> let ctx = LocalDef (n, b, t) :: ctx in let c',term' = drec ctx np c in mkLetIn (n,b,t,c'), mkLetIn (n,b,t,term') | _ -> CErrors.anomaly ~label:"weaken_sort_scheme" (Pp.str "wrong elimination type.") in let ty, term = drec [] npars ty in !evdref, ty, term let optimize_non_type_induction_scheme kind dep sort env _handle ind = (* This non-local call to [lookup_scheme] is fine since we do not use it on a dependency generated on the fly. *) match lookup_scheme kind ind with | Some cte -> let sigma = Evd.from_env env in (* in case the inductive has a type elimination, generates only one induction scheme, the other ones share the same code with the appropriate type *) let sigma, cte = Evd.fresh_constant_instance env sigma cte in let c = mkConstU cte in let t = type_of_constant_in env cte in let (mib,mip) = Inductive.lookup_mind_specif env ind in let npars = (* if a constructor of [ind] contains a recursive call, the scheme is generalized only wrt recursively uniform parameters *) if (Inductiveops.mis_is_recursive_subset [ind] mip.mind_recargs) then mib.mind_nparams_rec else mib.mind_nparams in let sigma, sort = Evd.fresh_sort_in_family sigma sort in let sigma, t', c' = weaken_sort_scheme env sigma sort npars c t in let sigma = Evd.minimize_universes sigma in (Evarutil.nf_evars_universes sigma c', Evd.evar_universe_context sigma) | None -> build_induction_scheme_in_type env dep sort ind let rect_dep = declare_individual_scheme_object "rect_dep" (fun env _ x -> build_induction_scheme_in_type env true InType x) let rec_dep = declare_individual_scheme_object "rec_dep" (optimize_non_type_induction_scheme rect_dep true InSet) let ind_dep = declare_individual_scheme_object "ind_dep" (optimize_non_type_induction_scheme rec_dep true InProp) let sind_dep = declare_individual_scheme_object "sind_dep" (fun env _ x -> build_induction_scheme_in_type env true InSProp x) let rect_nodep = declare_individual_scheme_object "rect_nodep" (fun env _ x -> build_induction_scheme_in_type env false InType x) let rec_nodep = declare_individual_scheme_object "rec_nodep" (optimize_non_type_induction_scheme rect_nodep false InSet) let ind_nodep = declare_individual_scheme_object "ind_nodep" (optimize_non_type_induction_scheme rec_nodep false InProp) let sind_nodep = declare_individual_scheme_object "sind_nodep" (fun env _ x -> build_induction_scheme_in_type env false InSProp x) let elim_scheme ~dep ~to_kind = match dep, to_kind with | false, InSProp -> sind_nodep | false, InProp -> ind_nodep | false, InSet -> rec_nodep | false, (InType | InQSort) -> rect_nodep | true, InSProp -> sind_dep | true, InProp -> ind_dep | true, InSet -> rec_dep | true, (InType | InQSort) -> rect_dep (* Case analysis *) let build_case_analysis_scheme_in_type env dep sort ind = let sigma = Evd.from_env env in let (sigma, indu) = Evd.fresh_inductive_instance env sigma ind in let indu = Util.on_snd EConstr.EInstance.make indu in let sigma, sort = Evd.fresh_sort_in_family ~rigid:UnivRigid sigma sort in let (sigma, c) = build_case_analysis_scheme env sigma indu dep sort in let (c, _) = Indrec.eval_case_analysis c in EConstr.Unsafe.to_constr c, Evd.evar_universe_context sigma let case_dep = declare_individual_scheme_object "case_dep" (fun env _ x -> build_case_analysis_scheme_in_type env true InType x) let case_nodep = declare_individual_scheme_object "case_nodep" (fun env _ x -> build_case_analysis_scheme_in_type env false InType x) let casep_dep = declare_individual_scheme_object "casep_dep" (fun env _ x -> build_case_analysis_scheme_in_type env true InProp x) let casep_nodep = declare_individual_scheme_object "casep_nodep" (fun env _ x -> build_case_analysis_scheme_in_type env false InProp x)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>