package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.19.2.tar.gz
md5=5d1187d5e44ed0163f76fb12dabf012e
sha512=91bc81530fa4f6498961583ad51eac5001f139881788b88e360a866ad8e2a6e2c5bce86d1a580ab4cd4782bf49d48318767df82471ce33ba3ac143e5569ad33c
doc/src/coq-core.kernel/univ.ml.html
Source file univ.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *) (* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *) (* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *) (* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *) (* Support for universe polymorphism by MS [2014] *) (* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey, Matthieu Sozeau, Pierre-Marie Pédrot *) open Pp open Util (* Universes are stratified by a partial ordering $\le$. Let $\~{}$ be the associated equivalence. We also have a strict ordering $<$ between equivalence classes, and we maintain that $<$ is acyclic, and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$. At every moment, we have a finite number of universes, and we maintain the ordering in the presence of assertions $U<V$ and $U\le V$. The equivalence $\~{}$ is represented by a tree structure, as in the union-find algorithm. The assertions $<$ and $\le$ are represented by adjacency lists *) module UGlobal = struct open Names type t = { library : DirPath.t; process : string; uid : int; } let make library process uid = { library; process; uid } let repr x = (x.library, x.process, x.uid) let equal u1 u2 = Int.equal u1.uid u2.uid && DirPath.equal u1.library u2.library && String.equal u1.process u2.process let hash u = Hashset.Combine.combine3 u.uid (String.hash u.process) (DirPath.hash u.library) let compare u1 u2 = let c = Int.compare u1.uid u2.uid in if c <> 0 then c else let c = DirPath.compare u1.library u2.library in if c <> 0 then c else String.compare u1.process u2.process let to_string { library = d; process = s; uid = n } = DirPath.to_string d ^ (if CString.is_empty s then "" else "." ^ s) ^ "." ^ string_of_int n end module RawLevel = struct type t = | Set | Level of UGlobal.t | Var of int (* Hash-consing *) let equal x y = x == y || match x, y with | Set, Set -> true | Level l, Level l' -> UGlobal.equal l l' | Var n, Var n' -> Int.equal n n' | _ -> false let compare u v = match u, v with | Set, Set -> 0 | Set, _ -> -1 | _, Set -> 1 | Level l1, Level l2 -> UGlobal.compare l1 l2 | Level _, _ -> -1 | _, Level _ -> 1 | Var n, Var m -> Int.compare n m let hequal x y = x == y || match x, y with | Set, Set -> true | UGlobal.(Level { library = d; process = s; uid = n }, Level { library = d'; process = s'; uid = n' }) -> n == n' && s==s' && d == d' | Var n, Var n' -> n == n' | _ -> false let hcons = function | Set as x -> x | UGlobal.(Level { library = d; process = s; uid = n }) as x -> let s' = CString.hcons s in let d' = Names.DirPath.hcons d in if s' == s && d' == d then x else Level (UGlobal.make d' s' n) | Var _n as x -> x open Hashset.Combine let hash = function | Set -> combinesmall 1 2 | Var n -> combinesmall 2 n | Level l -> combinesmall 3 (UGlobal.hash l) end module Level = struct type raw_level = RawLevel.t = | Set | Level of UGlobal.t | Var of int (** Embed levels with their hash value *) type t = { hash : int; data : RawLevel.t } let equal x y = x == y || Int.equal x.hash y.hash && RawLevel.equal x.data y.data let hash x = x.hash let data x = x.data (** Hashcons on levels + their hash *) module Self = struct type nonrec t = t type u = unit let eq x y = x.hash == y.hash && RawLevel.hequal x.data y.data let hash x = x.hash let hashcons () x = let data' = RawLevel.hcons x.data in if x.data == data' then x else { x with data = data' } end let hcons = let module H = Hashcons.Make(Self) in Hashcons.simple_hcons H.generate H.hcons () let make l = hcons { hash = RawLevel.hash l; data = l } let set = make Set let is_small x = match data x with | Level _ -> false | Var _ -> false | Set -> true let is_set x = match data x with | Set -> true | _ -> false let compare u v = if u == v then 0 else RawLevel.compare (data u) (data v) let to_string x = match data x with | Set -> "Set" | Level l -> UGlobal.to_string l | Var n -> "Var(" ^ string_of_int n ^ ")" let raw_pr u = str (to_string u) let pr = raw_pr let vars = Array.init 20 (fun i -> make (Var i)) let var n = if n < 20 then vars.