package coq-core

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file comInductive.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Pp
open CErrors
open Sorts
open Util
open Context
open Environ
open Names
open Libnames
open Constrexpr
open Constrexpr_ops
open Constrintern
open Type_errors
open Pretyping
open Context.Rel.Declaration
open Entries

module RelDecl = Context.Rel.Declaration

(* 3b| Mutual inductive definitions *)

let warn_auto_template =
  CWarnings.create ~name:"auto-template" ~category:"vernacular" ~default:CWarnings.Disabled
    (fun id ->
       Pp.(strbrk "Automatically declaring " ++ Id.print id ++
           strbrk " as template polymorphic. Use attributes or " ++
           strbrk "disable Auto Template Polymorphism to avoid this warning."))

let should_auto_template =
  let open Goptions in
  let auto = ref true in
  let () = declare_bool_option
      { optdepr  = false;
        optkey   = ["Auto";"Template";"Polymorphism"];
        optread  = (fun () -> !auto);
        optwrite = (fun b -> auto := b); }
  in
  fun id would_auto ->
    let b = !auto && would_auto in
    if b then warn_auto_template id;
    b

let push_types env idl rl tl =
  List.fold_left3 (fun env id r t -> EConstr.push_rel (LocalAssum (make_annot (Name id) r,t)) env)
    env idl rl tl

type structured_one_inductive_expr = {
  ind_name : Id.t;
  ind_arity : constr_expr;
  ind_lc : (Id.t * constr_expr) list
}

exception Same of Id.t

let check_all_names_different indl =
  let rec elements = function
  | [] -> Id.Set.empty
  | id :: l ->
    let s = elements l in
    if Id.Set.mem id s then raise (Same id) else Id.Set.add id s
  in
  let ind_names = List.map (fun ind -> ind.ind_name) indl in
  let cstr_names = List.map_append (fun ind -> List.map fst ind.ind_lc) indl in
  let ind_names = match elements ind_names with
  | s -> s
  | exception (Same t) -> raise (InductiveError (SameNamesTypes t))
  in
  let cstr_names = match elements cstr_names with
  | s -> s
  | exception (Same c) -> raise (InductiveError (SameNamesConstructors c))
  in
  let l = Id.Set.inter ind_names cstr_names in
  if not (Id.Set.is_empty l) then
    raise (InductiveError (SameNamesOverlap (Id.Set.elements l)))

(** Make the arity conclusion flexible to avoid generating an upper bound universe now,
    only if the universe does not appear anywhere else.
    This is really a hack to stay compatible with the semantics of template polymorphic
    inductives which are recognized when a "Type" appears at the end of the conlusion in
    the source syntax. *)

let rec check_type_conclusion ind =
  let open Glob_term in
    match DAst.get ind with
    | GSort (UAnonymous {rigid=true}) -> (Some true)
    | GSort (UNamed _) -> (Some false)
    | GProd ( _, _, _, e)
    | GLetIn (_, _, _, e)
    | GLambda (_, _, _, e)
    | GApp (e, _)
    | GCast (e, _, _) -> check_type_conclusion e
    | _ -> None

let make_anonymous_conclusion_flexible sigma = function
  | None -> sigma
  | Some (false, _) -> sigma
  | Some (true, s) ->
    (match EConstr.ESorts.kind sigma s with
     | Type u ->
       (match Univ.Universe.level u with
        | Some u ->
          Evd.make_flexible_variable sigma ~algebraic:true u
        | None -> sigma)
     | _ -> sigma)

let intern_ind_arity env sigma ind =
  let c = intern_gen IsType env sigma ind.ind_arity in
  let impls = Implicit_quantifiers.implicits_of_glob_constr ~with_products:true c in
  let pseudo_poly = check_type_conclusion c in
  (constr_loc ind.ind_arity, c, impls, pseudo_poly)

let pretype_ind_arity env sigma (loc, c, impls, pseudo_poly) =
  let sigma,t = understand_tcc env sigma ~expected_type:IsType c in
  match Reductionops.sort_of_arity env sigma t with
  | exception Reduction.NotArity ->
    user_err ?loc (str "Not an arity")
  | s ->
    let concl = match pseudo_poly with
      | Some b -> Some (b, s)
      | None -> None
    in
    sigma, (t, Retyping.relevance_of_sort s, concl, impls)

