package containers

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file CCSeq.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
(* This file is free software, part of containers. See file "license" for more details. *)

type 'a iter = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
type 'a equal = 'a -> 'a -> bool
type 'a ord = 'a -> 'a -> int
type 'a printer = Format.formatter -> 'a -> unit

include Seq

let nil () = Nil
let cons a b () = Cons (a, b)
let empty = nil
let singleton x () = Cons (x, nil)

let init n f =
  let rec aux i () =
    if i >= n then
      Nil
    else
      Cons (f i, aux (i + 1))
  in
  aux 0

let rec _forever x () = Cons (x, _forever x)

let rec _repeat n x () =
  if n <= 0 then
    Nil
  else
    Cons (x, _repeat (n - 1) x)

let repeat ?n x =
  match n with
  | None -> _forever x
  | Some n -> _repeat n x

let rec forever f () = Cons (f (), forever f)

let is_empty l =
  match l () with
  | Nil -> true
  | Cons _ -> false

let head_exn l =
  match l () with
  | Nil -> raise Not_found
  | Cons (x, _) -> x

let head l =
  match l () with
  | Nil -> None
  | Cons (x, _) -> Some x

let tail_exn l =
  match l () with
  | Nil -> raise Not_found
  | Cons (_, l) -> l

let tail l =
  match l () with
  | Nil -> None
  | Cons (_, l) -> Some l

let uncons l =
  match l () with
  | Nil -> None
  | Cons (h, t) -> Some (h, t)

let rec equal eq l1 l2 =
  match l1 (), l2 () with
  | Nil, Nil -> true
  | Nil, _ | _, Nil -> false
  | Cons (x1, l1'), Cons (x2, l2') -> eq x1 x2 && equal eq l1' l2'

let rec compare cmp l1 l2 =
  match l1 (), l2 () with
  | Nil, Nil -> 0
  | Nil, _ -> -1
  | _, Nil -> 1
  | Cons (x1, l1'), Cons (x2, l2') ->
    let c = cmp x1 x2 in
    if c = 0 then
      compare cmp l1' l2'
    else
      c

let rec fold f acc res =
  match res () with
  | Nil -> acc
  | Cons (s, cont) -> fold f (f acc s) cont

let fold_left = fold

let foldi f acc res =
  let rec aux acc i res =
    match res () with
    | Nil -> acc
    | Cons (s, cont) -> aux (f acc i s) (i + 1) cont
  in
  aux acc 0 res

let fold_lefti = foldi

let rec iter f l =
  match l () with
  | Nil -> ()
  | Cons (x, l') ->
    f x;
    iter f l'

let iteri f l =
  let rec aux f l i =
    match l () with
    | Nil -> ()
    | Cons (x, l') ->
      f i x;
      aux f l' (i + 1)
  in
  aux f l 0

let length l = fold (fun acc _ -> acc + 1) 0 l

let rec take n (l : 'a t) () =
  if n = 0 then
    Nil
  else (
    match l () with
    | Nil -> Nil
    | Cons (x, l') -> Cons (x, take (n - 1) l')
  )

let rec take_while p l () =
  match l () with
  | Nil -> Nil
  | Cons (x, l') ->
    if p x then
      Cons (x, take_while p l')
    else
      Nil

let rec drop n (l : 'a t) () =
  match l () with
  | l' when n = 0 -> l'
  | Nil -> Nil
  | Cons (_, l') -> drop (n - 1) l' ()

let rec drop_while p l () =
  match l () with
  | Nil -> Nil
  | Cons (x, l') when p x -> drop_while p l' ()
  | Cons _ as res -> res

let rec map f l () =
  match l () with
  | Nil -> Nil
  | Cons (x, l') -> Cons (f x, map f l')

let mapi f l =
  let rec aux f l i () =
    match l () with
    | Nil -> Nil
    | Cons (x, tl) -> Cons (f i x, aux f tl (i + 1))
  in
  aux f l 0

let rec fmap f (l : 'a t) () =
  match l () with
  | Nil -> Nil
  | Cons (x, l') ->
    (match f x with
    | None -> fmap f l' ()
    | Some y -> Cons (y, fmap f l'))

