package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.17.1.tar.gz
sha512=9a35311acec2a806730b94ac7dceabc88837f235c52a14c026827d9b89433bd7fa9555a9fc6829aa49edfedb24c8bbaf1411ebf463b74a50aeb17cba47745b6b
doc/src/coq-core.printing/printer.ml.html
Source file printer.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Util open Names open Constr open Context open Environ open Evd open Constrextern open Ppconstr open Declarations module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration module CompactedDecl = Context.Compacted.Declaration (* This is set on by proofgeneral proof-tree mode. But may be used for other purposes *) let print_goal_tag_opt_name = ["Printing";"Goal";"Tags"] let should_tag = Goptions.declare_bool_option_and_ref ~depr:false ~key:print_goal_tag_opt_name ~value:false let should_unfoc = Goptions.declare_bool_option_and_ref ~depr:false ~key:["Printing";"Unfocused"] ~value:false let should_gname = Goptions.declare_bool_option_and_ref ~depr:false ~key:["Printing";"Goal";"Names"] ~value:false let print_goal_names = should_gname (* for export *) (**********************************************************************) (** Terms *) (* [goal_concl_style] means that all names of goal/section variables and all names of rel variables (if any) in the given env and all short names of global definitions of the current module must be avoided while printing bound variables. Otherwise, short names of global definitions are printed qualified and only names of goal/section variables and rel names that do _not_ occur in the scope of the binder to be printed are avoided. *) let pr_econstr_n_env ?lax ?inctx ?scope env sigma n t = pr_constr_expr_n env sigma n (extern_constr ?lax ?inctx ?scope env sigma t) let pr_econstr_env ?lax ?inctx ?scope env sigma t = pr_constr_expr env sigma (extern_constr ?lax ?inctx ?scope env sigma t) let pr_leconstr_env ?lax ?inctx ?scope env sigma t = Ppconstr.pr_lconstr_expr env sigma (extern_constr ?lax ?inctx ?scope env sigma t) let pr_constr_n_env ?lax ?inctx ?scope env sigma n c = pr_econstr_n_env ?lax ?inctx ?scope env sigma n (EConstr.of_constr c) let pr_constr_env ?lax ?inctx ?scope env sigma c = pr_econstr_env ?lax ?inctx ?scope env sigma (EConstr.of_constr c) let pr_lconstr_env ?lax ?inctx ?scope env sigma c = pr_leconstr_env ?lax ?inctx ?scope env sigma (EConstr.of_constr c) let pr_open_lconstr_env ?lax ?inctx ?scope env sigma (_,c) = pr_leconstr_env ?lax ?inctx ?scope env sigma c let pr_open_constr_env ?lax ?inctx ?scope env sigma (_,c) = pr_econstr_env ?lax ?inctx ?scope env sigma c let pr_constr_under_binders_env_gen pr env sigma (ids,c) = (* Warning: clashes can occur with variables of same name in env but *) (* we also need to preserve the actual names of the patterns *) (* So what to do? *) let assums = List.map (fun id -> (make_annot (Name id) Sorts.Relevant,(* dummy *) mkProp)) ids in pr (Termops.push_rels_assum assums env) sigma c let pr_constr_under_binders_env = pr_constr_under_binders_env_gen pr_econstr_env let pr_lconstr_under_binders_env = pr_constr_under_binders_env_gen pr_leconstr_env let pr_etype_env ?lax ?goal_concl_style env sigma t = pr_constr_expr env sigma (extern_type ?lax ?goal_concl_style env sigma t) let pr_letype_env ?lax ?goal_concl_style env sigma ?impargs t = pr_lconstr_expr env sigma (extern_type ?lax ?goal_concl_style env sigma ?impargs t) let pr_type_env ?lax ?goal_concl_style env sigma c = pr_etype_env ?lax ?goal_concl_style env sigma (EConstr.of_constr c) let pr_ltype_env ?lax ?goal_concl_style env sigma ?impargs c = pr_letype_env ?lax ?goal_concl_style env sigma ?impargs (EConstr.of_constr c) let pr_ljudge_env env sigma j = (pr_leconstr_env env sigma j.uj_val, pr_leconstr_env env sigma j.uj_type) let pr_lglob_constr_env env sigma c = pr_lconstr_expr env sigma (extern_glob_constr (extern_env env sigma) c) let pr_glob_constr_env env sigma c = pr_constr_expr env sigma (extern_glob_constr (extern_env env sigma) c) let pr_closed_glob_n_env ?lax ?goal_concl_style ?inctx ?scope env sigma n c = pr_constr_expr_n env sigma n (extern_closed_glob ?lax ?goal_concl_style ?inctx ?scope env sigma c) let pr_closed_glob_env ?lax ?goal_concl_style ?inctx ?scope env sigma c = pr_constr_expr env sigma (extern_closed_glob ?lax ?goal_concl_style ?inctx ?scope env sigma c) let pr_lconstr_pattern_env env sigma c = pr_lconstr_pattern_expr env sigma (extern_constr_pattern (Termops.names_of_rel_context env) sigma c) let pr_constr_pattern_env env sigma c = pr_constr_pattern_expr env sigma (extern_constr_pattern (Termops.names_of_rel_context env) sigma c) let pr_cases_pattern t = pr_cases_pattern_expr (extern_cases_pattern Names.Id.Set.empty t) let pr_sort sigma