package containers

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file CCList.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
(* backport new functions from stdlib here *)

[@@@ocaml.warning "-32"]

let rec compare_lengths l1 l2 =
  match l1, l2 with
  | [], [] -> 0
  | [], _ :: _ -> -1
  | _ :: _, [] -> 1
  | _ :: tail1, _ :: tail2 -> compare_lengths tail1 tail2

let rec compare_length_with l n =
  match l, n with
  | _ when n < 0 -> 1
  | [], 0 -> 0
  | [], _ -> -1
  | _ :: tail, _ -> compare_length_with tail (n - 1)

let rec assoc_opt x = function
  | [] -> None
  | (y, v) :: _ when Stdlib.( = ) x y -> Some v
  | _ :: tail -> assoc_opt x tail

let rec assq_opt x = function
  | [] -> None
  | (y, v) :: _ when Stdlib.( == ) x y -> Some v
  | _ :: tail -> assq_opt x tail

[@@@ocaml.warning "+32"]

(* end of backport *)

include List

let empty = []

let is_empty = function
  | [] -> true
  | _ :: _ -> false

let mguard c =
  if c then
    [ () ]
  else
    []

(** max depth for direct recursion *)
let direct_depth_default_ = 1000

(* TRMC on >= 5.1, no need to bring our own *)
[@@@iflt 5.1]

let tail_map f l =
  (* Unwind the list of tuples, reconstructing the full list front-to-back.
     @param tail_acc a suffix of the final list; we append tuples' content
     at the front of it *)
  let rec rebuild tail_acc = function
    | [] -> tail_acc
    | (y0, y1, y2, y3, y4, y5, y6, y7, y8) :: bs ->
      rebuild
        (y0 :: y1 :: y2 :: y3 :: y4 :: y5 :: y6 :: y7 :: y8 :: tail_acc)
        bs
  in
  (* Create a compressed reverse-list representation using tuples
     @param tuple_acc a reverse list of chunks mapped with [f] *)
  let rec dive tuple_acc = function
    | x0 :: x1 :: x2 :: x3 :: x4 :: x5 :: x6 :: x7 :: x8 :: xs ->
      let y0 = f x0 in
      let y1 = f x1 in
      let y2 = f x2 in
      let y3 = f x3 in
      let y4 = f x4 in
      let y5 = f x5 in
      let y6 = f x6 in
      let y7 = f x7 in
      let y8 = f x8 in
      dive ((y0, y1, y2, y3, y4, y5, y6, y7, y8) :: tuple_acc) xs
    | xs ->
      (* Reverse direction, finishing off with a direct map *)
      let tail = List.map f xs in
      rebuild tail tuple_acc
  in
  dive [] l

let map f l =
  let rec direct f i l =
    match l with
    | [] -> []
    | [ x ] -> [ f x ]
    | [ x1; x2 ] ->
      let y1 = f x1 in
      [ y1; f x2 ]
    | [ x1; x2; x3 ] ->
      let y1 = f x1 in
      let y2 = f x2 in
      [ y1; y2; f x3 ]
    | _ when i = 0 -> tail_map f l
    | x1 :: x2 :: x3 :: x4 :: l' ->
      let y1 = f x1 in
      let y2 = f x2 in
      let y3 = f x3 in
      let y4 = f x4 in
      y1 :: y2 :: y3 :: y4 :: direct f (i - 1) l'
  in
  direct f direct_depth_default_ l

let append l1 l2 =
  let[@inline] safe l1 l2 = List.rev_append (List.rev l1) l2 in
  let rec direct i l1 l2 =
    match l1 with
    | [] -> l2
    | [ x ] -> x :: l2
    | _ when i = 0 -> safe l1 l2
    | x :: y :: tl1 -> x :: y :: direct (i - 1) tl1 l2
  in
  direct 1000 l1 l2

[@@@endif]