(* ind_rel is the Rel for this inductive in the context without params.
   n is how many arguments there are in the constructor. *)
let model_conclusion env sigma ind_rel params n arity_indices =
  let model_head = EConstr.mkRel (n + Context.Rel.length params + ind_rel) in
  let model_params = Context.Rel.instance EConstr.mkRel n params in
  let sigma,model_indices =
    List.fold_right
      (fun (_,t) (sigma, subst) ->
        let t = EConstr.Vars.substl subst (EConstr.Vars.liftn n (List.length subst + 1) t) in
        let sigma, c = Evarutil.new_evar env sigma t in
        sigma, c::subst)
      arity_indices (sigma, []) in
  sigma, EConstr.mkApp (EConstr.mkApp (model_head, model_params), Array.of_list (List.rev model_indices))

let interp_cstrs env (sigma, ind_rel) impls params ind arity =
  let cnames,ctyps = List.split ind.ind_lc in
  let arity_indices, cstr_sort = Reductionops.splay_arity env sigma arity in
  (* Interpret the constructor types *)
  let interp_cstr sigma ctyp =
    let flags =
      Pretyping.{ all_no_fail_flags with
                  use_typeclasses = UseTCForConv;
                  solve_unification_constraints = false }
    in
    let sigma, (ctyp, cimpl) = interp_type_evars_impls ~flags env sigma ~impls ctyp in
    let ctx, concl = Reductionops.splay_prod_assum env sigma ctyp in
    let concl_env = EConstr.push_rel_context ctx env in
    let sigma_with_model_evars, model =
      model_conclusion concl_env sigma ind_rel params (Context.Rel.length ctx) arity_indices
    in
    (* unify the expected with the provided conclusion *)
    let sigma =
      try Evarconv.unify concl_env sigma_with_model_evars Reduction.CONV concl model
      with Evarconv.UnableToUnify (sigma,e) ->
        user_err (Himsg.explain_pretype_error concl_env sigma
                    (Pretype_errors.CannotUnify (concl, model, (Some e))))
    in
    sigma, (ctyp, cimpl)
  in
  let sigma, (ctyps, cimpls) =
    on_snd List.split @@
    List.fold_left_map interp_cstr sigma ctyps
  in
  (sigma, pred ind_rel), (cnames, ctyps, cimpls)

(** FIXME: This is a horrible hack, use a saner heuristic *)
let max_sort s1 s2 = match s1, s2 with
| (SProp, SProp) | (Prop, Prop) | (Set, Set) -> s1
| (SProp, (Prop | Set | Type _ as s)) | ((Prop | Set | Type _) as s, SProp) -> s
| (Prop, (Set | Type _ as s)) | ((Set | Type _) as s, Prop) -> s
| (Set, Type u) | (Type u, Set) -> Sorts.sort_of_univ (Univ.Universe.sup Univ.Universe.type0 u)
| (Type u, Type v) -> Sorts.sort_of_univ (Univ.Universe.sup u v)

let compute_constructor_level env evd sign =
  fst (List.fold_right
    (fun d (lev,env) ->
      match d with
      | LocalDef _ -> lev, EConstr.push_rel d env
      | LocalAssum _ ->
        let s = Retyping.get_sort_of env evd (RelDecl.get_type d) in
          (max_sort s lev, EConstr.push_rel d env))
    sign (Sorts.sprop,env))

let sign_level env sigma sign =
  compute_constructor_level env sigma (EConstr.of_rel_context sign)

let sup_list min = List.fold_left max_sort min

let extract_level env evd min tys =
  let sorts = List.map (fun ty ->
    let ctx, concl = Reduction.dest_prod_assum env ty in
      sign_level env evd (LocalAssum (make_annot Anonymous Sorts.Relevant, concl) :: ctx)) tys
  in sup_list min sorts

let is_flexible_sort evd s = match s with
| Set | Prop | SProp -> false
| Type u ->
  match Univ.Universe.level u with
  | Some l -> Evd.is_flexible_level evd l
  | None -> false

(**********************************************************************)
(* Tools for template polymorphic inductive types                         *)

(* Miscellaneous functions to remove or test local univ assumed to
   occur only in the le constraints *)

(*
   Solve a system of universe constraint of the form

   u_s11, ..., u_s1p1, w1 <= u1
   ...
   u_sn1, ..., u_snpn, wn <= un

where

  - the ui (1 <= i <= n) are universe variables,
  - the sjk select subsets of the ui for each equations,
  - the wi are arbitrary complex universes that do not mention the ui.
*)

let is_direct_sort_constraint s v = match s with
| None -> false
| Some u ->
  match v with
  | Sorts.Prop | Sorts.Set | Sorts.SProp -> false
  | Sorts.Type v -> Univ.univ_level_mem u v