s = pr_sort_expr (extern_sort sigma s) let () = Termops.Internal.set_print_constr (fun env sigma t -> pr_lconstr_expr env sigma (extern_constr ~lax:true env sigma t)) let pr_in_comment x = str "(* " ++ x ++ str " *)" (** Term printers resilient to [Nametab] errors *) (** When the nametab isn't up-to-date, the term printers above could raise [Not_found] during [Nametab.shortest_qualid_of_global]. In this case, we build here a fully-qualified name based upon the kernel modpath and label of constants, and the idents in the [mutual_inductive_body] for the inductives and constructors (needs an environment for this). *) let id_of_global env = let open GlobRef in function | ConstRef kn -> Label.to_id (Constant.label kn) | IndRef (kn,0) -> Label.to_id (MutInd.label kn) | IndRef (kn,i) -> (Environ.lookup_mind kn env).mind_packets.(i).mind_typename | ConstructRef ((kn,i),j) -> (Environ.lookup_mind kn env).mind_packets.(i).mind_consnames.(j-1) | VarRef v -> v let rec dirpath_of_mp = function | MPfile sl -> sl | MPbound uid -> DirPath.make [MBId.to_id uid] | MPdot (mp,l) -> Libnames.add_dirpath_suffix (dirpath_of_mp mp) (Label.to_id l) let dirpath_of_global = let open GlobRef in function | ConstRef kn -> dirpath_of_mp (Constant.modpath kn) | IndRef (kn,_) | ConstructRef ((kn,_),_) -> dirpath_of_mp (MutInd.modpath kn) | VarRef _ -> DirPath.empty let qualid_of_global ?loc env r = Libnames.make_qualid ?loc (dirpath_of_global r) (id_of_global env r) let safe_gen f env sigma c = let orig_extern_ref = Constrextern.get_extern_reference () in let extern_ref ?loc vars r = try orig_extern_ref vars r with e when CErrors.noncritical e -> qualid_of_global ?loc env r in Constrextern.set_extern_reference extern_ref; try let p = f env sigma c in Constrextern.set_extern_reference orig_extern_ref; p with e when CErrors.noncritical e -> Constrextern.set_extern_reference orig_extern_ref; str "??" let safe_pr_lconstr_env = safe_gen pr_lconstr_env let safe_pr_constr_env = safe_gen pr_constr_env let u_ident = Id.of_string "u" let universe_binders_with_opt_names orig names = let open Univ in let orig = Univ.AbstractContext.names orig in let orig = Array.to_list orig in let udecl = match names with | None -> orig | Some udecl -> try List.map2 (fun orig {CAst.v = na} -> match na with | Anonymous -> orig | Name id -> Name id) orig udecl with Invalid_argument _ -> let open UnivGen in raise (UniverseLengthMismatch { actual = List.length orig; expect = List.length udecl; }) in let fold_named i (ubind,revubind as o) = function | Name id -> let ui = Level.var i in Id.Map.add id ui ubind, Level.Map.add ui id revubind | Anonymous -> o in let names = List.fold_left_i fold_named 0 (UnivNames.empty_binders,Level.Map.empty) udecl in let fold_anons i (u_ident, (ubind, revubind) as o) = function | Name _ -> o | Anonymous -> let ui = Level.var i in let id = Namegen.next_ident_away_from u_ident (fun id -> Id.Map.mem id ubind) in (id, (Id.Map.add id ui ubind, Level.Map.add ui id revubind)) in let (_, names) = List.fold_left_i fold_anons 0 (u_ident, names) udecl in names let pr_universe_ctx_set sigma c = if !Detyping.print_universes && not (Univ.ContextSet.is_empty c) then fnl()++pr_in_comment (v 0 (Univ.pr_universe_context_set (Termops.pr_evd_level sigma) c)) else mt() let pr_universe_ctx sigma ?variance c = if !Detyping.print_universes && not (Univ.UContext.is_empty c) then fnl()++pr_in_comment (v 0 (Univ.pr_universe_context (Termops.pr_evd_level sigma) ?variance c)) else mt() let pr_abstract_universe_ctx sigma ?variance ?priv c = let open Univ in let priv = Option.default Univ.ContextSet.empty priv in let has_priv = not (ContextSet.is_empty priv) in if !Detyping.print_universes && (not (Univ.AbstractContext.is_empty c) || has_priv) then let prlev u = Termops.pr_evd_level sigma u in let pub = (if has_priv then str "Public universes:" ++ fnl() else mt()) ++ v 0 (Univ.pr_abstract_universe_context prlev ?variance c) in let priv = if has_priv then fnl() ++ str "Private universes:" ++ fnl() ++ v 0 (Univ.pr_universe_context_set prlev priv) else mt() in fnl()++pr_in_comment (pub ++ priv) else mt() let pr_universes sigma ?variance ?priv = function | Declarations.Monomorphic -> mt () | Declarations.Polymorphic ctx -> pr_abstract_universe_ctx sigma ?variance ?priv ctx (**********************************************************************) (* Global references *) let pr_global_env = Nametab.pr_global_env let pr_global = pr_global_env Id.Set.empty let pr_universe_instance_constraints evd inst csts = let open Univ in let prlev = Termops.pr_evd_level evd in let pcsts = if Constraints.is_empty csts then mt() else str " |= " ++ prlist_with_sep (fun () -> str "," ++ spc()) (fun (u,d,v) -> hov 0 (prlev u ++ pr_constraint_type d ++ prlev v)) (Constraints.elements csts) in str"@{" ++ Instance.pr prlev inst ++ pcsts ++ str"}" let pr_universe_instance evd inst = pr_universe_instance_constraints evd inst Univ.Constraints.empty let pr_puniverses f env sigma (c,u) = if !Constrextern.print_universes then f env c ++ pr_universe_instance sigma u else f env c let pr_existential_key = Termops.pr_existential_key let pr_existential env sigma ev = pr_lconstr_env env sigma (mkEvar ev) let pr_constant env cst = pr_global_env (Termops.vars_of_env env) (GlobRef.ConstRef cst) let pr_inductive env ind = pr_global_env (Termops.vars_of_env env) (GlobRef.IndRef ind) let pr_constructor env cstr = pr_global_env (Termops.vars_of_env env) (GlobRef.ConstructRef cstr) let pr_pconstant = pr_puniverses pr_constant let pr_pinductive = pr_puniverses pr_inductive let pr_pconstructor = pr_puniverses pr_constructor let pr_evaluable_reference ref = pr_global (Tacred.global_of_evaluable_reference ref) (*let pr_glob_constr t = pr_lconstr (Constrextern.extern_glob_constr Id.Set.empty t)*) (*open Pattern let pr_pattern t = pr_pattern_env (Global.env()) empty_names_context t*) (**********************************************************************) (* Contexts and declarations *) (* Flag for compact display of goals *) let get_compact_context,set_compact_context = let compact_context = ref false in (fun () -> !compact_context),(fun b -> compact_context := b) let pr_compacted_decl env sigma decl = let ids, pbody, typ = match decl with | CompactedDecl.LocalAssum (ids, typ) -> ids, mt (), typ | CompactedDecl.LocalDef (ids,c,typ) -> (* Force evaluation *) let pb = pr_lconstr_env ~inctx:true env sigma c in let pb = if isCast c then surround pb else pb in ids, (str" := " ++ pb ++ cut ()), typ in let pids = prlist_with_sep pr_comma (fun id -> pr_id id.binder_name) ids in let pt = pr_ltype_env env sigma typ in let ptyp = (str" : " ++ pt) in hov 0 (pids ++ pbody ++ ptyp) let pr_named_decl env sigma decl = decl |> CompactedDecl.of_named_decl |> pr_compacted_decl env sigma let pr_rel_decl env sigma decl = let na = RelDecl.get_name decl in let typ = RelDecl.get_type decl in let pbody = match decl with | RelDecl.LocalAssum _ -> mt () | RelDecl.LocalDef (_,c,_) -> (* Force evaluation *) let pb = pr_lconstr_env ~inctx:true env sigma c in let pb = if isCast c then surround pb else pb in (str":=" ++ spc () ++ pb ++ spc ()) in let ptyp = pr_ltype_env env sigma typ in match na with | Anonymous -> hov 0 (str"<>" ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp) | Name id -> hov 0 (pr_id id ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp) (* Prints out an "env" in a nice format. We print out the * signature,then a horizontal bar, then the debruijn environment. * It's printed out from outermost to innermost, so it's readable. *) (* Prints a signature, all declarations on the same line if possible *) let pr_named_context_of env sigma = let make_decl_list env d pps = pr_named_decl env sigma d :: pps in let psl = List.rev (fold_named_context make_decl_list env ~init:[]) in hv 0 (prlist_with_sep (fun _ -> ws 2) (fun x -> x) psl) let pr_var_list_decl env sigma decl = hov 0 (pr_compacted_decl env sigma decl) let pr_named_context env sigma ne_context = hv 0 (Context.Named.fold_outside (fun d pps -> pps ++ ws 2 ++ pr_named_decl env sigma d) ne_context ~init:(mt ())) let pr_rel_context env sigma rel_context = let rel_context = List.map (fun d -> Termops.map_rel_decl EConstr.of_constr d) rel_context in pr_binders env sigma (extern_rel_context None env sigma rel_context) let pr_rel_context_of env sigma = pr_rel_context env sigma (rel_context env) (* Prints an env (variables and de Bruijn). Separator: newline *) let pr_context_unlimited env sigma = let sign_env = Context.Compacted.fold (fun d pps -> let pidt = pr_compacted_decl env sigma d in (pps ++ fnl () ++ pidt)) (Termops.compact_named_context (named_context env)) ~init:(mt ()) in let db_env = fold_rel_context (fun env d pps -> let pnat = pr_rel_decl env sigma d in (pps ++ fnl () ++ pnat)) env ~init:(mt ()) in (sign_env ++ db_env) let pr_ne_context_of header env sigma = if List.is_empty (Environ.rel_context env) && List.is_empty (Environ.named_context env) then (mt ()) else let penv = pr_context_unlimited env sigma in (header ++ penv ++ fnl ()) (* Heuristic for horizontalizing hypothesis that the user probably considers as "variables": An hypothesis H:T where T:S and S<>Prop. *) let should_compact env sigma typ = get_compact_context() && let type_of_typ = Retyping.get_type_of env sigma (EConstr.of_constr typ) in not (is_Prop (EConstr.to_constr sigma type_of_typ)) (* If option Compact Contexts is