(* Wrapper around [append] to optimize for the case of short [l1],
   and for the case of [l2 = []] (saves the whole copy of [l1]!) *)
let[@inline] append l1 l2 =
  match l1, l2 with
  | [], _ -> l2
  | _, [] -> l1
  | [ x ], _ -> x :: l2
  | x :: y :: tl1, _ -> x :: y :: append tl1 l2

let ( @ ) = append
let[@inline] cons' l x = x :: l

let cons_maybe o l =
  match o with
  | Some x -> x :: l
  | None -> l

(* TRMC after 5.1 *)
[@@@iflt 5.1]

let direct_depth_filter_ = 10_000

let filter p l =
  let rec direct i p l =
    match l with
    | [] -> []
    | _ when i = 0 -> safe p l []
    | x :: l' when not (p x) -> direct i p l'
    | x :: l' -> x :: direct (i - 1) p l'
  and safe p l acc =
    match l with
    | [] -> List.rev acc
    | x :: l' when not (p x) -> safe p l' acc
    | x :: l' -> safe p l' (x :: acc)
  in
  direct direct_depth_filter_ p l

let fold_right f l acc =
  let rec direct i f l acc =
    match l with
    | [] -> acc
    | _ when i = 0 -> safe f (List.rev l) acc
    | x :: l' ->
      let acc = direct (i - 1) f l' acc in
      f x acc
  and safe f l acc =
    match l with
    | [] -> acc
    | x :: l' ->
      let acc = f x acc in
      safe f l' acc
  in
  direct direct_depth_default_ f l acc

[@@@endif]

let rec fold_while f acc = function
  | [] -> acc
  | e :: l ->
    let acc, cont = f acc e in
    (match cont with
    | `Stop -> acc
    | `Continue -> fold_while f acc l)

let fold_map f acc l =
  let rec aux f acc map_acc l =
    match l with
    | [] -> acc, List.rev map_acc
    | x :: l' ->
      let acc, y = f acc x in
      aux f acc (y :: map_acc) l'
  in
  aux f acc [] l

let fold_map_i f acc l =
  let rec aux f acc i map_acc l =
    match l with
    | [] -> acc, List.rev map_acc
    | x :: l' ->
      let acc, y = f acc i x in
      aux f acc (i + 1) (y :: map_acc) l'
  in
  aux f acc 0 [] l

let fold_on_map ~f ~reduce acc l =
  let rec aux acc l =
    match l with
    | [] -> acc
    | x :: l' ->
      let acc = reduce acc (f x) in
      aux acc l'
  in
  aux acc l

let scan_left f acc l =
  let rec aux f acc l_acc l =
    match l with
    | [] -> List.rev l_acc
    | x :: tail ->
      let acc = f acc x in
      let l_acc = acc :: l_acc in
      aux f acc l_acc tail
  in
  aux f acc [ acc ] l

let reduce f = function
  | [] -> None
  | x :: l -> Some (fold_left f x l)

let reduce_exn f = function
  | [] -> raise (Invalid_argument "CCList.reduce_exn")
  | x :: l -> fold_left f x l

let fold_map2 f acc l1 l2 =
  let rec aux f acc map_acc l1 l2 =
    match l1, l2 with
    | [], [] -> acc, List.rev map_acc
    | [], _ | _, [] -> invalid_arg "fold_map2"
    | x1 :: l1', x2 :: l2' ->
      let acc, y = f acc x1 x2 in
      aux f acc (y :: map_acc) l1' l2'
  in
  aux f acc [] l1 l2

let fold_filter_map f acc l =
  let rec aux f acc map_acc l =
    match l with
    | [] -> acc, List.rev map_acc
    | x :: l' ->
      let acc, y = f acc x in
      aux f acc (cons_maybe y map_acc) l'
  in
  aux f acc [] l

let fold_filter_map_i f acc l =
  let rec aux f acc i map_acc l =
    match l with
    | [] -> acc, List.rev map_acc
    | x :: l' ->
      let acc, y = f acc i x in
      aux f acc (i + 1) (cons_maybe y map_acc) l'
  in
  aux f acc 0 [] l

let fold_flat_map f acc l =
  let rec aux f acc map_acc l =
    match l with
    | [] -> acc, List.rev map_acc
    | x :: l' ->
      let acc, y = f acc x in
      aux f acc (List.rev_append y map_acc) l'
  in
  aux f acc [] l

let fold_flat_map_i f acc l =
  let rec aux f acc i map_acc l =
    match l with
    | [] -> acc, List.rev map_acc
    | x :: l' ->
      let acc, y = f acc i x in
      aux f acc (i + 1) (List.rev_append y map_acc) l'
  in
  aux f acc 0 [] l