(n) else make (Var n) let var_index u = match data u with | Var n -> Some n | _ -> None let make qid = make (Level qid) let name u = match data u with | Level l -> Some l | _ -> None (** Level maps *) module Map = struct module Self = struct type nonrec t = t let hash = hash let compare = compare end module M = HMap.Make (Self) include M let lunion l r = union (fun _k l _r -> Some l) l r let diff ext orig = fold (fun u v acc -> if mem u orig then acc else add u v acc) ext empty let pr prl f m = h (prlist_with_sep fnl (fun (u, v) -> prl u ++ f v) (bindings m)) end module Set = struct include Map.Set let pr prl s = hov 1 (str"{" ++ prlist_with_sep spc prl (elements s) ++ str"}") end end type universe_level = Level.t type universe_set = Level.Set.t (* An algebraic universe [universe] is either a universe variable [Level.t] or a formal universe known to be greater than some universe variables and strictly greater than some (other) universe variables Universes variables denote universes initially present in the term to type-check and non variable algebraic universes denote the universes inferred while type-checking: it is either the successor of a universe present in the initial term to type-check or the maximum of two algebraic universes *) module Universe = struct (* Invariants: non empty, sorted and without duplicates *) module Expr = struct type t = Level.t * int (* Hashing of expressions *) module ExprHash = struct type t = Level.t * int type u = Level.t -> Level.t let hashcons hdir (b,n as x) = let b' = hdir b in if b' == b then x else (b',n) let eq l1 l2 = l1 == l2 || match l1,l2 with | (b,n), (b',n') -> b == b' && n == n' let hash (x, n) = n + Level.hash x end module H = Hashcons.Make(ExprHash) let hcons = Hashcons.simple_hcons H.generate H.hcons Level.hcons let make l = (l, 0) let compare u v = if u == v then 0 else let (x, n) = u and (x', n') = v in let c = Int.compare n n' in if Int.equal 0 c then Level.compare x x' else c let set = hcons (Level.set, 0) let type1 = hcons (Level.set, 1) let is_small = function | (l,0) -> Level.is_small l | _ -> false let equal x y = x == y || (let (u,n) = x and (v,n') = y in Int.equal n n' && Level.equal u v) let hash = ExprHash.hash let successor (u,n as e) = if is_small e then type1 else (u, n + 1) type super_result = SuperSame of bool (* The level expressions are in cumulativity relation. boolean indicates if left is smaller than right? *) | SuperDiff of int (* The level expressions are unrelated, the comparison result is canonical *) (** [super u v] compares two level expressions, returning [SuperSame] if they refer to the same level at potentially different increments or [SuperDiff] if they are different. The booleans indicate if the left expression is "smaller" than the right one in both cases. *) let super (u,n) (v,n') = let cmp = Level.compare u v in if Int.equal cmp 0 then SuperSame (n < n') else SuperDiff cmp let pr_with f (v, n) = if Int.equal n 0 then f v else f v ++ str"+" ++ int n let is_level = function | (_v, 0) -> true | _ -> false let level = function | (v,0) -> Some v | _ -> None let get_level (v,_n) = v let map f (v, n as x) = let v' = f v in if v' == v then x else (v', n) end type t = Expr.t list let tip l = [l] let cons x l = x :: l let rec hash = function | [] -> 0 | e :: l -> Hashset.Combine.combinesmall (Expr.ExprHash.hash e) (hash l) let equal x y = x == y || List.equal Expr.equal x y let compare x y = if x == y then 0 else List.compare Expr.compare x y module Huniv = Hashcons.Hlist(Expr) let hcons = Hashcons.simple_hcons Huniv.generate Huniv.hcons Expr.hcons