package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.17.1.tar.gz
sha512=9a35311acec2a806730b94ac7dceabc88837f235c52a14c026827d9b89433bd7fa9555a9fc6829aa49edfedb24c8bbaf1411ebf463b74a50aeb17cba47745b6b
doc/src/coq-core.tactics/autorewrite.ml.html
Source file autorewrite.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Equality open Names open Pp open Constr open CErrors open Util open Mod_subst open Locus (* Rewriting rules *) type rew_rule = { rew_id : KerName.t; rew_lemma : constr; rew_type: types; rew_pat: constr; rew_ctx: Univ.ContextSet.t; rew_l2r: bool; rew_tac: Genarg.glob_generic_argument option } module RewRule = struct type t = rew_rule let rew_lemma r = (r.rew_ctx, r.rew_lemma) let rew_l2r r = r.rew_l2r let rew_tac r = r.rew_tac end module HintIdent = struct type t = rew_rule let compare r1 r2 = KerName.compare r1.rew_id r2.rew_id let constr_of t = t.rew_pat end (* Representation/approximation of terms to use in the dnet: * * - no meta or evar (use ['a pattern] for that) * * - [Rel]s and [Sort]s are not taken into account (that's why we need * a second pass of linear filterin on the results - it's not a perfect * term indexing structure) *) module DTerm = struct type 't t = | DRel | DSort | DRef of GlobRef.t | DProd | DLet | DLambda | DApp | DCase of case_info | DFix of int array * int | DCoFix of int | DInt of Uint63.t | DFloat of Float64.t | DArray let compare_ci ci1 ci2 = let c = Ind.CanOrd.compare ci1.ci_ind ci2.ci_ind in if c = 0 then let c = Int.compare ci1.ci_npar ci2.ci_npar in if c = 0 then let c = Array.compare Int.compare ci1.ci_cstr_ndecls ci2.ci_cstr_ndecls in if c = 0 then Array.compare Int.compare ci1.ci_cstr_nargs ci2.ci_cstr_nargs else c else c else c let compare t1 t2 = match t1, t2 with | DRel, DRel -> 0 | DRel, _ -> -1 | _, DRel -> 1 | DSort, DSort -> 0 | DSort, _ -> -1 | _, DSort -> 1 | DRef gr1, DRef gr2 -> GlobRef.CanOrd.compare gr1 gr2 | DRef _, _ -> -1 | _, DRef _ -> 1 | DProd, DProd -> 0 | DProd, _ -> -1 | _, DProd -> 1 | DLet, DLet -> 0 | DLet, _ -> -1 | _, DLet -> 1 | DLambda, DLambda | DApp, DApp -> 0 | DLambda, _ -> -1 | _, DLambda -> 1 | DApp, _ -> -1 | _, DApp -> 1 | DCase ci1, DCase ci2 -> compare_ci ci1 ci2 | DCase _, _ -> -1 | _, DCase _ -> 1 | DFix (i1, j1), DFix (i2, j2) -> let c = Int.compare j1 j2 in if c = 0 then Array.compare Int.compare i1 i2 else c | DFix _, _ -> -1 | _, DFix _ -> 1 | DCoFix i1, DCoFix i2 -> Int.compare i1 i2 | DCoFix _, _ -> -1 | _, DCoFix _ -> 1 | DInt i1, DInt i2 -> Uint63.compare i1 i2 | DInt _, _ -> -1 | _, DInt _ -> 1 | DFloat f1, DFloat f2 -> Float64.total_compare f1 f2 | DFloat _, _ -> -1 | _, DFloat _ -> 1 | DArray, DArray -> 1 end (* * Terms discrimination nets * Uses the general dnet datatype on DTerm.t * (here you can restart reading) *) module HintDN : sig type t type ident = HintIdent.t val empty : t (** [add c i dn] adds the binding [(c,i)] to [dn]. [c] can be a closed term or a pattern (with untyped Evars). No Metas accepted *) val add : constr -> ident -> t -> t (* * High-level primitives describing specific search problems *) (** [search_pattern dn c] returns all terms/patterns in dn matching/matched by c *) val search_pattern : t -> constr -> ident list (** [find_all dn] returns all idents contained in dn *) val find_all : t -> ident list end = struct module Ident = HintIdent module PTerm = struct type t = unit DTerm.t let compare = DTerm.compare end module TDnet = Dn.Make(PTerm)(Ident) type t = TDnet.t type ident = HintIdent.t open DTerm open TDnet let pat_of_constr c : (unit DTerm.t * Constr.t list) option = let open GlobRef in let rec pat_of_constr c = match Constr.kind c with | Rel _ -> Some (DRel, []) | Sort _ -> Some (DSort, []) | Var i -> Some (DRef (VarRef i), []) | Const (c,u) -> Some (DRef (ConstRef c), []) | Ind (i,u) -> Some (DRef (IndRef i), []) | Construct (c,u)-> Some (DRef (ConstructRef c), []) | Meta _ -> assert false | Evar (i,_) -> None | Case (ci,u1,pms1,c1,_iv,c2,ca) -> let f_ctx (_, p) = p in Some (DCase(ci), [f_ctx c1; c2] @ Array.map_to_list f_ctx ca) | Fix ((ia,i),(_,ta,ca)) -> Some (DFix(ia,i), Array.to_list ta @ Array.to_list ca) | CoFix (i,(_,ta,ca)) -> Some (DCoFix(i), Array.to_list ta @ Array.to_list ca) | Cast (c,_,_) -> pat_of_constr c | Lambda (_,t,c) -> Some (DLambda, [t; c]) | Prod (_, t, u) -> Some (DProd, [t; u]) | LetIn (_, c, t, u) -> Some (DLet, [c; t; u]) | App (f,ca) -> let len = Array.length ca in let a = ca.(len - 1) in let ca = Array.sub ca 0 (len - 1) in Some (DApp, [mkApp (f, ca); a]) | Proj (p,c) -> pat_of_constr (mkApp (mkConst (Projection.constant p), [|c|])) | Int i -> Some (DInt i, []) | Float f -> Some (DFloat f, []) | Array (_u,t,def,ty) -> Some (DArray, Array.to_list t @ [def ; ty]) in pat_of_constr c (* * Basic primitives *) let empty = TDnet.empty let add (c:constr) (id:Ident.t) (dn:t) = (* We used to consider the types of the product as well, but since the dnet is only computing an approximation rectified by [filtering] we do not anymore. *) let (ctx, c) = Term.decompose_prod_assum c in let c = TDnet.pattern pat_of_constr c in TDnet.add dn c id (* App(c,[t1,...tn]) -> ([c,t1,...,tn-1],tn) App(c,[||]) -> ([],c) *) let split_app sigma c = match EConstr.kind sigma c with App(c,l) -> let len = Array.length l in if Int.equal len 0 then ([],c) else let last = Array.get l (len-1) in let prev = Array.sub l 0 (len-1) in c::(Array.to_list prev), last | _ -> assert false exception CannotFilter let filtering env sigma cv_pb c1 c2 = let open EConstr in let open Vars in let evm = ref Evar.Map.empty in let define cv_pb e1 ev c1 = try let (e2,c2) = Evar.Map.find ev !evm in let shift = e1 - e2 in if Termops.constr_cmp sigma cv_pb c1 (lift shift c2) then () else raise CannotFilter with Not_found -> evm := Evar.Map.add ev (e1,c1) !evm in let rec aux env cv_pb c1 c2 = match EConstr.kind sigma c1, EConstr.kind sigma c2 with | App _, App _ -> let ((p1,l1),(p2,l2)) = (split_app sigma c1),(split_app sigma c2) in let () = aux env cv_pb l1 l2 in begin match p1, p2 with | [], [] -> () | (h1 :: p1), (h2 :: p2) -> aux env cv_pb (applist (h1, p1)) (applist (h2, p2)) | _ -> assert false end | Prod (n,t1,c1), Prod (_,t2,c2) -> aux env cv_pb t1 t2; aux (env + 1) cv_pb c1 c2 | _, Evar (ev,_) -> define cv_pb env ev c1 | Evar (ev,_), _ -> define cv_pb env ev c2 | _ -> if Termops.compare_constr_univ sigma (fun pb c1 c2 -> aux env pb c1 c2; true) cv_pb c1 c2 then () else raise CannotFilter (* TODO: le reste des binders *) in try let () = aux env cv_pb c1 c2 in true with CannotFilter -> false let align_prod_letin sigma c a = let (lc,_) = EConstr.decompose_prod_assum sigma c in let (l,a) = EConstr.decompose_prod_assum sigma a in let lc = List.length lc in let n = List.length l in if n < lc then invalid_arg "align_prod_letin"; let l1 = CList.firstn lc l in n - lc, EConstr.it_mkProd_or_LetIn a l1 let decomp pat = match pat_of_constr pat with | None -> Dn.Everything | Some (lbl, args) -> Dn.Label (lbl, args) let search_pattern dn cpat = let _dctx, dpat = Term.decompose_prod_assum cpat in let whole_c = EConstr.of_constr cpat in List.fold_left (fun acc id -> let c_id = EConstr.of_constr @@ Ident.constr_of id in let (ctx,wc) = try align_prod_letin Evd.empty whole_c c_id (* FIXME *) with Invalid_argument _ -> 0, c_id in if filtering ctx Evd.empty