let solve_constraints_system levels level_bounds =
  let open Univ in
  let levels =
    Array.mapi (fun i o ->
      match o with
      | Some u ->
        (match Universe.level u with
        | Some u -> Some u
        | _ -> level_bounds.(i) <- max_sort level_bounds.(i) (Sorts.sort_of_univ u); None)
      | None -> None)
      levels in
  let v = Array.copy level_bounds in
  let nind = Array.length v in
  let clos = Array.map (fun _ -> Int.Set.empty) levels in
  (* First compute the transitive closure of the levels dependencies *)
  for i=0 to nind-1 do
    for j=0 to nind-1 do
      if not (Int.equal i j) && is_direct_sort_constraint levels.(j) v.(i) then
        clos.(i) <- Int.Set.add j clos.(i);
    done;
  done;
  let rec closure () =
    let continue = ref false in
      Array.iteri (fun i deps ->
        let deps' =
          Int.Set.fold (fun j acc -> Int.Set.union acc clos.(j)) deps deps
        in
          if Int.Set.equal deps deps' then ()
          else (clos.(i) <- deps'; continue := true))
        clos;
      if !continue then closure ()
      else ()
  in
  closure ();
  for i=0 to nind-1 do
    for j=0 to nind-1 do
      if not (Int.equal i j) && Int.Set.mem j clos.(i) then
        (v.(i) <- max_sort v.(i) level_bounds.(j));
    done;
  done;
  v

let inductive_levels env evd arities inds =
  let destarities = List.map (fun x -> x, Reduction.dest_arity env x) arities in
  let map (x, (ctx, s)) = match s with
  | Prop | SProp -> None
  | Set -> Some Univ.Universe.type0
  | Type u -> Some u
  in
  let levels = List.map map destarities in
  let cstrs_levels, sizes =
    CList.split (List.map2 (fun (_,tys) (arity,(ctx,du)) ->
        let len = List.length tys in
        let minlev = du in
        let minlev =
          if len > 1 && not (is_impredicative_sort env du) then
            max_sort minlev Sorts.set
          else minlev
        in
        let minlev =
          (* Indices contribute. *)
          if indices_matter env then begin
            let ilev = sign_level env evd ctx in
            max_sort ilev minlev
          end
          else minlev
        in
        let clev = extract_level env evd minlev tys in
        (clev, len))
        inds destarities)
  in
  (* Take the transitive closure of the system of constructors *)
  (* level constraints and remove the recursive dependencies *)
  let levels' = solve_constraints_system (Array.of_list levels)
    (Array.of_list cstrs_levels)
  in
  let evd, arities =
    CList.fold_left3 (fun (evd, arities) cu (arity,(ctx,du)) len ->
      if is_impredicative_sort env du then
        (* Any product is allowed here. *)
        evd, arity :: arities
      else (* If in a predicative sort, or asked to infer the type,
              we take the max of:
              - indices (if in indices-matter mode)
              - constructors
              - Type(1) if there is more than 1 constructor
           *)
        (* Constructors contribute. *)
        let evd =
          if Sorts.is_set du then
            if not (Evd.check_leq evd cu Sorts.set) then
              raise (InductiveError LargeNonPropInductiveNotInType)
            else evd
          else evd
        in
        let evd =
          if len >= 2 && Sorts.is_prop cu then
           (* "Polymorphic" type constraint and more than one constructor,
               should not land in Prop. Add constraint only if it would
               land in Prop directly (no informative arguments as well). *)
            Evd.set_leq_sort env evd Sorts.set du
          else evd
        in
        let evd, arity =
          if not (Sorts.is_small du) && Sorts.equal cu du then
            if is_flexible_sort evd du && not (Evd.check_leq evd Sorts.set du)
            then if Term.isArity arity
            (* If not a syntactic arity, the universe may be used in a
               polymorphic instance and so cannot be lowered to Prop.
               See #13300. *)
              then
                (* Workaround: the kernel does not handle non-Prop unbounded
                   arities. In this situation we have no constraints from the
                   constructor so we cook up a new type and unify the unbound
                   universe to a dummy value. *)
                let evd = Evd.set_eq_sort env evd Sorts.set du in
                evd, Term.mkArity (ctx, Sorts.prop)
              else Evd.set_eq_sort env evd Sorts.set du, arity
            else evd, arity
          else Evd.set_eq_sort env evd cu du, arity
        in
          (evd, arity :: arities))
    (evd,[]) (Array.to_list levels') destarities sizes
  in evd, List.rev arities

let check_named {CAst.loc;v=na} = match na with
| Name _ -> ()
| Anonymous ->
  let msg = str "Parameters must be named." in
  user_err ?loc  msg