set, we pack "simple" hypothesis in a hov box (with three sapaces as a separator), the global box being a v box *) let rec bld_sign_env env sigma ctxt pps = match ctxt with | [] -> pps | CompactedDecl.LocalAssum (ids,typ)::ctxt' when should_compact env sigma typ -> let pps',ctxt' = bld_sign_env_id env sigma ctxt (mt ()) true in (* putting simple hyps in a more horizontal flavor *) bld_sign_env env sigma ctxt' (pps ++ brk (0,0) ++ hov 0 pps') | d:: ctxt' -> let pidt = pr_var_list_decl env sigma d in let pps' = pps ++ brk (0,0) ++ pidt in bld_sign_env env sigma ctxt' pps' and bld_sign_env_id env sigma ctxt pps is_start = match ctxt with | [] -> pps,ctxt | CompactedDecl.LocalAssum(ids,typ) as d :: ctxt' when should_compact env sigma typ -> let pidt = pr_var_list_decl env sigma d in let pps' = pps ++ (if not is_start then brk (3,0) else (mt ())) ++ pidt in bld_sign_env_id env sigma ctxt' pps' false | _ -> pps,ctxt (* compact printing an env (variables and de Bruijn). Separator: three spaces between simple hyps, and newline otherwise *) let pr_context_limit_compact ?n env sigma = let ctxt = Termops.compact_named_context (named_context env) in let lgth = List.length ctxt in let n_capped = match n with | None -> lgth | Some n when n > lgth -> lgth | Some n -> n in let ctxt_chopped, = Util.List.chop n_capped ctxt in (* a dot line hinting the number of hidden hyps. *) let = String.make (List.length ctxt_hidden) '.' in let sign_env = v 0 (str hidden_dots ++ (mt ()) ++ bld_sign_env env sigma (List.rev ctxt_chopped) (mt ())) in let db_env = fold_rel_context (fun env d pps -> pps ++ fnl () ++ pr_rel_decl env sigma d) env ~init:(mt ()) in sign_env ++ db_env (* The number of printed hypothesis in a goal *) (* If [None], no limit *) let print_hyps_limit = Goptions.declare_intopt_option_and_ref ~depr:false ~key:["Hyps";"Limit"] let pr_context_of env sigma = match print_hyps_limit () with | None -> hv 0 (pr_context_limit_compact env sigma) | Some n -> hv 0 (pr_context_limit_compact ~n env sigma) (* display goal parts (Proof mode) *) let pr_predicate pr_elt (b, elts) = let pr_elts = prlist_with_sep spc pr_elt elts in if b then str"all" ++ (if List.is_empty elts then mt () else str" except: " ++ pr_elts) else if List.is_empty elts then str"none" else pr_elts let pr_cpred p = let safe_pr_constant env kn = try pr_constant env kn with Not_found when !Flags.in_debugger || !Flags.in_toplevel -> Names.Constant.print kn in pr_predicate (safe_pr_constant (Global.env())) (Cpred.elements p) let pr_idpred p = pr_predicate Id.print (Id.Pred.elements p) let pr_transparent_state ts = hv 0 (str"VARIABLES: " ++ pr_idpred ts.TransparentState.tr_var ++ fnl () ++ str"CONSTANTS: " ++ pr_cpred ts.TransparentState.tr_cst ++ fnl ()) let goal_repr sigma g = let evi = Evd.find sigma g in Evd.evar_filtered_env (Global.env ()) evi, Evd.evar_concl evi (* display complete goal og_s has goal+sigma on the previous proof step for diffs g_s has goal+sigma on the current proof step *) let pr_goal ?diffs sigma g = let goal = match diffs with | Some og_s -> let g = Proof_diffs.make_goal (Global.env ()) sigma g in let (hyps_pp_list, concl_pp) = Proof_diffs.diff_goal ?og_s g in let hyp_list_to_pp hyps = match hyps with | h :: tl -> List.fold_left (fun x y -> x ++ cut () ++ y) h tl | [] -> mt () in v 0 ( (hyp_list_to_pp hyps_pp_list) ++ cut () ++ str "============================" ++ cut () ++ concl_pp) | None -> let env, concl = goal_repr sigma g in pr_context_of env sigma ++ cut () ++ str "============================" ++ cut () ++ hov 0 (pr_letype_env ~goal_concl_style:true env sigma concl) in str " " ++ v 0 goal (* display a goal tag *) let pr_goal_tag g = let s = " (ID " ^ Proof.goal_uid g ^ ")" in str s (* display a goal name *) let pr_goal_name sigma g = if should_gname() then str " " ++ Pp.surround (pr_existential_key (Global.env ()) sigma g) else mt () let pr_goal_header nme sigma g = str "goal " ++ nme ++ (if should_tag() then pr_goal_tag g else str"") ++ (if should_gname() then str " " ++ Pp.surround (pr_existential_key (Global.env ()) sigma g) else mt ()) (* display the conclusion of a goal *) let pr_concl n ?diffs sigma g = let env, concl = goal_repr sigma g in let pc = match diffs with | Some og_s -> Proof_diffs.diff_concl ?og_s (Proof_diffs.make_goal env sigma g) | None -> pr_letype_env ~goal_concl_style:true env sigma concl in let header = pr_goal_header (int n) sigma g in header ++ str " is:" ++ cut () ++ str" " ++ pc (* display evar type: a context and a type *) let pr_evgl_sign env sigma evi = let env = evar_env env evi in let ps = pr_named_context_of env sigma in let _, l = match Filter.repr (evar_filter evi) with | None -> [], [] | Some f -> List.filter2 (fun b c -> not b) f (evar_context evi) in let ids = List.rev_map NamedDecl.get_id l in let warn = if List.is_empty ids then mt () else (str " (" ++ prlist_with_sep pr_comma pr_id ids ++ str " cannot be used)") in let pc = pr_leconstr_env env sigma (Evd.evar_concl evi) in let candidates = match Evd.evar_body evi, Evd.evar_candidates evi with | Evar_empty, Some l -> spc () ++ str "= {" ++ prlist_with_sep (fun () -> str "|") (pr_leconstr_env env sigma) l ++ str "}" | _ -> mt () in hov 0 (str"[" ++ ps ++ spc () ++ str"|- " ++ pc ++ str"]" ++ candidates ++ warn) (* Print an existential variable *) let pr_evar sigma (evk, evi) = let env = Global.env () in let pegl = pr_evgl_sign env sigma evi in hov 0 (pr_existential_key env sigma evk ++ str " : " ++ pegl) (* Print an enumerated list of existential variables *) let rec pr_evars_int_hd pr sigma i = function | [] -> mt () | (evk,evi)::rest -> (hov 0 (pr i evk evi)) ++ (match rest with [] -> mt () | _ -> fnl () ++ pr_evars_int_hd pr sigma (i+1) rest) let pr_evars_int sigma ~shelf ~given_up i evs = let pr_status i = if List.mem i shelf then str " (shelved)" else if List.mem i given_up then str " (given up)" else mt () in pr_evars_int_hd (fun i evk evi -> str "Existential " ++ int i ++ str " =" ++ spc () ++ pr_evar sigma (evk,evi) ++ pr_status evk) sigma i (Evar.Map.bindings evs) let pr_evars sigma evs = pr_evars_int_hd (fun i evk evi -> pr_evar sigma (evk,evi)) sigma 1 (Evar.Map.bindings evs) (* Display a list of evars given by their name, with a prefix *) let pr_ne_evar_set hd tl sigma l = if l != Evar.Set.empty then let l = Evar.Set.fold (fun ev -> Evar.Map.add ev (Evarutil.nf_evar_info sigma (Evd.find sigma ev))) l Evar.Map.empty in hd ++ pr_evars sigma l ++ tl else mt () let pr_selected_subgoal name sigma g = let pg = pr_goal sigma g in let header = pr_goal_header name sigma g in v 0 (header ++ str " is:" ++ cut () ++ pg) let pr_subgoal n sigma = let rec prrec p = function | [] -> user_err Pp.(str "No such goal.") | g::rest -> if Int.equal p 1 then pr_selected_subgoal (int n) sigma g else prrec (p-1) rest in prrec n let pr_internal_existential_key ev = Evar.print ev let print_evar_constraints gl sigma = let pr_env = match gl with | None -> fun e' -> pr_context_of e' sigma | Some g -> let env, _ = goal_repr sigma g in fun e' -> begin if Context.Named.equal Constr.equal (named_context env) (named_context e') then if Context.Rel.equal Constr.equal (rel_context env) (rel_context e') then mt () else pr_rel_context_of e' sigma ++ str " |-" ++ spc () else pr_context_of e' sigma ++ str " |-" ++ spc () end in let pr_evconstr (pbty,env,t1,t2) = let t1 = Evarutil.nf_evar sigma t1 and t2 = Evarutil.nf_evar sigma t2 in let env = (* We currently allow evar instances to refer to anonymous de Bruijn indices, so we protect the error printing code in this case by giving names to every de Bruijn variable in the rel_context of the conversion problem. MS: we should rather stop depending on anonymous variables, they can be used to indicate independency. Also, this depends on a strategy for naming/renaming *) Namegen.make_all_name_different env sigma in str" " ++ hov 2 (pr_env env ++ pr_leconstr_env env sigma t1 ++ spc () ++ str (match pbty with | Reduction.CONV -> "==" | Reduction.CUMUL -> "<=") ++ spc () ++ pr_leconstr_env env sigma t2) in let pr_candidate ev evi (candidates,acc) = if Option.has_some (Evd.evar_candidates evi) then (succ candidates, acc ++ pr_evar sigma (ev,evi) ++ fnl ()) else (candidates, acc) in let constraints = let _, cstrs = Evd.extract_all_conv_pbs sigma in if List.is_empty cstrs then mt () else fnl () ++ str (String.plural (List.length cstrs) "unification constraint") ++ str":" ++ fnl () ++ hov 0 (prlist_with_sep fnl pr_evconstr cstrs) in let candidates, ppcandidates = Evd.fold_undefined pr_candidate sigma (0,mt ()) in constraints ++ if candidates > 0 then fnl () ++ str (String.plural candidates "existential") ++ str" with candidates:" ++ fnl () ++ hov 0 ppcandidates else mt () let should_print_dependent_evars = Goptions.declare_bool_option_and_ref ~depr:false ~key:["Printing";"Dependent";"Evars";"Line"] ~value:false let evar_nodes_of_term c = let rec evrec acc c = match kind c with | Evar (n, l) -> Evar.Set.add n (SList.Skip.fold evrec acc l) | _ -> Constr.fold evrec acc c in evrec Evar.Set.empty (EConstr.Unsafe.to_constr c) (* spiwack: a few functions to gather evars on which goals depend. *) let queue_set q is_dependent set = Evar.Set.iter (fun a -> Queue.push (is_dependent,a) q) set let queue_term q is_dependent c = queue_set q is_dependent (evar_nodes_of_term c) let process_dependent_evar q acc evm is_dependent e = let evi = Evd.find evm e in (* Queues evars