Reduction.CUMUL whole_c wc then id :: acc else acc ) (TDnet.lookup dn decomp dpat) [] let find_all dn = TDnet.lookup dn (fun () -> Everything) () end type rewrite_db = { rdb_hintdn : HintDN.t; rdb_order : int KNmap.t; rdb_maxuid : int; } let empty_rewrite_db = { rdb_hintdn = HintDN.empty; rdb_order = KNmap.empty; rdb_maxuid = 0; } (* Summary and Object declaration *) let rewtab = Summary.ref (String.Map.empty : rewrite_db String.Map.t) ~name:"autorewrite" let raw_find_base bas = String.Map.find bas !rewtab let find_base bas = try raw_find_base bas with Not_found -> user_err (str "Rewriting base " ++ str bas ++ str " does not exist.") let find_rewrites bas = let db = find_base bas in let sort r1 r2 = Int.compare (KNmap.find r2.rew_id db.rdb_order) (KNmap.find r1.rew_id db.rdb_order) in List.sort sort (HintDN.find_all db.rdb_hintdn) let find_matches bas pat = let base = find_base bas in let res = HintDN.search_pattern base.rdb_hintdn pat in let sort r1 r2 = Int.compare (KNmap.find r2.rew_id base.rdb_order) (KNmap.find r1.rew_id base.rdb_order) in List.sort sort res let print_rewrite_hintdb bas = let env = Global.env () in let sigma = Evd.from_env env in (str "Database " ++ str bas ++ fnl () ++ prlist_with_sep fnl (fun h -> str (if h.rew_l2r then "rewrite -> " else "rewrite <- ") ++ Printer.pr_lconstr_env env sigma h.rew_lemma ++ str " of type " ++ Printer.pr_lconstr_env env sigma h.rew_type ++ Option.cata (fun tac -> str " then use tactic " ++ Pputils.pr_glb_generic env sigma tac) (mt ()) h.rew_tac) (find_rewrites bas)) type raw_rew_rule = (constr Univ.in_universe_context_set * bool * Genarg.raw_generic_argument option) CAst.t let tclMAP_rev f args = List.fold_left (fun accu arg -> Tacticals.tclTHEN accu (f arg)) (Proofview.tclUNIT ()) args (* Applies all the rules of one base *) let one_base where conds tac_main bas = let lrul = find_rewrites bas in let rewrite dir c tac = let c = (EConstr.of_constr c, Tactypes.NoBindings) in general_rewrite ~where ~l2r:dir AllOccurrences ~freeze:true ~dep:false ~with_evars:false ~tac:(tac, conds) c in let try_rewrite h tc = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let subst, ctx' = UnivGen.fresh_universe_context_set_instance h.rew_ctx in let c' = Vars.subst_univs_level_constr subst h.rew_lemma in let sigma = Evd.merge_context_set Evd.univ_flexible sigma ctx' in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (rewrite h.rew_l2r c' tc) end in let open Proofview.Notations in Proofview.tclProofInfo [@ocaml.warning "-3"] >>= fun (_name, poly) -> let eval h = let tac = match h.rew_tac with | None -> Proofview.tclUNIT () | Some (Genarg.GenArg (Genarg.Glbwit wit, tac)) -> let ist = { Geninterp.lfun = Id.Map.empty ; poly ; extra = Geninterp.TacStore.empty } in Ftactic.run (Geninterp.interp wit ist tac) (fun _ -> Proofview.tclUNIT ()) in Tacticals.tclREPEAT_MAIN (Tacticals.tclTHENFIRST (try_rewrite h tac) tac_main) in let lrul = tclMAP_rev eval lrul in Tacticals.tclREPEAT_MAIN (Proofview.tclPROGRESS lrul) (* The AutoRewrite tactic *) let autorewrite ?(conds=Naive) tac_main lbas = Tacticals.tclREPEAT_MAIN (Proofview.tclPROGRESS (tclMAP_rev (fun bas -> (one_base None conds tac_main bas)) lbas)) let autorewrite_multi_in ?(conds=Naive) idl tac_main lbas = Proofview.Goal.enter begin fun gl -> (* let's check at once if id exists (to raise the appropriate error) *) let _ = List.map (fun id -> Tacmach.pf_get_hyp id gl) idl in Tacticals.tclMAP (fun id -> Tacticals.tclREPEAT_MAIN (Proofview.tclPROGRESS (tclMAP_rev (fun bas -> (one_base (Some id) conds tac_main bas)) lbas))) idl end let autorewrite_in ?