let rec filter p l () =
  match l () with
  | Nil -> Nil
  | Cons (x, l') ->
    if p x then
      Cons (x, filter p l')
    else
      filter p l' ()

let rec append l1 l2 () =
  match l1 () with
  | Nil -> l2 ()
  | Cons (x, l1') -> Cons (x, append l1' l2)

let rec cycle l () = append l (cycle l) ()
let rec iterate f a () = Cons (a, iterate f (f a))

let rec unfold f acc () =
  match f acc with
  | None -> Nil
  | Some (x, acc') -> Cons (x, unfold f acc')

let rec for_all p l =
  match l () with
  | Nil -> true
  | Cons (x, tl) -> p x && for_all p tl

let rec exists p l =
  match l () with
  | Nil -> false
  | Cons (x, tl) -> p x || exists p tl

let rec find p l =
  match l () with
  | Nil -> None
  | Cons (x, tl) ->
    if p x then
      Some x
    else
      find p tl

let rec find_map f l =
  match l () with
  | Nil -> None
  | Cons (x, tl) ->
    (match f x with
    | None -> find_map f tl
    | e -> e)

let rec scan f acc res () =
  Cons
    ( acc,
      fun () ->
        match res () with
        | Nil -> Nil
        | Cons (s, cont) -> scan f (f acc s) cont () )

let rec flat_map f l () =
  match l () with
  | Nil -> Nil
  | Cons (x, l') -> _flat_map_app f (f x) l' ()

and _flat_map_app f l l' () =
  match l () with
  | Nil -> flat_map f l' ()
  | Cons (x, tl) -> Cons (x, _flat_map_app f tl l')

let concat_map = flat_map

let product_with f l1 l2 =
  let rec _next_left h1 tl1 h2 tl2 () =
    match tl1 () with
    | Nil -> _next_right ~die:true h1 tl1 h2 tl2 ()
    | Cons (x, tl1') ->
      _map_list_left x h2 (_next_right ~die:false (x :: h1) tl1' h2 tl2) ()
  and _next_right ~die h1 tl1 h2 tl2 () =
    match tl2 () with
    | Nil when die -> Nil
    | Nil -> _next_left h1 tl1 h2 tl2 ()
    | Cons (y, tl2') ->
      _map_list_right h1 y (_next_left h1 tl1 (y :: h2) tl2') ()
  and _map_list_left x l kont () =
    match l with
    | [] -> kont ()
    | y :: l' -> Cons (f x y, _map_list_left x l' kont)
  and _map_list_right l y kont () =
    match l with
    | [] -> kont ()
    | x :: l' -> Cons (f x y, _map_list_right l' y kont)
  in
  _next_left [] l1 [] l2

let map_product = product_with
let product l1 l2 = product_with (fun x y -> x, y) l1 l2

let rec group eq l () =
  match l () with
  | Nil -> Nil
  | Cons (x, l') ->
    Cons (cons x (take_while (eq x) l'), group eq (drop_while (eq x) l'))

let rec _uniq eq prev l () =
  match prev, l () with
  | _, Nil -> Nil
  | None, Cons (x, l') -> Cons (x, _uniq eq (Some x) l')
  | Some y, Cons (x, l') ->
    if eq x y then
      _uniq eq prev l' ()
    else
      Cons (x, _uniq eq (Some x) l')

let uniq eq l = _uniq eq None l

let rec filter_map f l () =
  match l () with
  | Nil -> Nil
  | Cons (x, l') ->
    (match f x with
    | None -> filter_map f l' ()
    | Some y -> Cons (y, filter_map f l'))

let flatten l = flat_map (fun x -> x) l
let concat = flatten

let range i j =
  let rec aux i j () =
    if i = j then
      Cons (i, nil)
    else if i < j then
      Cons (i, aux (i + 1) j)
    else
      Cons (i, aux (i - 1) j)
  in
  aux i j

let ( -- ) = range

let ( --^ ) i j =
  if i = j then
    empty
  else if i < j then
    range i (j - 1)
  else
    range i (j + 1)

