package coq-core

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file univ.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *)
(* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *)
(* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *)
(* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *)
(* Support for universe polymorphism by MS [2014] *)

(* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey, Matthieu
   Sozeau, Pierre-Marie Pédrot *)

open Pp
open Util

(* Universes are stratified by a partial ordering $\le$.
   Let $\~{}$ be the associated equivalence. We also have a strict ordering
   $<$ between equivalence classes, and we maintain that $<$ is acyclic,
   and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$.

   At every moment, we have a finite number of universes, and we
   maintain the ordering in the presence of assertions $U<V$ and $U\le V$.

   The equivalence $\~{}$ is represented by a tree structure, as in the
   union-find algorithm. The assertions $<$ and $\le$ are represented by
   adjacency lists *)

module UGlobal = struct
  open Names

  type t = {
    library : DirPath.t;
    process : string;
    uid : int;
  }

  let make library process uid = { library; process; uid }

  let repr x = (x.library, x.process, x.uid)

  let equal u1 u2 =
    Int.equal u1.uid u2.uid &&
    DirPath.equal u1.library u2.library &&
    String.equal u1.process u2.process

  let hash u = Hashset.Combine.combine3 u.uid (String.hash u.process) (DirPath.hash u.library)

  let compare u1 u2 =
    let c = Int.compare u1.uid u2.uid in
    if c <> 0 then c
    else
      let c = DirPath.compare u1.library u2.library in
      if c <> 0 then c
      else String.compare u1.process u2.process

  let to_string { library = d; process = s; uid = n } =
    DirPath.to_string d ^
    (if CString.is_empty s then "" else "." ^ s) ^
    "." ^ string_of_int n

end

module RawLevel =
struct

  type t =
    | Set
    | Level of UGlobal.t
    | Var of int

  (* Hash-consing *)

  let equal x y =
    x == y ||
      match x, y with
      | Set, Set -> true
      | Level l, Level l' -> UGlobal.equal l l'
      | Var n, Var n' -> Int.equal n n'
      | _ -> false

  let compare u v =
    match u, v with
    | Set, Set -> 0
    | Set, _ -> -1
    | _, Set -> 1
    | Level l1, Level l2 -> UGlobal.compare l1 l2
    | Level _, _ -> -1
    | _, Level _ -> 1
    | Var n, Var m -> Int.compare n m

  let hequal x y =
    x == y ||
      match x, y with
      | Set, Set -> true
      | UGlobal.(Level { library = d; process = s; uid = n }, Level  { library = d'; process = s'; uid = n' }) ->
        n == n' && s==s' && d == d'
      | Var n, Var n' -> n == n'
      | _ -> false

  let hcons = function
    | Set as x -> x
    | UGlobal.(Level { library = d; process = s; uid = n }) as x ->
      let s' = CString.hcons s in
      let d' = Names.DirPath.hcons d in
        if s' == s && d' == d then x else Level (UGlobal.make d' s' n)
    | Var _n as x -> x

  open Hashset.Combine

  let hash = function
    | Set -> combinesmall 1 2
    | Var n -> combinesmall 2 n
    | Level l -> combinesmall 3 (UGlobal.hash l)

end

module Level = struct

  type raw_level = RawLevel.t =
  | Set
  | Level of UGlobal.t
  | Var of int

  (** Embed levels with their hash value *)
  type t = {
    hash : int;
    data : RawLevel.t }

  let equal x y =
    x == y || Int.equal x.hash y.hash && RawLevel.equal x.data y.data

  let hash x = x.hash

  let data x = x.data

  (** Hashcons on levels + their hash *)

  module Self = struct
    type nonrec t = t
    type u = unit
    let eq x y = x.hash == y.hash && RawLevel.hequal x.data y.data
    let hash x = x.hash
    let hashcons () x =
      let data' = RawLevel.hcons x.data in
      if x.data == data' then x else { x with data = data' }
  end

  let hcons =
    let module H = Hashcons.Make(Self) in
    Hashcons.simple_hcons H.generate H.hcons ()

  let make l = hcons { hash = RawLevel.hash l; data = l }

  let set = make Set

  let is_small x =
    match data x with
    | Level _ -> false
    | Var _ -> false
    | Set -> true

  let is_set x =
    match data x with
    | Set -> true
    | _ -> false

  let compare u v =
    if u == v then 0
    else RawLevel.compare (data u) (data v)

  let to_string x =
    match data x with
    | Set -> "Set"
    | Level l -> UGlobal.to_string l
    | Var n -> "Var(" ^ string_of_int n ^ ")"

  let raw_pr u = str (to_string u)

  let pr = raw_pr

  let vars = Array.init 20 (fun i -> make (Var i))