[@@@iflt 5.1]

(* keep this because it's tailrec for < 5.1 *)
let init len f =
  let rec indirect_ i acc =
    if i = len then
      List.rev acc
    else (
      let x = f i in
      indirect_ (i + 1) (x :: acc)
    )
  in
  let rec direct_ i =
    if i = len then
      []
    else if i < direct_depth_default_ then (
      let x = f i in
      x :: direct_ (i + 1)
    ) else
      indirect_ i []
  in
  if len < 0 then
    invalid_arg "init"
  else if len = 0 then
    []
  else
    direct_ 0

let rec unfold_kont f seed k =
  match f seed with
  | None -> k []
  | Some (v, next) ->
    let k' tl = k (v :: tl) in
    unfold_kont f next k'

let[@inline] unfold f seed =
  let rec direct i f seed =
    if i = 0 then
      unfold_kont f seed (fun x -> x)
    else (
      match f seed with
      | None -> []
      | Some (v, next) -> v :: direct (i - 1) f next
    )
  in
  direct 100 f seed

[@@@else_]

let[@tail_mod_cons] rec unfold f seed =
  match f seed with
  | None -> []
  | Some (v, next) -> v :: unfold f next

[@@@endif]

let rec compare f l1 l2 =
  match l1, l2 with
  | [], [] -> 0
  | _, [] -> 1
  | [], _ -> -1
  | x1 :: l1', x2 :: l2' ->
    let c = f x1 x2 in
    if c <> 0 then
      c
    else
      compare f l1' l2'

let rec equal f l1 l2 =
  match l1, l2 with
  | [], [] -> true
  | [], _ | _, [] -> false
  | x1 :: l1', x2 :: l2' -> f x1 x2 && equal f l1' l2'

let rec flat_map_kont f l kont =
  match l with
  | [] -> kont []
  | [ x ] ->
    let x = f x in
    kont x
  | x :: l' ->
    let x = f x in
    let kont' tail = kont (append x tail) in
    flat_map_kont f l' kont'

[@@@iflt 5.1]

let[@inline] flat_map f l =
  match l with
  | [] -> []
  | [ x ] -> f x
  | x :: tl -> flat_map_kont f l Fun.id

[@@@else_]

let flat_map f l =
  let rec direct i f l =
    match l with
    | [] -> []
    | [ x ] -> f x
    | [ x; y ] -> append (f x) (f y)
    | _ when i = 0 -> flat_map_kont f l Fun.id
    | x :: y :: tl ->
      let x = f x in
      let y = f y in
      let tl = direct (i - 1) f tl in
      append x (append y tl)
  in
  direct 1000 f l

[@@@endif]

let flat_map_i f l =
  let rec aux f i l kont =
    match l with
    | [] -> kont []
    | x :: l' ->
      let y = f i x in
      let kont' tail =
        match y with
        | [] -> kont tail
        | [ x ] -> kont (x :: tail)
        | [ x; y ] -> kont (x :: y :: tail)
        | l -> kont (append l tail)
      in
      aux f (i + 1) l' kont'
  in
  aux f 0 l (fun l -> l)

let flatten l = fold_right append l []

let count f l =
  fold_left
    (fun n x ->
      if f x then
        succ n
      else
        n)
    0 l

let count_true_false p l =
  fold_left
    (fun (ok, ko) x ->
      if p x then
        ok + 1, ko
      else
        ok, ko + 1)
    (0, 0) l