(* Returns the list [x_1, ..., x_n] of levels contributing to template
   polymorphism. The elements x_k is None if the k-th parameter
   (starting from the most recent and ignoring let-definitions) is not
   contributing to the inductive type's sort or is Some u_k if its level
   is u_k and is contributing. *)
let template_polymorphic_univs ~ctor_levels uctx paramsctxt u =
  let unbounded_from_below u cstrs =
    let open Univ in
    Univ.Constraints.for_all (fun (l, d, r) ->
        match d with
        | Eq -> not (Univ.Level.equal l u) && not (Univ.Level.equal r u)
        | Lt | Le -> not (Univ.Level.equal r u))
      cstrs
  in
  let fold_params accu decl = match decl with
  | LocalAssum (_, p) ->
    let c = Term.strip_prod_assum p in
    begin match Constr.kind c with
    | Constr.Sort (Type u) ->
      begin match Univ.Universe.level u with
      | Some l -> Univ.Level.Set.add l accu
      | None -> accu
      end
    | _ -> accu
    end
  | LocalDef _ -> accu
  in
  let paramslevels = List.fold_left fold_params Univ.Level.Set.empty paramsctxt in
  let check_level l =
    Univ.Level.Set.mem l (Univ.ContextSet.levels uctx) &&
    Univ.Level.Set.mem l paramslevels &&
    (let () = assert (not @@ Univ.Level.is_set l) in true) &&
    unbounded_from_below l (Univ.ContextSet.constraints uctx) &&
    not (Univ.Level.Set.mem l ctor_levels)
  in
  let univs = Univ.Universe.levels u in
  let univs = Univ.Level.Set.filter (fun l -> check_level l) univs in
  univs

let template_polymorphism_candidate uctx params entry concl = match concl with
| None -> Univ.Level.Set.empty
| Some (Set | SProp | Prop) -> Univ.Level.Set.empty
| Some (Type u) ->
  let ctor_levels =
    let add_levels c levels = Univ.Level.Set.union levels (Vars.universes_of_constr c) in
    let param_levels =
      List.fold_left (fun levels d -> match d with
          | LocalAssum _ -> levels
          | LocalDef (_,b,t) -> add_levels b (add_levels t levels))
        Univ.Level.Set.empty params
    in
    List.fold_left (fun levels c -> add_levels c levels)
      param_levels entry.mind_entry_lc
  in
  let univs = template_polymorphic_univs ~ctor_levels uctx params u in
  univs

let split_universe_context subset (univs, csts) =
  let subfilter (l, _, r) =
    let () = assert (not @@ Univ.Level.Set.mem r subset) in
    Univ.Level.Set.mem l subset
  in
  let subcst = Univ.Constraints.filter subfilter csts in
  let rem = Univ.Level.Set.diff univs subset in
  let remfilter (l, _, r) =
    not (Univ.Level.Set.mem l subset) && not (Univ.Level.Set.mem r subset)
  in
  let remcst = Univ.Constraints.filter remfilter csts in
  (subset, subcst), (rem, remcst)

let warn_no_template_universe =
  CWarnings.create ~name:"no-template-universe" ~category:"universes"
    (fun () -> Pp.str "This inductive type has no template universes.")

let compute_template_inductive ~user_template ~env_ar_params ~ctx_params ~univ_entry entry concl =
match user_template, univ_entry with
| Some false, UState.Monomorphic_entry uctx ->
  Monomorphic_ind_entry, uctx
| Some false, UState.Polymorphic_entry uctx ->
  Polymorphic_ind_entry uctx, Univ.ContextSet.empty
| Some true, UState.Monomorphic_entry uctx ->
  let template_universes = template_polymorphism_candidate uctx ctx_params entry concl in
  let template, global = split_universe_context template_universes uctx in
  let () = if Univ.Level.Set.is_empty (fst template) then warn_no_template_universe () in
  Template_ind_entry template, global
| Some true, UState.Polymorphic_entry _ ->
  user_err Pp.(strbrk "Template-polymorphism and universe polymorphism are not compatible.")
| None, UState.Polymorphic_entry uctx ->
  Polymorphic_ind_entry uctx, Univ.ContextSet.empty
| None, UState.Monomorphic_entry uctx ->
  (* Heuristic: the user has not written Prop explicitly in the return
      arity, but inference has decided to lower it to Prop. *)
  let templatearity =
    if Term.isArity entry.mind_entry_arity then
      let (_, s) = Reduction.dest_arity env_ar_params entry.mind_entry_arity in
      if Sorts.is_prop s then match concl with
      | None | Some (Type _ | Set)-> true
      | Some Prop -> false
      | Some SProp -> assert false
      else false
    else false
  in
  if templatearity then
    let template = should_auto_template entry.mind_entry_typename true in
    (* Dummy template inductive. Matters for the shape of the induction principle *)
    if template then Template_ind_entry Univ.ContextSet.empty, uctx
    else Monomorphic_ind_entry, uctx
  else
    let template_candidate = template_polymorphism_candidate uctx ctx_params entry concl in
    let has_template = not @@ Univ.Level.Set.is_empty template_candidate in
    let template = should_auto_template entry.mind_entry_typename has_template in
    if template then
      let template, global = split_universe_context template_candidate uctx in
      Template_ind_entry template, global
    else Monomorphic_ind_entry, uctx