  let var n =
    if n < 20 then vars.(n) else make (Var n)

  let var_index u =
    match data u with
    | Var n -> Some n | _ -> None

  let make qid = make (Level qid)

  let name u =
    match data u with
    | Level l -> Some l
    | _ -> None

  (** Level maps *)

  module Map = struct

    module Self = struct type nonrec t = t let hash = hash let compare = compare end
    module M = HMap.Make (Self)
    include M

    let lunion l r =
      union (fun _k l _r -> Some l) l r

    let diff ext orig =
      fold (fun u v acc ->
        if mem u orig then acc
        else add u v acc)
        ext empty

    let pr prl f m =
      h (prlist_with_sep fnl (fun (u, v) ->
        prl u ++ f v) (bindings m))

  end

  module Set = struct
    include Map.Set

    let pr prl s =
      hov 1 (str"{" ++ prlist_with_sep spc prl (elements s) ++ str"}")

  end

end

type universe_level = Level.t

type universe_set = Level.Set.t

(* An algebraic universe [universe] is either a universe variable
   [Level.t] or a formal universe known to be greater than some
   universe variables and strictly greater than some (other) universe
   variables

   Universes variables denote universes initially present in the term
   to type-check and non variable algebraic universes denote the
   universes inferred while type-checking: it is either the successor
   of a universe present in the initial term to type-check or the
   maximum of two algebraic universes
*)

module Universe =
struct
  (* Invariants: non empty, sorted and without duplicates *)

  module Expr =
  struct
    type t = Level.t * int

    (* Hashing of expressions *)
    module ExprHash =
    struct
      type t = Level.t * int
      type u = Level.t -> Level.t
      let hashcons hdir (b,n as x) =
        let b' = hdir b in
          if b' == b then x else (b',n)
      let eq l1 l2 =
        l1 == l2 ||
        match l1,l2 with
        | (b,n), (b',n') -> b == b' && n == n'

      let hash (x, n) = n + Level.hash x

    end

    module H = Hashcons.Make(ExprHash)

    let hcons =
      Hashcons.simple_hcons H.generate H.hcons Level.hcons

    let make l = (l, 0)

    let compare u v =
      if u == v then 0
      else
        let (x, n) = u and (x', n') = v in
        let c = Int.compare n n' in
        if Int.equal 0 c then  Level.compare x x'
        else c

    let set = hcons (Level.set, 0)
    let type1 = hcons (Level.set, 1)

    let is_small = function
      | (l,0) -> Level.is_small l
      | _ -> false

    let equal x y = x == y ||
      (let (u,n) = x and (v,n') = y in
         Int.equal n n' && Level.equal u v)

    let hash = ExprHash.hash

    let successor (u,n as e) =
      if is_small e then type1
      else (u, n + 1)

    type super_result =
        SuperSame of bool
        (* The level expressions are in cumulativity relation. boolean
           indicates if left is smaller than right?  *)
      | SuperDiff of int
        (* The level expressions are unrelated, the comparison result
           is canonical *)

    (** [super u v] compares two level expressions,
       returning [SuperSame] if they refer to the same level at potentially different
       increments or [SuperDiff] if they are different. The booleans indicate if the
       left expression is "smaller" than the right one in both cases. *)
    let super (u,n) (v,n') =
      let cmp = Level.compare u v in
        if Int.equal cmp 0 then SuperSame (n < n')
        else SuperDiff cmp

    let pr_with f (v, n) =
      if Int.equal n 0 then f v
      else f v ++ str"+" ++ int n

    let is_level = function
      | (_v, 0) -> true
      | _ -> false

    let level = function
      | (v,0) -> Some v
      | _ -> None

    let get_level (v,_n) = v

    let map f (v, n as x) =
      let v' = f v in
        if v' == v then x
        else (v', n)

  end

  type t = Expr.t list

  let tip l = [l]
  let cons x l = x :: l

  let rec hash = function
  | [] -> 0
  | e :: l -> Hashset.Combine.combinesmall (Expr.ExprHash.hash e) (hash l)

  let equal x y = x == y || List.equal Expr.equal x y

  let compare x y = if x == y then 0 else List.compare Expr.compare x y

  module Huniv = Hashcons.Hlist(Expr)

  let hcons = Hashcons.simple_hcons Huniv.generate Huniv.hcons Expr.hcons

  module Self = struct type nonrec t = t let compare = compare end
  module Map = CMap.Make(Self)
  module Set = CSet.Make(Self)

  let make l = tip (Expr.make l)
  let tip x = tip x

  let pr f l = match l with
    | [u] -> Expr.pr_with f u
    | _ ->
      str "max(" ++ hov 0
        (prlist_with_sep pr_comma (Expr.pr_with f) l) ++
        str ")"