module Self = struct type nonrec t = t let compare = compare end module Map = CMap.Make(Self) module Set = CSet.Make(Self) let make l = tip (Expr.make l) let tip x = tip x let pr f l = match l with | [u] -> Expr.pr_with f u | _ -> str "max(" ++ hov 0 (prlist_with_sep pr_comma (Expr.pr_with f) l) ++ str ")" let raw_pr l = pr Level.raw_pr l let is_level l = match l with | [l] -> Expr.is_level l | _ -> false let rec is_levels l = match l with | l :: r -> Expr.is_level l && is_levels r | [] -> true let level l = match l with | [l] -> Expr.level l | _ -> None let levels l = let fold acc x = let l = Expr.get_level x in Level.Set.add l acc in List.fold_left fold Level.Set.empty l let is_small u = match u with | [l] -> Expr.is_small l | _ -> false (* The level of sets *) let type0 = tip Expr.set (* When typing [Prop] and [Set], there is no constraint on the level, hence the definition of [type1_univ], the type of [Prop] *) let type1 = tip Expr.type1 let is_type0 x = equal type0 x (* Returns the formal universe that lies just above the universe variable u. Used to type the sort u. *) let super l = if is_small l then type1 else List.Smart.map (fun x -> Expr.successor x) l let rec merge_univs l1 l2 = match l1, l2 with | [], _ -> l2 | _, [] -> l1 | h1 :: t1, h2 :: t2 -> let open Expr in (match super h1 h2 with | SuperSame true (* h1 < h2 *) -> merge_univs t1 l2 | SuperSame false -> merge_univs l1 t2 | SuperDiff c -> if c <= 0 (* h1 < h2 is name order *) then cons h1 (merge_univs t1 l2) else cons h2 (merge_univs l1 t2)) let sort u = let rec aux a l = match l with | b :: l' -> let open Expr in (match super a b with | SuperSame false -> aux a l' | SuperSame true -> l | SuperDiff c -> if c <= 0 then cons a l else cons b (aux a l')) | [] -> cons a l in List.fold_right (fun a acc -> aux a acc) u [] (* Returns the formal universe that is greater than the universes u and v. Used to type the products. *) let sup x y = merge_univs x y let exists = List.exists let for_all = List.for_all let repr x : t = x let unrepr l = assert (not (List.is_empty l)); sort l end type constraint_type = AcyclicGraph.constraint_type = Lt | Le | Eq let constraint_type_ord c1 c2 = match c1, c2 with | Lt, Lt -> 0 | Lt, _ -> -1 | Le, Lt -> 1 | Le, Le -> 0 | Le, Eq -> -1 | Eq, Eq -> 0 | Eq, _ -> 1 (* Constraints and sets of constraints. *) type univ_constraint = Level.t * constraint_type * Level.t let pr_constraint_type op = let op_str = match op with | Lt -> " < " | Le -> " <= " | Eq -> " = " in str op_str module UConstraintOrd = struct type t = univ_constraint let compare (u,c,v) (u',c',v') = let i = constraint_type_ord c c' in if not (Int.equal i 0) then i else let i' = Level.compare u u' in if not (Int.equal i' 0) then i' else Level.compare v v' end module Constraints = struct module S = Set.Make(UConstraintOrd) include S let pr prl c = v 0 (prlist_with_sep spc (fun (u1,op,u2) -> hov 0 (prl u1 ++ pr_constraint_type op ++ prl u2)) (elements c)) end module Hconstraint = Hashcons.Make( struct type t = univ_constraint type u = universe_level -> universe_level let hashcons hul (l1,k,l2) = (hul l1, k, hul l2) let eq (l1,k,l2) (l1',k',l2') = l1 == l1' && k == k' && l2 == l2' let hash = Hashtbl.hash end) module Hconstraints = Hashcons.Make( struct type t = Constraints.t type u = univ_constraint -> univ_constraint let hashcons huc s = Constraints.fold (fun x -> Constraints.add (huc x)) s Constraints.empty let eq s s' = List.for_all2eq (==) (Constraints.elements s) (Constraints.elements s') let hash = Hashtbl.hash end) let hcons_constraint = Hashcons.simple_hcons Hconstraint.generate Hconstraint.hcons Level.hcons let hcons_constraints = Hashcons.simple_hcons Hconstraints.generate Hconstraints.hcons hcons_constraint (** A value with universe constraints. *) type 'a constrained = 'a * Constraints.t let constraints_of (_, cst) = cst (** Constraints functions. *) type 'a constraint_function = 'a -> 'a -> Constraints.t -> Constraints.t