let check_param = function
| CLocalDef (na, _, _) -> check_named na
| CLocalAssum (nas, Default _, _) -> List.iter check_named nas
| CLocalAssum (nas, Generalized _, _) -> ()
| CLocalPattern {CAst.loc} ->
    Loc.raise ?loc (Gramlib.Stream.Error "pattern with quote not allowed here")

let restrict_inductive_universes sigma ctx_params arities constructors =
  let merge_universes_of_constr c =
    Univ.Level.Set.union (EConstr.universes_of_constr sigma (EConstr.of_constr c)) in
  let uvars = Univ.Level.Set.empty in
  let uvars = Context.Rel.(fold_outside (Declaration.fold_constr merge_universes_of_constr) ctx_params ~init:uvars) in
  let uvars = List.fold_right merge_universes_of_constr arities uvars in
  let uvars = List.fold_right (fun (_,ctypes) -> List.fold_right merge_universes_of_constr ctypes) constructors uvars in
  Evd.restrict_universe_context sigma uvars

let check_trivial_variances variances =
  Array.iter (function
      | None | Some Univ.Variance.Invariant -> ()
      | Some _ ->
        CErrors.user_err
          Pp.(strbrk "Universe variance was specified but this inductive will not be cumulative."))
    variances

let variance_of_entry ~cumulative ~variances uctx =
  match uctx with
  | Monomorphic_ind_entry | Template_ind_entry _ -> check_trivial_variances variances; None
  | Polymorphic_ind_entry uctx ->
    if not cumulative then begin check_trivial_variances variances; None end
    else
      let lvs = Array.length variances in
      let lus = Univ.UContext.size uctx in
      assert (lvs <= lus);
      Some (Array.append variances (Array.make (lus - lvs) None))

let interp_mutual_inductive_constr ~sigma ~template ~udecl ~variances ~ctx_params ~indnames ~arities ~arityconcl ~constructors ~env_ar_params ~cumulative ~poly ~private_ind ~finite =
  (* Compute renewed arities *)
  let sigma = Evd.minimize_universes sigma in
  let nf = Evarutil.nf_evars_universes sigma in
  let constructors = List.map (on_snd (List.map nf)) constructors in
  let arities = List.map EConstr.(to_constr sigma) arities in
  let sigma = List.fold_left make_anonymous_conclusion_flexible sigma arityconcl in
  let sigma, arities = inductive_levels env_ar_params sigma arities constructors in
  let sigma = Evd.minimize_universes sigma in
  let nf = Evarutil.nf_evars_universes sigma in
  let arities = List.map nf arities in
  let constructors = List.map (on_snd (List.map nf)) constructors in
  let ctx_params = List.map Termops.(map_rel_decl (EConstr.to_constr sigma)) ctx_params in
  let arityconcl = List.map (Option.map (fun (_anon, s) -> EConstr.ESorts.kind sigma s)) arityconcl in
  let sigma = restrict_inductive_universes sigma ctx_params arities constructors in
  let univ_entry, binders = Evd.check_univ_decl ~poly sigma udecl in

  (* Build the inductive entries *)
  let entries = List.map3 (fun indname arity (cnames,ctypes) ->
      { mind_entry_typename = indname;
        mind_entry_arity = arity;
        mind_entry_consnames = cnames;
        mind_entry_lc = ctypes
      })
      indnames arities constructors
  in
  let univ_entry, ctx = match entries, arityconcl with
  | [entry], [concl] ->
    compute_template_inductive ~user_template:template ~env_ar_params ~ctx_params ~univ_entry entry concl
  | _ ->
    let () = match template with
    | Some true -> user_err Pp.(str "Template-polymorphism not allowed with mutual inductives.")
    | _ -> ()
    in
    match univ_entry with
    | UState.Monomorphic_entry ctx -> Monomorphic_ind_entry, ctx
    | UState.Polymorphic_entry uctx -> Polymorphic_ind_entry uctx, Univ.ContextSet.empty
  in
  let variance = variance_of_entry ~cumulative ~variances univ_entry in
  (* Build the mutual inductive entry *)
  let mind_ent =
    { mind_entry_params = ctx_params;
      mind_entry_record = None;
      mind_entry_finite = finite;
      mind_entry_inds = entries;
      mind_entry_private = if private_ind then Some false else None;
      mind_entry_universes = univ_entry;
      mind_entry_variance = variance;
    }
  in
  mind_ent, binders, ctx