  let raw_pr l = pr Level.raw_pr l

  let is_level l = match l with
    | [l] -> Expr.is_level l
    | _ -> false

  let rec is_levels l = match l with
    | l :: r -> Expr.is_level l && is_levels r
    | [] -> true

  let level l = match l with
    | [l] -> Expr.level l
    | _ -> None

  let levels l =
    let fold acc x =
      let l = Expr.get_level x in
      Level.Set.add l acc
    in
    List.fold_left fold Level.Set.empty l

  let is_small u =
    match u with
    | [l] -> Expr.is_small l
    | _ -> false

  (* The level of sets *)
  let type0 = tip Expr.set

  (* When typing [Prop] and [Set], there is no constraint on the level,
     hence the definition of [type1_univ], the type of [Prop] *)
  let type1 = tip Expr.type1

  let is_type0 x = equal type0 x

  (* Returns the formal universe that lies just above the universe variable u.
     Used to type the sort u. *)
  let super l =
    if is_small l then type1
    else
      List.Smart.map (fun x -> Expr.successor x) l

  let rec merge_univs l1 l2 =
    match l1, l2 with
    | [], _ -> l2
    | _, [] -> l1
    | h1 :: t1, h2 :: t2 ->
       let open Expr in
       (match super h1 h2 with
        | SuperSame true (* h1 < h2 *) -> merge_univs t1 l2
        | SuperSame false -> merge_univs l1 t2
        | SuperDiff c ->
           if c <= 0 (* h1 < h2 is name order *)
           then cons h1 (merge_univs t1 l2)
           else cons h2 (merge_univs l1 t2))

  let sort u =
    let rec aux a l =
      match l with
      | b :: l' ->
        let open Expr in
        (match super a b with
         | SuperSame false -> aux a l'
         | SuperSame true -> l
         | SuperDiff c ->
            if c <= 0 then cons a l
            else cons b (aux a l'))
      | [] -> cons a l
    in
      List.fold_right (fun a acc -> aux a acc) u []

  (* Returns the formal universe that is greater than the universes u and v.
     Used to type the products. *)
  let sup x y = merge_univs x y

  let exists = List.exists

  let for_all = List.for_all
  let repr x : t = x
  let unrepr l =
    assert (not (List.is_empty l));
    sort l
end

type constraint_type = AcyclicGraph.constraint_type = Lt | Le | Eq

let constraint_type_ord c1 c2 = match c1, c2 with
| Lt, Lt -> 0
| Lt, _ -> -1
| Le, Lt -> 1
| Le, Le -> 0
| Le, Eq -> -1
| Eq, Eq -> 0
| Eq, _ -> 1

(* Constraints and sets of constraints. *)

type univ_constraint = Level.t * constraint_type * Level.t

let pr_constraint_type op =
  let op_str = match op with
    | Lt -> " < "
    | Le -> " <= "
    | Eq -> " = "
  in str op_str

module UConstraintOrd =
struct
  type t = univ_constraint
  let compare (u,c,v) (u',c',v') =
    let i = constraint_type_ord c c' in
    if not (Int.equal i 0) then i
    else
      let i' = Level.compare u u' in
      if not (Int.equal i' 0) then i'
      else Level.compare v v'
end

module Constraints =
struct
  module S = Set.Make(UConstraintOrd)
  include S

  let pr prl c =
    v 0 (prlist_with_sep spc (fun (u1,op,u2) ->
      hov 0 (prl u1 ++ pr_constraint_type op ++ prl u2))
       (elements c))

end

module Hconstraint =
  Hashcons.Make(
    struct
      type t = univ_constraint
      type u = universe_level -> universe_level
      let hashcons hul (l1,k,l2) = (hul l1, k, hul l2)
      let eq (l1,k,l2) (l1',k',l2') =
        l1 == l1' && k == k' && l2 == l2'
      let hash = Hashtbl.hash
    end)

module Hconstraints =
  Hashcons.Make(
    struct
      type t = Constraints.t
      type u = univ_constraint -> univ_constraint
      let hashcons huc s =
        Constraints.fold (fun x -> Constraints.add (huc x)) s Constraints.empty
      let eq s s' =
        List.for_all2eq (==)
          (Constraints.elements s)
          (Constraints.elements s')
      let hash = Hashtbl.hash
    end)

let hcons_constraint = Hashcons.simple_hcons Hconstraint.generate Hconstraint.hcons Level.hcons
let hcons_constraints = Hashcons.simple_hcons Hconstraints.generate Hconstraints.hcons hcons_constraint