let rec fold2 f acc l1 l2 =
  match l1 (), l2 () with
  | Nil, _ | _, Nil -> acc
  | Cons (x1, l1'), Cons (x2, l2') -> fold2 f (f acc x1 x2) l1' l2'

let fold_left2 = fold2

let rec map2 f l1 l2 () =
  match l1 (), l2 () with
  | Nil, _ | _, Nil -> Nil
  | Cons (x1, l1'), Cons (x2, l2') -> Cons (f x1 x2, map2 f l1' l2')

let rec iter2 f l1 l2 =
  match l1 (), l2 () with
  | Nil, _ | _, Nil -> ()
  | Cons (x1, l1'), Cons (x2, l2') ->
    f x1 x2;
    iter2 f l1' l2'

let rec for_all2 f l1 l2 =
  match l1 (), l2 () with
  | Nil, _ | _, Nil -> true
  | Cons (x1, l1'), Cons (x2, l2') -> f x1 x2 && for_all2 f l1' l2'

let rec exists2 f l1 l2 =
  match l1 (), l2 () with
  | Nil, _ | _, Nil -> false
  | Cons (x1, l1'), Cons (x2, l2') -> f x1 x2 || exists2 f l1' l2'

let rec merge cmp l1 l2 () =
  match l1 (), l2 () with
  | Nil, tl2 -> tl2
  | tl1, Nil -> tl1
  | Cons (x1, l1'), Cons (x2, l2') ->
    if cmp x1 x2 < 0 then
      Cons (x1, merge cmp l1' l2)
    else
      Cons (x2, merge cmp l1 l2')

let sorted_merge = merge

let rec zip a b () =
  match a (), b () with
  | Nil, _ | _, Nil -> Nil
  | Cons (x, a'), Cons (y, b') -> Cons ((x, y), zip a' b')

let unzip l =
  let rec first l () =
    match l () with
    | Nil -> Nil
    | Cons ((x, _), tl) -> Cons (x, first tl)
  and second l () =
    match l () with
    | Nil -> Nil
    | Cons ((_, y), tl) -> Cons (y, second tl)
  in
  first l, second l

let split = unzip

let zip_i seq =
  let rec loop i seq () =
    match seq () with
    | Nil -> Nil
    | Cons (x, tl) -> Cons ((i, x), loop (i + 1) tl)
  in
  loop 0 seq

(** {2 Implementations} *)

let return x () = Cons (x, nil)
let pure = return
let ( >>= ) xs f = flat_map f xs
let ( >|= ) xs f = map f xs
let ( <*> ) fs xs = product_with (fun f x -> f x) fs xs

(** {2 Conversions} *)

let rec _to_rev_list acc l =
  match l () with
  | Nil -> acc
  | Cons (x, l') -> _to_rev_list (x :: acc) l'

let to_rev_list l = _to_rev_list [] l

let to_list l =
  let rec direct i (l : 'a t) =
    match l () with
    | Nil -> []
    | _ when i = 0 -> List.rev (_to_rev_list [] l)
    | Cons (x, f) -> x :: direct (i - 1) f
  in
  direct 200 l

let of_list l =
  let rec aux l () =
    match l with
    | [] -> Nil
    | x :: l' -> Cons (x, aux l')
  in
  aux l

let of_array a =
  let rec aux a i () =
    if i = Array.length a then
      Nil
    else
      Cons (a.(i), aux a (i + 1))
  in
  aux a 0

let of_string s =
  let rec aux s i () =
    if i = String.length s then
      Nil
    else
      Cons (String.get s i, aux s (i + 1))
  in
  aux s 0

let to_array l =
  (* We contruct the length and list of seq elements (in reverse) in one pass *)
  let len = ref 0 in
  let ls =
    fold_left
      (fun acc x ->
        incr len;
        x :: acc)
      [] l
  in
  (* The length is used to initialize the array, and then to derive the index for
     each item, working back from the last. This lets us only traverse the list
     twice, instead of having to reverse it. *)
  match ls with
  | [] -> [||]
  | init :: rest ->
    let a = Array.make !len init in
    (* Subtract 1 for len->index conversion and 1 for the removed [init] *)
    let idx = !len - 2 in
    ignore
      (List.fold_left
         (fun i x ->
           a.(i) <- x;
           i - 1)
         idx rest
        : int);
    a