let interp_params env udecl uparamsl paramsl =
  let sigma, udecl, variances = interp_cumul_univ_decl_opt env udecl in
  let sigma, (uimpls, ((env_uparams, ctx_uparams), useruimpls)) =
    interp_context_evars ~program_mode:false env sigma uparamsl in
  let sigma, (impls, ((env_params, ctx_params), userimpls)) =
    interp_context_evars ~program_mode:false ~impl_env:uimpls env_uparams sigma paramsl
  in
  (* Names of parameters as arguments of the inductive type (defs removed) *)
  sigma, env_params, (ctx_params, env_uparams, ctx_uparams,
  userimpls, useruimpls, impls, udecl, variances)

(* When a hole remains for a param, pretend the param is uniform and
   do the unification.
   [env_ar_par] is [uparams; inds; params]
 *)
let maybe_unify_params_in env_ar_par sigma ~ninds ~nparams ~binders:k c =
  let is_ind sigma k c = match EConstr.kind sigma c with
    | Constr.Rel n ->
      (* env is [uparams; inds; params; k other things] *)
      n > k + nparams && n <= k + nparams + ninds
    | _ -> false
  in
  let rec aux (env,k as envk) sigma c = match EConstr.kind sigma c with
    | Constr.App (h,args) when is_ind sigma k h ->
      Array.fold_left_i (fun i sigma arg ->
          if i >= nparams || not (EConstr.isEvar sigma arg) then sigma
          else begin try Evarconv.unify_delay env sigma arg (EConstr.mkRel (k+nparams-i))
            with Evarconv.UnableToUnify _ ->
              (* ignore errors, we will get a "Cannot infer ..." error instead *)
              sigma
          end)
        sigma args
    | _ -> Termops.fold_constr_with_full_binders
             env sigma
             (fun d (env,k) -> EConstr.push_rel d env, k+1)
             aux envk sigma c
  in
  aux (env_ar_par,k) sigma c

let interp_mutual_inductive_gen env0 ~template udecl (uparamsl,paramsl,indl) notations ~cumulative ~poly ~private_ind finite =
  check_all_names_different indl;
  List.iter check_param paramsl;
  if not (List.is_empty uparamsl) && not (List.is_empty notations)
  then user_err (str "Inductives with uniform parameters may not have attached notations.");

  let indnames = List.map (fun ind -> ind.ind_name) indl in
  let ninds = List.length indl in

  let sigma, env_params, (ctx_params, env_uparams, ctx_uparams, userimpls, useruimpls, impls, udecl, variances) =
    (* In case of template polymorphism, we need to compute more constraints *)
    let env0 = if poly then env0 else Environ.set_universes_lbound env0 UGraph.Bound.Prop in
    interp_params env0 udecl uparamsl paramsl
  in

  (* Interpret the arities *)
  let arities = List.map (intern_ind_arity env_params sigma) indl in

  let sigma, arities = List.fold_left_map (pretype_ind_arity env_params) sigma arities in
  let arities, relevances, arityconcl, indimpls = List.split4 arities in

  let lift_ctx n ctx =
    let t = EConstr.it_mkProd_or_LetIn EConstr.mkProp ctx in
    let t = EConstr.Vars.lift n t in
    let ctx, _ = EConstr.decompose_prod_assum sigma t in
    ctx
  in
  let ctx_params_lifted, fullarities =
    lift_ctx ninds ctx_params,
    CList.map_i
      (fun i c -> EConstr.Vars.lift i (EConstr.it_mkProd_or_LetIn c ctx_params))
      0 arities
  in
  let env_ar = push_types env_uparams indnames relevances fullarities in
  let env_ar_params = EConstr.push_rel_context ctx_params_lifted env_ar in

  (* Compute interpretation metadatas *)
  let indimpls = List.map (fun impls -> userimpls @ impls) indimpls in
  let impls = compute_internalization_env env_uparams sigma ~impls Inductive indnames fullarities indimpls in
  let ntn_impls = compute_internalization_env env_uparams sigma Inductive indnames fullarities indimpls in

  let (sigma, _), constructors =
    Metasyntax.with_syntax_protection (fun () ->
        (* Temporary declaration of notations and scopes *)
        List.iter (Metasyntax.set_notation_for_interpretation env_params ntn_impls) notations;
        (* Interpret the constructor types *)
        List.fold_left2_map
          (fun (sigma, ind_rel) ind arity ->
            interp_cstrs env_ar_params (sigma, ind_rel) impls ctx_params_lifted
              ind (EConstr.Vars.liftn ninds (Rel.length ctx_params + 1) arity))
          (sigma, ninds) indl arities)
      ()
  in

  let nparams = Context.Rel.length ctx_params in
  let sigma =
    List.fold_left (fun sigma (_,ctyps,_) ->
        List.fold_left (fun sigma ctyp ->
            maybe_unify_params_in env_ar_params sigma ~ninds ~nparams ~binders:0 ctyp)
          sigma ctyps)
      sigma constructors
  in