(** A value with universe constraints. *)
type 'a constrained = 'a * Constraints.t

let constraints_of (_, cst) = cst

(** Constraints functions. *)

type 'a constraint_function = 'a -> 'a -> Constraints.t -> Constraints.t

let enforce_eq_level u v c =
  (* We discard trivial constraints like u=u *)
  if Level.equal u v then c
  else Constraints.add (u,Eq,v) c

let enforce_leq_level u v c =
  if Level.equal u v then c else Constraints.add (u,Le,v) c

(* Miscellaneous functions to remove or test local univ assumed to
   occur in a universe *)

let univ_level_mem u v =
  List.exists (fun (l, n) -> Int.equal n 0 && Level.equal u l) v

let univ_level_rem u v min =
  match Universe.level v with
  | Some u' -> if Level.equal u u' then min else v
  | None -> List.filter (fun (l, n) -> not (Int.equal n 0 && Level.equal u l)) v

(* Is u mentioned in v (or equals to v) ? *)


(**********************************************************************)
(** Universe polymorphism                                             *)
(**********************************************************************)

(** A universe level substitution, note that no algebraic universes are
    involved *)

type universe_level_subst = universe_level Level.Map.t

(** A set of universes with universe constraints.
    We linearize the set to a list after typechecking.
    Beware, representation could change.
*)

module ContextSet =
struct
  type t = universe_set constrained

  let empty = (Level.Set.empty, Constraints.empty)
  let is_empty (univs, cst) = Level.Set.is_empty univs && Constraints.is_empty cst

  let equal (univs, cst as x) (univs', cst' as y) =
    x == y || (Level.Set.equal univs univs' && Constraints.equal cst cst')

  let of_set s = (s, Constraints.empty)
  let singleton l = of_set (Level.Set.singleton l)

  let union (univs, cst as x) (univs', cst' as y) =
    if x == y then x
    else Level.Set.union univs univs', Constraints.union cst cst'

  let append (univs, cst) (univs', cst') =
    let univs = Level.Set.fold Level.Set.add univs univs' in
    let cst = Constraints.fold Constraints.add cst cst' in
    (univs, cst)

  let diff (univs, cst) (univs', cst') =
    Level.Set.diff univs univs', Constraints.diff cst cst'

  let add_universe u (univs, cst) =
    Level.Set.add u univs, cst

  let add_constraints cst' (univs, cst) =
    univs, Constraints.union cst cst'

  let pr prl (univs, cst as ctx) =
    if is_empty ctx then mt() else
      hov 0 (h (Level.Set.pr prl univs ++ str " |=") ++ brk(1,2) ++ h (Constraints.pr prl cst))

  let constraints (_univs, cst) = cst
  let levels (univs, _cst) = univs

  let size (univs,_) = Level.Set.cardinal univs
end

type universe_context_set = ContextSet.t

(** A value in a universe context (resp. context set). *)
type 'a in_universe_context_set = 'a * universe_context_set

(** Substitutions. *)

let empty_level_subst = Level.Map.empty
let is_empty_level_subst = Level.Map.is_empty

(** Substitution functions *)

(** With level to level substitutions. *)
let subst_univs_level_level subst l =
  try Level.Map.find l subst
  with Not_found -> l

let subst_univs_level_universe subst u =
  let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in
  let u' = List.Smart.map f u in
    if u == u' then u
    else Universe.sort u'

let subst_univs_level_constraint subst (u,d,v) =
  let u' = subst_univs_level_level subst u
  and v' = subst_univs_level_level subst v in
    if d != Lt && Level.equal u' v' then None
    else Some (u',d,v')

let subst_univs_level_constraints subst csts =
  Constraints.fold
    (fun c -> Option.fold_right Constraints.add (subst_univs_level_constraint subst c))
    csts Constraints.empty

(** Pretty-printing *)

let pr_universe_context_set = ContextSet.pr

let pr_universe_level_subst prl =
  Level.Map.pr prl (fun u -> str" := " ++ prl u ++ spc ())

module Huniverse_set =
  Hashcons.Make(
    struct
      type t = universe_set
      type u = universe_level -> universe_level
      let hashcons huc s =
        Level.Set.fold (fun x -> Level.Set.add (huc x)) s Level.Set.empty
      let eq s s' =
        Level.Set.equal s s'
      let hash = Hashtbl.hash
    end)

let hcons_universe_set =
  Hashcons.simple_hcons Huniverse_set.generate Huniverse_set.hcons Level.hcons

let hcons_universe_context_set (v, c) =
  (hcons_universe_set v, hcons_constraints c)

let hcons_univ x = Universe.hcons x
OCaml

Innovation. Community. Security.