let[@inline] product f l1 l2 = flat_map (fun x -> map (fun y -> f x y) l2) l1

let fold_product f acc l1 l2 =
  List.fold_left
    (fun acc x1 -> List.fold_left (fun acc x2 -> f acc x1 x2) acc l2)
    acc l1

let diagonal l =
  let rec gen acc l =
    match l with
    | [] -> acc
    | x :: l' ->
      let acc = List.fold_left (fun acc y -> (x, y) :: acc) acc l' in
      gen acc l'
  in
  gen [] l

let partition_map_either f l =
  let rec iter f l1 l2 l =
    match l with
    | [] -> List.rev l1, List.rev l2
    | x :: tl ->
      (match f x with
      | CCEither.Left y -> iter f (y :: l1) l2 tl
      | CCEither.Right y -> iter f l1 (y :: l2) tl)
  in
  iter f [] [] l

let partition_filter_map f l =
  let rec iter f l1 l2 l =
    match l with
    | [] -> List.rev l1, List.rev l2
    | x :: tl ->
      (match f x with
      | `Left y -> iter f (y :: l1) l2 tl
      | `Right y -> iter f l1 (y :: l2) tl
      | `Drop -> iter f l1 l2 tl)
  in
  iter f [] [] l

let partition_map = partition_filter_map

[@@@iflt 5.1]

let combine l1 l2 =
  let rec direct i l1 l2 =
    match l1, l2 with
    | [], [] -> []
    | _ when i = 0 -> safe l1 l2 []
    | x1 :: l1', x2 :: l2' -> (x1, x2) :: direct (i - 1) l1' l2'
    | _, _ -> invalid_arg "CCList.combine"
  and safe l1 l2 acc =
    match l1, l2 with
    | [], [] -> List.rev acc
    | x1 :: l1', x2 :: l2' -> safe l1' l2' @@ ((x1, x2) :: acc)
    | _, _ -> invalid_arg "CCList.combine"
  in
  direct direct_depth_default_ l1 l2

[@@@else_]

let[@tail_mod_cons] rec combine l1 l2 =
  match l1, l2 with
  | [], [] -> []
  | x1 :: l1', x2 :: l2' -> (x1, x2) :: combine l1' l2'
  | _, _ -> invalid_arg "CCList.combine"

[@@@endif]

let combine_gen l1 l2 =
  let l1 = ref l1 in
  let l2 = ref l2 in
  fun () ->
    match !l1, !l2 with
    | [], _ | _, [] -> None
    | x1 :: tail1, x2 :: tail2 ->
      l1 := tail1;
      l2 := tail2;
      Some (x1, x2)

[@@@iflt 5.1]

let combine_shortest l1 l2 =
  let rec direct i l1 l2 =
    match l1, l2 with
    | _, [] | [], _ -> []
    | _ when i = 0 -> safe l1 l2 []
    | x1 :: l1', x2 :: l2' -> (x1, x2) :: direct (i - 1) l1' l2'
  and safe l1 l2 acc =
    match l1, l2 with
    | [], _ | _, [] -> List.rev acc
    | x1 :: l1', x2 :: l2' ->
      let acc = (x1, x2) :: acc in
      safe l1' l2' acc
  in
  direct direct_depth_default_ l1 l2

[@@@else_]

let[@tail_mod_cons] rec combine_shortest l1 l2 =
  match l1, l2 with
  | _, [] | [], _ -> []
  | x1 :: l1', x2 :: l2' -> (x1, x2) :: combine_shortest l1' l2'