  (* generalize over the uniform parameters *)
  let nuparams = Context.Rel.length ctx_uparams in
  let uargs = Context.Rel.instance EConstr.mkRel 0 ctx_uparams in
  let uparam_subst =
    List.init ninds EConstr.(fun i -> mkApp (mkRel (i + 1 + nuparams), uargs))
    @ List.init nuparams EConstr.(fun i -> mkRel (i + 1)) in
  let generalize_constructor c = EConstr.Unsafe.to_constr (EConstr.Vars.substnl uparam_subst nparams c) in
  let cimpls = List.map pi3 constructors in
  let constructors = List.map (fun (cnames,ctypes,cimpls) ->
      (cnames,List.map generalize_constructor ctypes))
      constructors
  in
  let ctx_params = ctx_params @ ctx_uparams in
  let userimpls = useruimpls @ userimpls in
  let indimpls = List.map (fun iimpl -> useruimpls @ iimpl) indimpls in
  let fullarities = List.map (fun c -> EConstr.it_mkProd_or_LetIn c ctx_uparams) fullarities in
  let env_ar = push_types env0 indnames relevances fullarities in
  let env_ar_params = EConstr.push_rel_context ctx_params env_ar in
  (* Try further to solve evars, and instantiate them *)
  let sigma = solve_remaining_evars all_and_fail_flags env_params sigma in
  let impls =
    List.map2 (fun indimpls cimpls ->
        indimpls, List.map (fun impls ->
            userimpls @ impls) cimpls)
      indimpls cimpls
  in
  let mie, binders, ctx = interp_mutual_inductive_constr ~template ~sigma ~ctx_params ~udecl ~variances ~arities ~arityconcl ~constructors ~env_ar_params ~poly ~finite ~cumulative ~private_ind ~indnames in
  (mie, binders, impls, ctx)


(* Very syntactical equality *)
let eq_local_binders bl1 bl2 =
  List.equal local_binder_eq bl1 bl2

let eq_params (up1,p1) (up2,p2) =
  eq_local_binders up1 up2 && Option.equal eq_local_binders p1 p2

let extract_coercions indl =
  let mkqid (_,({CAst.v=id},_)) = qualid_of_ident id in
  let iscoe (coe, inst) = match inst with
    (* remove BackInstanceWarning after deprecation phase *)
    | Vernacexpr.(NoInstance | BackInstanceWarning) -> coe = Vernacexpr.AddCoercion
    | _ -> user_err (Pp.str "'::' not allowed in inductives.") in
  let extract lc = List.filter (fun (coe,_) -> iscoe coe) lc in
  List.map mkqid (List.flatten(List.map (fun (_,_,_,lc) -> extract lc) indl))

let extract_params indl =
  let paramsl = List.map (fun (_,params,_,_) -> params) indl in
  match paramsl with
  | [] -> anomaly (Pp.str "empty list of inductive types.")
  | params::paramsl ->
      if not (List.for_all (eq_params params) paramsl) then user_err Pp.(str
        "Parameters should be syntactically the same for each inductive type.");
      params

let extract_inductive indl =
  List.map (fun ({CAst.v=indname},_,ar,lc) -> {
    ind_name = indname;
    ind_arity = Option.cata (fun x -> x) (CAst.make @@ CSort (Glob_term.UAnonymous {rigid=true})) ar;
    ind_lc = List.map (fun (_,({CAst.v=id},t)) -> (id,t)) lc
  }) indl

let extract_mutual_inductive_declaration_components indl =
  let indl,ntnl = List.split indl in
  let params = extract_params indl in
  let coes = extract_coercions indl in
  let indl = extract_inductive indl in
  (params,indl), coes, List.flatten ntnl

type uniform_inductive_flag =
  | UniformParameters
  | NonUniformParameters

module Mind_decl = struct

type t = {
  mie : Entries.mutual_inductive_entry;
  nuparams : int option;
  univ_binders : UnivNames.universe_binders;
  implicits : DeclareInd.one_inductive_impls list;
  uctx : Univ.ContextSet.t;
  where_notations : Metasyntax.where_decl_notation list;
  coercions : Libnames.qualid list;
}