let enforce_eq_level u v c = (* We discard trivial constraints like u=u *) if Level.equal u v then c else Constraints.add (u,Eq,v) c let enforce_leq_level u v c = if Level.equal u v then c else Constraints.add (u,Le,v) c (* Miscellaneous functions to remove or test local univ assumed to occur in a universe *) let univ_level_mem u v = List.exists (fun (l, n) -> Int.equal n 0 && Level.equal u l) v let univ_level_rem u v min = match Universe.level v with | Some u' -> if Level.equal u u' then min else v | None -> List.filter (fun (l, n) -> not (Int.equal n 0 && Level.equal u l)) v (* Is u mentioned in v (or equals to v) ? *) (**********************************************************************) (** Universe polymorphism *) (**********************************************************************) (** A universe level substitution, note that no algebraic universes are involved *) type universe_level_subst = universe_level Level.Map.t (** A set of universes with universe constraints. We linearize the set to a list after typechecking. Beware, representation could change. *) module ContextSet = struct type t = universe_set constrained let empty = (Level.Set.empty, Constraints.empty) let is_empty (univs, cst) = Level.Set.is_empty univs && Constraints.is_empty cst let equal (univs, cst as x) (univs', cst' as y) = x == y || (Level.Set.equal univs univs' && Constraints.equal cst cst') let of_set s = (s, Constraints.empty) let singleton l = of_set (Level.Set.singleton l) let union (univs, cst as x) (univs', cst' as y) = if x == y then x else Level.Set.union univs univs', Constraints.union cst cst' let append (univs, cst) (univs', cst') = let univs = Level.Set.fold Level.Set.add univs univs' in let cst = Constraints.fold Constraints.add cst cst' in (univs, cst) let diff (univs, cst) (univs', cst') = Level.Set.diff univs univs', Constraints.diff cst cst' let add_universe u (univs, cst) = Level.Set.add u univs, cst let add_constraints cst' (univs, cst) = univs, Constraints.union cst cst' let pr prl (univs, cst as ctx) = if is_empty ctx then mt() else hov 0 (h (Level.Set.pr prl univs ++ str " |=") ++ brk(1,2) ++ h (Constraints.pr prl cst)) let constraints (_univs, cst) = cst let levels (univs, _cst) = univs let size (univs,_) = Level.Set.cardinal univs end type universe_context_set = ContextSet.t (** A value in a universe context (resp. context set). *) type 'a in_universe_context_set = 'a * universe_context_set (** Substitutions. *) let empty_level_subst = Level.Map.empty let is_empty_level_subst = Level.Map.is_empty (** Substitution functions *) (** With level to level substitutions. *) let subst_univs_level_level subst l = try Level.Map.find l subst with Not_found -> l let subst_univs_level_universe subst u = let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in let u' = List.Smart.map f u in if u == u' then u else Universe.sort u' let subst_univs_level_constraint subst (u,d,v) = let u' = subst_univs_level_level subst u and v' = subst_univs_level_level subst v in if d != Lt && Level.equal u' v' then None else Some (u',d,v') let subst_univs_level_constraints subst csts = Constraints.fold (fun c -> Option.fold_right Constraints.add (subst_univs_level_constraint subst c)) csts Constraints.empty (** Pretty-printing *) let pr_universe_context_set = ContextSet.pr let pr_universe_level_subst prl = Level.Map.pr prl (fun u -> str" := " ++ prl u ++ spc ()) module Huniverse_set = Hashcons.Make( struct type t = universe_set type u = universe_level -> universe_level let hashcons huc s = Level.Set.fold (fun x -> Level.Set.add (huc x)) s Level.Set.empty let eq s s' = Level.Set.equal s s' let hash = Hashtbl.hash end) let hcons_universe_set = Hashcons.simple_hcons Huniverse_set.generate Huniverse_set.hcons Level.hcons let hcons_universe_context_set (v, c) = (hcons_universe_set v, hcons_constraints c) let hcons_univ x = Universe.hcons x
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>