[@@@endif]

let split l =
  let rec direct i l =
    match l with
    | [] -> [], []
    | [ (x1, y1) ] -> [ x1 ], [ y1 ]
    | [ (x1, y1); (x2, y2) ] -> [ x1; x2 ], [ y1; y2 ]
    | [ (x1, y1); (x2, y2); (x3, y3) ] -> [ x1; x2; x3 ], [ y1; y2; y3 ]
    | [ (x1, y1); (x2, y2); (x3, y3); (x4, y4) ] ->
      [ x1; x2; x3; x4 ], [ y1; y2; y3; y4 ]
    | _ when i = 0 -> split_slow [] [] l
    | (x1, y1) :: (x2, y2) :: (x3, y3) :: (x4, y4) :: (x5, y5) :: l' ->
      let rx, ry = direct (i - 1) l' in
      x1 :: x2 :: x3 :: x4 :: x5 :: rx, y1 :: y2 :: y3 :: y4 :: y5 :: ry
  and split_slow acc1 acc2 l =
    match l with
    | [] -> List.rev acc1, List.rev acc2
    | (x1, x2) :: tail ->
      let acc1 = x1 :: acc1 and acc2 = x2 :: acc2 in
      split_slow acc1 acc2 tail
  in
  direct direct_depth_default_ l

let return x = [ x ]
let pure = return
let ( <*> ) funs l = product (fun f x -> f x) funs l

let cartesian_product l =
  (* [left]: elements picked so far
     [right]: sets to pick elements from
     [acc]: accumulator for the result, to pass to continuation
     [k]: continuation *)
  let rec prod_rec left right k acc =
    match right with
    | [] -> k acc (List.rev left)
    | l1 :: tail ->
      List.fold_left (fun acc x -> prod_rec (x :: left) tail k acc) acc l1
  in
  prod_rec [] l (fun acc l' -> l' :: acc) []

(* cartesian product of lists of lists *)
let map_product_l f l =
  let l = List.map f l in
  cartesian_product l

let rec sorted_mem ~cmp x l =
  match l with
  | [] -> false
  | y :: tail ->
    (match cmp x y with
    | 0 -> true
    | n when n < 0 -> false
    | _ -> (sorted_mem [@tailcall]) ~cmp x tail)

let sorted_merge ~cmp l1 l2 =
  let rec recurse cmp acc l1 l2 =
    match l1, l2 with
    | [], _ -> List.rev_append acc l2
    | _, [] -> List.rev_append acc l1
    | x1 :: l1', x2 :: l2' ->
      let c = cmp x1 x2 in
      if c < 0 then
        recurse cmp (x1 :: acc) l1' l2
      else if c > 0 then
        recurse cmp (x2 :: acc) l1 l2'
      else
        recurse cmp (x1 :: x2 :: acc) l1' l2'
  in
  recurse cmp [] l1 l2

let sorted_diff ~cmp l1 l2 =
  let rec recurse cmp acc l1 l2 =
    match l1, l2 with
    | [], _ -> List.rev acc
    | _, [] -> List.rev_append acc l1
    | x1 :: l1', x2 :: l2' ->
      let c = cmp x1 x2 in
      if c < 0 then
        recurse cmp (x1 :: acc) l1' l2
      else if c > 0 then
        recurse cmp acc l1 l2'
      else
        recurse cmp acc l1' l2'
  in
  recurse cmp [] l1 l2

let sort_uniq ~cmp l = List.sort_uniq cmp l

let is_sorted ~cmp l =
  let rec aux cmp = function
    | [] | [ _ ] -> true
    | x :: (y :: _ as tail) -> cmp x y <= 0 && aux cmp tail
  in
  aux cmp l

let sorted_insert ~cmp ?(uniq = false) x l =
  let rec aux cmp uniq x left l =
    match l with
    | [] -> List.rev_append left [ x ]
    | y :: tail ->
      (match cmp x y with
      | 0 ->
        let l' =
          if uniq then
            l
          else
            x :: l
        in
        List.rev_append left l'
      | n when n < 0 -> List.rev_append left (x :: l)
      | _ -> aux cmp uniq x (y :: left) tail)
  in
  aux cmp uniq x [] l

let sorted_remove ~cmp ?(all = false) x l =
  let rec aux cmp all x left l =
    match l with
    | [] -> List.rev left
    | y :: tail ->
      (match cmp x y with
      | 0 ->
        if all then
          aux cmp all x left tail
        else
          List.rev_append left tail
      | n when n < 0 -> List.rev_append left l
      | _ -> aux cmp all x (y :: left) tail)
  in
  aux cmp all x [] l