appearing in the types of the goal (conclusion, then hypotheses), they are all dependent. *) queue_term q true (Evd.evar_concl evi); List.iter begin fun decl -> let open NamedDecl in queue_term q true (NamedDecl.get_type decl); match decl with | LocalAssum _ -> () | LocalDef (_,b,_) -> queue_term q true b end (EConstr.named_context_of_val (Evd.evar_hyps evi)); match Evd.evar_body evi with | Evar_empty -> if is_dependent then Evar.Map.add e None acc else acc | Evar_defined b -> let subevars = evar_nodes_of_term b in (* evars appearing in the definition of an evar [e] are marked as dependent when [e] is dependent itself: if [e] is a non-dependent goal, then, unless they are reach from another path, these evars are just other non-dependent goals. *) queue_set q is_dependent subevars; if is_dependent then Evar.Map.add e (Some subevars) acc else acc (** [gather_dependent_evars evm seeds] classifies the evars in [evm] as dependent_evars and goals (these may overlap). A goal is an evar appearing in the (partial) definition [seeds] (including defined evars). A dependent evar is an evar appearing in the type (hypotheses and conclusion) of a goal, or in the type or (partial) definition of a dependent evar. The value return is a map associating to each dependent evar [None] if it has no (partial) definition or [Some s] if [s] is the list of evars appearing in its (partial) definition. This completely breaks the EConstr abstraction. *) let gather_dependent_evars evm l = let q = Queue.create () in List.iter (queue_term q false) l; let acc = ref Evar.Map.empty in while not (Queue.is_empty q) do let (is_dependent,e) = Queue.pop q in (* checks if [e] has already been added to [!acc] *) begin if not (Evar.Map.mem e !acc) then acc := process_dependent_evar q !acc evm is_dependent e end done; !acc (* /spiwack *) let gather_dependent_evars_goal sigma goals = let map evk = let evi = Evd.find sigma evk in EConstr.mkEvar (evk, Evd.evar_identity_subst evi) in gather_dependent_evars sigma (List.map map goals) let print_dependent_evars_core gl sigma evars = let mt_pp = mt () in let evars_pp = Evar.Map.fold (fun e i s -> let e' = pr_internal_existential_key e in let sep = if s = mt_pp then "" else ", " in s ++ str sep ++ e' ++ (match i with | None -> str ":" ++ (Termops.pr_existential_key (Global.env ()) sigma e) | Some i -> let using = Evar.Set.fold (fun d s -> s ++ str " " ++ (pr_internal_existential_key d)) i mt_pp in str " using" ++ using)) evars mt_pp in let evars_current_pp = match gl with | None -> mt_pp | Some gl -> let evars_current = gather_dependent_evars_goal sigma [gl] in Evar.Map.fold (fun e _ s -> s ++ str " " ++ (pr_internal_existential_key e)) evars_current mt_pp in cut () ++ cut () ++ str "(dependent evars: " ++ evars_pp ++ str "; in current goal:" ++ evars_current_pp ++ str ")" let print_dependent_evars gl sigma seeds = if should_print_dependent_evars () then let evars = gather_dependent_evars_goal sigma seeds in print_dependent_evars_core gl sigma evars else mt () let print_dependent_evars_entry gl sigma = function | None -> mt () | Some entry -> if should_print_dependent_evars () then let terms = List.map pi2 (Proofview.initial_goals entry) in let evars = gather_dependent_evars sigma terms in print_dependent_evars_core gl sigma evars else mt () (* Print open subgoals. Checks for uninstantiated existential variables *) (* spiwack: [entry] is for printing dependent evars in emacs mode. *) (* spiwack: [pr_first] is true when the first goal must be singled out and printed in its entirety. *) (* [os_map] is derived from the previous proof step, used for diffs *) let pr_subgoals ?(pr_first=true) ?diffs ?entry sigma ~shelf ~stack ~unfocused ~goals = (* Printing functions for the extra informations. *) let rec print_stack a = function | [] -> Pp.int a | b::l -> Pp.int a ++ str"-" ++ print_stack b l in let print_unfocused_nums l = match l with | [] -> None | a::l -> Some (str"unfocused: " ++ print_stack a l) in let print_shelf l = match l with | [] -> None | _ -> Some (str"shelved: " ++ Pp.int (List.length l)) in let rec print_comma_separated_list a l = match l with | [] -> a | b::l -> print_comma_separated_list (a++str", "++b) l in let print_extra_list l = match l with | [] -> Pp.mt () | a::l -> Pp.spc () ++ str"(" ++ print_comma_separated_list a l ++ str")" in let extra = Option.List.flatten [ print_unfocused_nums stack ; print_shelf shelf ] in let print_extra = print_extra_list extra in let focused_if_needed = let needed = not (CList.is_empty extra) && pr_first in if needed then str" focused " else str" " (* non-breakable space *) in let get_ogs map g = match map with | None -> None | Some map -> Proof_diffs.map_goal g map in