(conds=Naive) id = autorewrite_multi_in ~conds [id] let gen_auto_multi_rewrite conds tac_main lbas cl = let try_do_hyps treat_id l = autorewrite_multi_in ~conds (List.map treat_id l) tac_main lbas in let concl_tac = (if cl.concl_occs != NoOccurrences then autorewrite ~conds tac_main lbas else Proofview.tclUNIT ()) in if not (Locusops.is_all_occurrences cl.concl_occs) && cl.concl_occs != NoOccurrences then let info = Exninfo.reify () in Tacticals.tclZEROMSG ~info (str"The \"at\" syntax isn't available yet for the autorewrite tactic.") else match cl.onhyps with | Some [] -> concl_tac | Some l -> Tacticals.tclTHENFIRST concl_tac (try_do_hyps (fun ((_,id),_) -> id) l) | None -> let hyp_tac = (* try to rewrite in all hypothesis (except maybe the rewritten one) *) Proofview.Goal.enter begin fun gl -> let ids = Tacmach.pf_ids_of_hyps gl in try_do_hyps (fun id -> id) ids end in Tacticals.tclTHENFIRST concl_tac hyp_tac let auto_multi_rewrite ?(conds=Naive) lems cl = Proofview.wrap_exceptions (fun () -> gen_auto_multi_rewrite conds (Proofview.tclUNIT()) lems cl) (* Same hack as auto hints: we generate an essentially unique identifier for rewrite hints. *) let fresh_key = let id = Summary.ref ~name:"REWHINT-COUNTER" 0 in fun () -> let cur = incr id; !id in let lbl = Id.of_string ("_" ^ string_of_int cur) in let kn = Lib.make_kn lbl in let (mp, _) = KerName.repr kn in (* We embed the full path of the kernel name in the label so that the identifier should be unique. This ensures that including two modules together won't confuse the corresponding labels. *) let lbl = Id.of_string_soft (Printf.sprintf "%s#%i" (ModPath.to_string mp) cur) in KerName.make mp (Label.of_id lbl) let auto_multi_rewrite_with ?(conds=Naive) tac_main lbas cl = let onconcl = match cl.Locus.concl_occs with NoOccurrences -> false | _ -> true in match onconcl,cl.Locus.onhyps with | false,Some [_] | true,Some [] | false,Some [] -> (* autorewrite with .... in clause using tac n'est sur que si clause represente soit le but soit UNE hypothese *) Proofview.wrap_exceptions (fun () -> gen_auto_multi_rewrite conds tac_main lbas cl) | _ -> let info = Exninfo.reify () in Tacticals.tclZEROMSG ~info (strbrk "autorewrite .. in .. using can only be used either with a unique hypothesis or on the conclusion.") (* Functions necessary to the library object declaration *) let cache_hintrewrite (rbase,lrl) = let base = try raw_find_base rbase with Not_found -> empty_rewrite_db in let fold accu r = { rdb_hintdn = HintDN.add r.rew_pat r accu.rdb_hintdn; rdb_order = KNmap.add r.rew_id accu.rdb_maxuid accu.rdb_order; rdb_maxuid = accu.rdb_maxuid + 1; } in let base = List.fold_left fold base lrl in rewtab := String.Map.add rbase base !rewtab let subst_hintrewrite (subst,(rbase,list as node)) = let subst_hint subst hint = let id' = subst_kn subst hint.rew_id in let cst' = subst_mps subst hint.rew_lemma in let typ' = subst_mps subst hint.rew_type in let pat' = subst_mps subst hint.rew_pat in let t' = Option.Smart.map (Genintern.generic_substitute subst) hint.rew_tac in if hint.rew_id == id' && hint.rew_lemma == cst' && hint.rew_type == typ' && hint.rew_tac == t' && hint.rew_pat == pat' then hint else { hint with rew_lemma = cst'; rew_type = typ'; rew_pat = pat'; rew_tac = t' } in let list' = List.Smart.map (fun h -> subst_hint subst h) list in if list' == list then node else (rbase,list') (* Declaration of the Hint Rewrite library object *) let inGlobalHintRewrite : string * rew_rule list -> Libobject.obj = let open Libobject in declare_object @@ superglobal_object_nodischarge "HINT_REWRITE_GLOBAL" ~cache:cache_hintrewrite ~subst:(Some subst_hintrewrite) let inExportHintRewrite : string * rew_rule