let uniq_succ ~eq l =
  let rec f acc l =
    match l with
    | [] -> List.rev acc
    | [ x ] -> List.rev (x :: acc)
    | x :: (y :: _ as tail) when eq x y -> f acc tail
    | x :: tail -> f (x :: acc) tail
  in
  f [] l

let group_succ ~eq l =
  let rec f ~eq acc cur l =
    match cur, l with
    | [], [] -> List.rev acc
    | _ :: _, [] -> List.rev (List.rev cur :: acc)
    | [], x :: tl -> f ~eq acc [ x ] tl
    | y :: _, x :: tl when eq x y -> f ~eq acc (x :: cur) tl
    | _, x :: tl -> f ~eq (List.rev cur :: acc) [ x ] tl
  in
  f ~eq [] [] l

let sorted_merge_uniq ~cmp l1 l2 =
  let push ~cmp acc x =
    match acc with
    | [] -> [ x ]
    | y :: _ when cmp x y > 0 -> x :: acc
    | _ -> acc
    (* duplicate, do not yield *)
  in
  let rec recurse ~cmp acc l1 l2 =
    match l1, l2 with
    | [], l | l, [] ->
      let acc = List.fold_left (push ~cmp) acc l in
      List.rev acc
    | x1 :: l1', x2 :: l2' ->
      let c = cmp x1 x2 in
      if c < 0 then
        recurse ~cmp (push ~cmp acc x1) l1' l2
      else if c > 0 then
        recurse ~cmp (push ~cmp acc x2) l1 l2'
      else
        recurse ~cmp acc l1 l2'
    (* drop one of the [x] *)
  in
  recurse ~cmp [] l1 l2

let sorted_diff_uniq ~cmp l1 l2 =
  let push ~cmp acc x =
    match acc with
    | [] -> [ x ]
    | y :: _ when cmp x y > 0 -> x :: acc
    | _ -> acc
    (* duplicate, do not yield *)
  in
  let rec recurse ~cmp acc l1 l2 =
    match l1, l2 with
    | [], _ -> List.rev acc
    | l, [] ->
      let acc = List.fold_left (push ~cmp) acc l in
      List.rev acc
    | x1 :: l1', x2 :: l2' ->
      let c = cmp x1 x2 in
      if c < 0 then
        recurse ~cmp (push ~cmp acc x1) l1' l2
      else if c > 0 then
        recurse ~cmp acc l1 l2'
      else
        recurse ~cmp acc l1' l2'
  in
  recurse ~cmp [] l1 l2

[@@@iflt 5.1]

let take n l =
  let rec direct i n l =
    match l with
    | [] -> []
    | _ when i = 0 -> safe n [] l
    | x :: l' ->
      if n > 0 then
        x :: direct (i - 1) (n - 1) l'
      else
        []
  and safe n acc l =
    match l with
    | [] -> List.rev acc
    | _ when n = 0 -> List.rev acc
    | x :: l' -> safe (n - 1) (x :: acc) l'
  in
  direct direct_depth_default_ n l

[@@@else_]

let[@tail_mod_cons] rec take n l =
  match l with
  | [] -> []
  | x :: l' ->
    if n > 0 then
      x :: take (n - 1) l'
    else
      []

[@@@endif]

let rec drop n l =
  match l with
  | [] -> []
  | _ when n = 0 -> l
  | _ :: l' -> drop (n - 1) l'

let hd_tl = function
  | [] -> failwith "hd_tl"
  | x :: l -> x, l

let take_drop n l = take n l, drop n l

let sublists_of_len ?(last = fun _ -> None) ?offset n l =
  if n < 1 then invalid_arg "sublists_of_len: n must be > 0";
  let offset =
    match offset with
    | None -> n
    | Some o when o < 1 -> invalid_arg "sublists_of_len: offset must be > 0"
    | Some o -> o
  in
  (* add sub-lists of [l] to [acc] *)
  let rec aux acc l =
    let group = take n l in
    if is_empty group then
      acc
    (* this was the last group, we are done *)
    else if List.length group < n (* last group, with missing elements *) then (
      match last group with
      | None -> acc
      | Some group' -> group' :: acc
    ) else (
      let l' = drop offset l in
      aux (group :: acc) l' (* continue *)
    )
  in
  List.rev (aux [] l)