end

let rec count_binder_expr = function
  | [] -> 0
  | CLocalAssum(l,_,_) :: rest -> List.length l + count_binder_expr rest
  | CLocalDef _ :: rest -> 1 + count_binder_expr rest
  | CLocalPattern {CAst.loc} :: _ ->
    Loc.raise ?loc (Gramlib.Stream.Error "pattern with quote not allowed here")

let interp_mutual_inductive ~env ~template udecl indl ~cumulative ~poly ?typing_flags ~private_ind ~uniform finite =
  let (params,indl),coercions,ntns = extract_mutual_inductive_declaration_components indl in
  let where_notations = List.map Metasyntax.prepare_where_notation ntns in
  (* Interpret the types *)
  let indl, nuparams = match params with
    | uparams, Some params -> (uparams, params, indl), Some (count_binder_expr params)
    | params, None -> match uniform with
      | UniformParameters -> (params, [], indl), Some 0
      | NonUniformParameters -> ([], params, indl), None
  in
  let env = Environ.update_typing_flags ?typing_flags env in
  let mie, univ_binders, implicits, uctx = interp_mutual_inductive_gen env ~template udecl indl where_notations ~cumulative ~poly ~private_ind finite in
  let open Mind_decl in
  { mie; nuparams; univ_binders; implicits; uctx; where_notations; coercions }

let do_mutual_inductive ~template udecl indl ~cumulative ~poly ?typing_flags ~private_ind ~uniform finite =
  let open Mind_decl in
  let env = Global.env () in
  let { mie; univ_binders; implicits; uctx; where_notations; coercions } =
    interp_mutual_inductive ~env ~template udecl indl ~cumulative ~poly ?typing_flags ~private_ind ~uniform finite in
  (* Slightly hackish global universe declaration due to template types. *)
  let binders = match mie.mind_entry_universes with
  | Monomorphic_ind_entry -> (UState.Monomorphic_entry uctx, univ_binders)
  | Template_ind_entry ctx -> (UState.Monomorphic_entry ctx, univ_binders)
  | Polymorphic_ind_entry uctx -> (UState.Polymorphic_entry uctx, UnivNames.empty_binders)
  in
  (* Declare the global universes *)
  DeclareUctx.declare_universe_context ~poly:false uctx;
  (* Declare the mutual inductive block with its associated schemes *)
  ignore (DeclareInd.declare_mutual_inductive_with_eliminations ?typing_flags mie binders implicits);
  (* Declare the possible notations of inductive types *)
  List.iter (Metasyntax.add_notation_interpretation ~local:false (Global.env ())) where_notations;
  (* Declare the coercions *)
  List.iter (fun qid -> ComCoercion.try_add_new_coercion (Nametab.locate qid) ~local:false ~poly ~nonuniform:false ~reversible:true) coercions

(** Prepare a "match" template for a given inductive type.
    For each branch of the match, we list the constructor name
    followed by enough pattern variables.
    [Not_found] is raised if the given string isn't the qualid of
    a known inductive type. *)

(*

  HH notes in PR #679:

  The Show Match could also be made more robust, for instance in the
  presence of let in the branch of a constructor. A
  decompose_prod_assum would probably suffice for that, but then, it
  is a Context.Rel.Declaration.t which needs to be matched and not
  just a pair (name,type).

  Otherwise, this is OK. After all, the API on inductive types is not
  so canonical in general, and in this simple case, working at the
  low-level of mind_nf_lc seems reasonable (compared to working at the
  higher-level of Inductiveops).

*)

let make_cases ind =
  let open Declarations in
  let mib, mip = Global.lookup_inductive ind in
  Util.Array.fold_right_i
    (fun i (ctx, _) l ->
       let al = Util.List.skipn (List.length mib.mind_params_ctxt) (List.rev ctx) in
       let rec rename avoid = function
         | [] -> []
         | RelDecl.LocalDef _ :: l -> "_" :: rename avoid l
         | RelDecl.LocalAssum (n, _)::l ->
           let n' = Namegen.next_name_away_with_default (Id.to_string Namegen.default_dependent_ident) n.Context.binder_name avoid in
           Id.to_string n' :: rename (Id.Set.add n' avoid) l in
       let al' = rename Id.Set.empty al in
       let consref = GlobRef.ConstructRef (ith_constructor_of_inductive ind (i + 1)) in
       (Libnames.string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty consref) :: al') :: l)
    mip.mind_nf_lc []

module Internal =
struct

let compute_constructor_level = compute_constructor_level

end
OCaml

Innovation. Community. Security.