list -> Libobject.obj = let open Libobject in declare_object @@ global_object_nodischarge ~cat:Hints.hint_cat "HINT_REWRITE_EXPORT" ~cache:cache_hintrewrite ~subst:(Some subst_hintrewrite) type hypinfo = { hyp_ty : EConstr.types; hyp_pat : EConstr.constr; } let decompose_applied_relation env sigma c ctype left2right = let find_rel ty = (* FIXME: this is nonsense, we generate evars and then we drop the corresponding evarmap. This sometimes works because [Term_dnet] performs evar surgery via [Termops.filtering]. *) let sigma, ty = Clenv.make_evar_clause env sigma ty in let (_, args) = Termops.decompose_app_vect sigma ty.Clenv.cl_concl in let len = Array.length args in if 2 <= len then let c1 = args.(len - 2) in let c2 = args.(len - 1) in Some (if left2right then c1 else c2) else None in match find_rel ctype with | Some c -> Some { hyp_pat = c; hyp_ty = ctype } | None -> let ctx,t' = Reductionops.splay_prod_assum env sigma ctype in (* Search for underlying eq *) let ctype = EConstr.it_mkProd_or_LetIn t' ctx in match find_rel ctype with | Some c -> Some { hyp_pat = c; hyp_ty = ctype } | None -> None let find_applied_relation ?loc env sigma c left2right = let ctype = Retyping.get_type_of env sigma (EConstr.of_constr c) in match decompose_applied_relation env sigma c ctype left2right with | Some c -> c | None -> user_err ?loc (str"The type" ++ spc () ++ Printer.pr_econstr_env env sigma ctype ++ spc () ++ str"of this term does not end with an applied relation.") let warn_deprecated_hint_rewrite_without_locality = CWarnings.create ~name:"deprecated-hint-rewrite-without-locality" ~category:"deprecated" ~default:CWarnings.AsError (fun () -> strbrk "The default value for rewriting hint locality is \ currently \"global\" outside sections, but is scheduled to change to \ \"export\" in the next release (Coq 8.18). In Coq 8.17, not providing \ an explicit locality outside sections triggers a fatal warning, to \ ensure that hint localities are made explicit before the upcoming \ change in the default value. It is recommended to use \"export\" \ whenever possible. Use the attributes \ #[local], #[global] and #[export] depending on your choice. For example: \ \"#[export] Hint Rewrite foo : bar.\" This is supported since Coq 8.14.") let default_hint_rewrite_locality () = if Global.sections_are_opened () then Hints.Local else let () = warn_deprecated_hint_rewrite_without_locality () in Hints.SuperGlobal (* To add rewriting rules to a base *) let add_rew_rules ~locality base lrul = let env = Global.env () in let sigma = Evd.from_env env in let ist = Genintern.empty_glob_sign (Global.env ()) in let intern tac = snd (Genintern.generic_intern ist tac) in let map {CAst.loc;v=((c,ctx),b,t)} = let sigma = Evd.merge_context_set Evd.univ_rigid sigma ctx in let info = find_applied_relation ?loc env sigma c b in let pat = EConstr.Unsafe.to_constr info.hyp_pat in let uid = fresh_key () in { rew_id = uid; rew_lemma = c; rew_type = EConstr.Unsafe.to_constr info.hyp_ty; rew_pat = pat; rew_ctx = ctx; rew_l2r = b; rew_tac = Option.map intern t } in let lrul = List.map map lrul in let open Hints in match locality with | Local -> cache_hintrewrite (base,lrul) | SuperGlobal -> let () = if Global.sections_are_opened () then CErrors.user_err Pp.(str "This command does not support the global attribute in sections."); in Lib.add_leaf (inGlobalHintRewrite (base,lrul)) | Export -> let () = if Global.sections_are_opened () then CErrors.user_err Pp.(str "This command does not support the export attribute in sections."); in Lib.add_leaf (inExportHintRewrite (base,lrul))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>