let rec to_iter res k =
  match res () with
  | Nil -> ()
  | Cons (s, f) ->
    k s;
    to_iter f k

let to_gen l =
  let l = ref l in
  fun () ->
    match !l () with
    | Nil -> None
    | Cons (x, l') ->
      l := l';
      Some x

type 'a of_gen_state =
  | Of_gen_thunk of 'a gen
  | Of_gen_saved of 'a node

let of_gen g =
  let rec consume r () =
    match !r with
    | Of_gen_saved cons -> cons
    | Of_gen_thunk g ->
      (match g () with
      | None ->
        r := Of_gen_saved Nil;
        Nil
      | Some x ->
        let tl = consume (ref (Of_gen_thunk g)) in
        let l = Cons (x, tl) in
        r := Of_gen_saved l;
        l)
  in
  consume (ref (Of_gen_thunk g))

let sort ~cmp l =
  let l = to_list l in
  of_list (List.sort cmp l)

let sort_uniq ~cmp l =
  let l = to_list l in
  uniq (fun x y -> cmp x y = 0) (of_list (List.sort cmp l))

type 'a memoize =
  | MemoThunk
  | MemoSave of 'a node

let rec memoize f =
  let r = ref MemoThunk in
  fun () ->
    match !r with
    | MemoSave l -> l
    | MemoThunk ->
      let l =
        match f () with
        | Nil -> Nil
        | Cons (x, tail) -> Cons (x, memoize tail)
      in
      r := MemoSave l;
      l

(** {2 Fair Combinations} *)

let rec interleave a b () =
  match a () with
  | Nil -> b ()
  | Cons (x, tail) -> Cons (x, interleave b tail)

let rec fair_flat_map f a () =
  match a () with
  | Nil -> Nil
  | Cons (x, tail) ->
    let y = f x in
    interleave y (fair_flat_map f tail) ()

let rec fair_app f a () =
  match f () with
  | Nil -> Nil
  | Cons (f1, fs) -> interleave (map f1 a) (fair_app fs a) ()

let ( >>- ) a f = fair_flat_map f a
let ( <.> ) f a = fair_app f a

(** {2 Infix} *)

module Infix = struct
  let ( >>= ) = ( >>= )
  let ( >|= ) = ( >|= )
  let ( <*> ) = ( <*> )
  let ( >>- ) = ( >>- )
  let ( <.> ) = ( <.> )
  let ( -- ) = ( -- )
  let ( --^ ) = ( --^ )
end

(** {2 Monadic Operations} *)
module type MONAD = sig
  type 'a t

  val return : 'a -> 'a t
  val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t
end

module Traverse (M : MONAD) = struct
  open M

  let map_m f l =
    let rec aux acc l =
      match l () with
      | Nil -> return (of_list (List.rev acc))
      | Cons (x, l') -> f x >>= fun x' -> aux (x' :: acc) l'
    in
    aux [] l

  let sequence_m l = map_m (fun x -> x) l

  let rec fold_m f acc l =
    match l () with
    | Nil -> return acc
    | Cons (x, l') -> f acc x >>= fun acc' -> fold_m f acc' l'
end

(** {2 IO} *)

let pp ?(pp_start = fun _ () -> ()) ?(pp_stop = fun _ () -> ())
    ?(pp_sep = fun out () -> Format.fprintf out ",@ ") pp_item fmt l =
  pp_start fmt ();
  let rec pp fmt l =
    match l () with
    | Nil -> ()
    | Cons (x, l') ->
      pp_sep fmt ();
      Format.pp_print_cut fmt ();
      pp_item fmt x;
      pp fmt l'
  in
  (match l () with
  | Nil -> ()
  | Cons (x, l') ->
    pp_item fmt x;
    pp fmt l');
  pp_stop fmt ()
OCaml

Innovation. Community. Security.