let rec pr_rec n = function | [] -> (mt ()) | g::rest -> let diffs = Option.map (fun map -> get_ogs map g) diffs in let pc = pr_concl n ?diffs sigma g in let prest = pr_rec (n+1) rest in (cut () ++ pc ++ prest) in let print_multiple_goals g l = if pr_first then let diffs = Option.map (fun map -> get_ogs map g) diffs in pr_goal ?diffs sigma g ++ (if l=[] then mt () else cut ()) ++ pr_rec 2 l else pr_rec 1 (g::l) in let pr_evar_info gl = let first_goal = if pr_first then gl else None in print_evar_constraints gl sigma ++ print_dependent_evars_entry first_goal sigma entry in (* Main function *) match goals with | [] -> let exl = Evd.undefined_map sigma in if Evar.Map.is_empty exl then v 0 (str "No more goals." ++ pr_evar_info None) else let pei = pr_evars_int sigma ~shelf ~given_up:[] 1 exl in v 0 ((str "No more goals," ++ str " but there are non-instantiated existential variables:" ++ cut () ++ (hov 0 pei) ++ pr_evar_info None ++ cut () ++ str "You can use Unshelve.")) | g1::rest -> let goals = print_multiple_goals g1 rest in let ngoals = List.length rest+1 in v 0 ( hov 0 (int ngoals ++ focused_if_needed ++ str(String.plural ngoals "goal") ++ print_extra) ++ str (if pr_first && (should_gname()) && ngoals > 1 then ", goal 1" else "") ++ (if pr_first && should_tag() then pr_goal_tag g1 else str"") ++ (if pr_first then pr_goal_name sigma g1 else mt()) ++ cut () ++ goals ++ (if unfocused=[] then str "" else (cut() ++ cut() ++ str "*** Unfocused goals:" ++ cut() ++ pr_rec (List.length rest + 2) unfocused)) ++ pr_evar_info (Some g1) ) let pr_open_subgoals ?(quiet=false) ?diffs proof = (* spiwack: it shouldn't be the job of the printer to look up stuff in the [evar_map], I did stuff that way because it was more straightforward, but seriously, [Proof.proof] should return [evar_info]-s instead. *) let p = proof in let Proof.{goals; stack; sigma;entry} = Proof.data p in let shelf = Evd.shelf sigma in let given_up = Evd.given_up sigma in let stack = List.map (fun (l,r) -> List.length l + List.length r) stack in begin match goals with | [] -> let bgoals = Proof.background_subgoals p in begin match bgoals,shelf,given_up with | [] , [] , g when Evar.Set.is_empty g -> pr_subgoals sigma ~entry ~shelf ~stack ~unfocused:[] ~goals | [] , [] , _ -> Feedback.msg_info (str "No more goals, but there are some goals you gave up:"); fnl () ++ pr_subgoals ~pr_first:false sigma ~entry ~shelf:[] ~stack:[] ~unfocused:[] ~goals:(Evar.Set.elements given_up) ++ fnl () ++ str "You need to go back and solve them." | [] , _ , _ -> Feedback.msg_info (str "All the remaining goals are on the shelf."); fnl () ++ pr_subgoals ~pr_first:false sigma ~entry ~shelf:[] ~stack:[] ~unfocused:[] ~goals:shelf | _ , _, _ -> let () = if quiet then () else Feedback.msg_info (str "This subproof is complete, but there are some unfocused goals." ++ (let s = Proof_bullet.suggest p in if Pp.ismt s then s else fnl () ++ s) ++ fnl ()) in pr_subgoals ~pr_first:false sigma ~entry ~shelf ~stack:[] ~unfocused:[] ~goals:bgoals end | _ -> let bgoals = Proof.background_subgoals p in let bgoals_focused, bgoals_unfocused = List.partition (fun x -> List.mem x goals) bgoals in let unfocused_if_needed = if should_unfoc() then bgoals_unfocused else [] in let diffs = match diffs with | Some (Some op) -> Some (try Some (Proof_diffs.make_goal_map op proof) with Pp_diff.Diff_Failure msg -> Proof_diffs.notify_proof_diff_failure msg; None) | Some None -> Some None | None -> None in pr_subgoals ~pr_first:true ?diffs sigma ~entry ~shelf ~stack:[] ~unfocused:unfocused_if_needed ~goals:bgoals_focused end let pr_nth_open_subgoal ~proof n = let Proof.{goals;sigma} = Proof.data proof in pr_subgoal n sigma goals let pr_goal_by_id ~proof id = try let { Proof.sigma } = Proof.data proof in let g = Evd.evar_key id sigma in pr_selected_subgoal (pr_id id) sigma g with Not_found -> user_err Pp.(str "No such goal.") (** print a goal identified by the goal id as it appears in -emacs mode. sid should be the Stm state id corresponding to proof. Used to support the Prooftree tool in Proof General. (https://askra.de/software/prooftree/). *) let pr_goal_emacs ~proof gid sid = match proof with | None -> user_err Pp.(str "No proof for that state.") | Some proof -> let pr sigma gs = v 0 ((str "goal ID " ++ (int gid) ++ str " at state " ++ (int sid)) ++ cut () ++ pr_goal sigma gs) in try let { Proof.sigma } = Proof.data proof in let gl = Evar.unsafe_of_int gid in v 0 (pr sigma gl ++ print_dependent_evars (Some gl) sigma [ gl ]) with Not_found -> user_err Pp.(str "No such goal.") (* Printer function for sets of Assumptions.assumptions. It is used primarily by the Print Assumptions command. *) type axiom = | Constant of Constant.t | Positive of MutInd.t | Guarded of GlobRef.t | TypeInType of GlobRef.t | UIP of MutInd.t type context_object = | Variable of Id.t (* A section variable or a Let definition *) | Axiom of axiom * (Label.t * Constr.rel_context * types) list | Opaque of Constant.t (* An opaque constant. *) | Transparent of Constant.t (* Defines a set of [assumption] *) module OrderedContextObject = struct type t = context_object let compare_axiom x y = match x,y with | Constant k1 , Constant k2 -> Constant.CanOrd.compare k1 k2 | Positive m1 , Positive m2 | UIP m1, UIP m2 -> MutInd.CanOrd.compare m1 m2 | Guarded k1 , Guarded k2 | TypeInType k1, TypeInType k2 -> GlobRef.CanOrd.compare k1 k2 | Constant _, _ -> -1 | _, Constant _ -> 1 | Positive _, _ -> -1 | _, Positive _ -> 1 | Guarded _, _ -> -1 | _, Guarded _ -> 1 | TypeInType _, _ -> -1 | _, TypeInType _ -> 1 let compare x y = match x , y with | Variable i1 , Variable i2 -> Id.compare i1 i2 | Variable _ , _ -> -1 | _ , Variable _ -> 1 | Axiom (k1,_) , Axiom (k2, _) -> compare_axiom k1 k2 | Axiom _ , _ -> -1 | _ , Axiom _ -> 1 | Opaque k1 , Opaque k2 -> Constant.CanOrd.compare k1 k2 | Opaque _ , _ -> -1 | _ , Opaque _ -> 1 | Transparent k1 , Transparent k2 -> Constant.CanOrd.compare k1 k2 end module ContextObjectSet = Set.Make (OrderedContextObject) module ContextObjectMap = Map.Make (OrderedContextObject) let pr_assumptionset env sigma s = if ContextObjectMap.is_empty s && not (is_impredicative_set env) then str "Closed under the global context" else let safe_pr_constant env kn = try pr_constant env kn with Not_found -> Names.Constant.print kn in let safe_pr_global env gr = try pr_global_env (Termops.vars_of_env env) gr with Not_found -> let open GlobRef in match gr with | VarRef id -> Id.print id | ConstRef con -> Constant.print con | IndRef (mind,_) -> MutInd.print mind | ConstructRef _ -> assert false in let safe_pr_inductive env kn = try pr_inductive env (kn,0) with Not_found -> MutInd.print kn in let safe_pr_ltype env sigma typ = try str " : " ++ pr_ltype_env env sigma typ with e when CErrors.noncritical e -> mt () in let safe_pr_ltype_relctx (rctx, typ) = let env = Environ.push_rel_context rctx env in try str " " ++ pr_ltype_env env sigma typ with e when CErrors.noncritical e -> mt () in let pr_axiom env ax typ = match ax with | Constant kn -> hov 1 (safe_pr_constant env kn ++ cut() ++ safe_pr_ltype env sigma typ) | Positive m -> hov 2 (safe_pr_inductive env m ++ spc () ++ strbrk"is assumed to be positive.") | Guarded gr -> hov 2 (safe_pr_global env gr ++ spc () ++ strbrk"is assumed to be guarded.") | TypeInType gr -> hov 2 (safe_pr_global env gr ++ spc () ++ strbrk"relies on an unsafe hierarchy.") | UIP mind -> hov 2 (safe_pr_inductive env mind ++ spc () ++ strbrk"relies on definitional UIP.") in let fold t typ accu = let (v, a, o, tr) = accu in match t with | Variable id -> let var = pr_id id ++ spc() ++ str ": " ++ pr_ltype_env env sigma typ in (var :: v, a, o, tr) | Axiom (axiom, []) -> let ax = pr_axiom env axiom typ in (v, ax :: a, o, tr) | Axiom (axiom,l) -> let ax = pr_axiom env axiom typ ++ spc() ++ prlist_with_sep cut (fun (lbl, ctx, ty) -> str "used in " ++ Label.print lbl ++ str " to prove" ++ fnl() ++ safe_pr_ltype_relctx (ctx,ty)) l in (v, ax :: a, o, tr) | Opaque kn -> let opq = safe_pr_constant env kn ++ safe_pr_ltype env sigma typ in (v, a, opq :: o, tr) | Transparent kn -> let tran = safe_pr_constant env kn ++ safe_pr_ltype env sigma typ in (v, a, o, tran :: tr) in let (vars, axioms, opaque, trans) = ContextObjectMap.fold fold s ([], [], [], []) in let theory = if is_impredicative_set env then [str "Set is impredicative"] else [] in let theory = if type_in_type env then str "Type hierarchy is collapsed (logic is inconsistent)" :: theory else theory in let opt_list title = function | [] -> None | l -> let section = title ++ fnl () ++ v 0 (prlist_with_sep fnl (fun s -> s) l) in Some section in let assums = [ opt_list (str "Transparent constants:") trans; opt_list (str "Section Variables:") vars; opt_list (str "Axioms:") axioms; opt_list (str "Opaque constants:") opaque; opt_list (str "Theory:") theory; ] in prlist_with_sep fnl (fun x -> x) (Option.List.flatten assums) let pr_typing_flags flags = str "check_guarded: " ++ bool flags.check_guarded ++ fnl () ++ str "check_positive: " ++ bool flags.check_positive ++ fnl () ++ str "check_universes: " ++ bool flags.check_universes ++ fnl () ++ str "cumulative sprop: " ++ bool flags.cumulative_sprop ++ fnl () ++ str "definitional uip: " ++ bool flags.allow_uip module Debug = struct let pr_goal gl = pr_goal (Proofview.Goal.sigma gl) (Proofview.Goal.goal gl) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>