let chunks n l = sublists_of_len ~last:(fun x -> Some x) n l

let intersperse x l =
  let rec aux_direct i x l =
    match l with
    | [] -> []
    | [ _ ] -> l
    | _ when i = 0 -> aux_tailrec [] x l
    | y :: tail -> y :: x :: aux_direct (i - 1) x tail
  and aux_tailrec acc x l =
    match l with
    | [] -> List.rev acc
    | [ y ] -> List.rev (y :: acc)
    | y :: tail -> aux_tailrec (x :: y :: acc) x tail
  in
  aux_direct 1_000 x l

let interleave l1 l2 : _ list =
  let rec aux acc l1 l2 =
    match l1, l2 with
    | [], [] -> List.rev acc
    | [], _ -> List.rev (List.rev_append l2 acc)
    | _, [] -> List.rev (List.rev_append l1 acc)
    | x1 :: tl1, x2 :: tl2 -> aux (x2 :: x1 :: acc) tl1 tl2
  in
  aux [] l1 l2

[@@@iflt 5.1]

let take_while p l =
  let rec direct i p l =
    match l with
    | [] -> []
    | _ when i = 0 -> safe p [] l
    | x :: l' ->
      if p x then
        x :: direct (i - 1) p l'
      else
        []
  and safe p acc l =
    match l with
    | [] -> List.rev acc
    | x :: l' ->
      if p x then
        safe p (x :: acc) l'
      else
        List.rev acc
  in
  direct direct_depth_default_ p l

[@@@else_]

let rec take_while p l =
  match l with
  | [] -> []
  | x :: l' ->
    if p x then
      x :: take_while p l'
    else
      []

[@@@endif]

let rec drop_while p l =
  match l with
  | [] -> []
  | x :: l' ->
    if p x then
      drop_while p l'
    else
      l

let take_drop_while p l =
  let rec direct i p l =
    match l with
    | [] -> [], []
    | _ when i = 0 -> safe p [] l
    | x :: tail ->
      if p x then (
        let l1, l2 = direct (i - 1) p tail in
        x :: l1, l2
      ) else
        [], l
  and safe p acc l =
    match l with
    | [] -> List.rev acc, []
    | x :: tail ->
      if p x then
        safe p (x :: acc) tail
      else
        List.rev acc, l
  in
  direct direct_depth_default_ p l

let last n l =
  let len = List.length l in
  if len < n then
    l
  else
    drop (len - n) l

let head_opt = function
  | [] -> None
  | x :: _ -> Some x

let tail_opt = function
  | [] -> None
  | _ :: tail -> Some tail

let rec last_opt = function
  | [] -> None
  | [ x ] -> Some x
  | _ :: tail -> last_opt tail

let find_pred = find_opt

let find_pred_exn p l =
  match find_pred p l with
  | None -> raise Not_found
  | Some x -> x

let find_mapi f l =
  let rec aux f i = function
    | [] -> None
    | x :: l' ->
      (match f i x with
      | Some _ as res -> res
      | None -> aux f (i + 1) l')
  in
  aux f 0 l

let find_map f l = find_mapi (fun _ -> f) l

let find_idx p l =
  find_mapi
    (fun i x ->
      if p x then
        Some (i, x)
      else
        None)
    l

let remove ~eq x l =
  let rec remove' eq x acc l =
    match l with
    | [] -> List.rev acc
    | y :: tail when eq x y -> remove' eq x acc tail
    | y :: tail -> remove' eq x (y :: acc) tail
  in
  remove' eq x [] l

let filter_map f l =
  let rec recurse acc l =
    match l with
    | [] -> List.rev acc
    | x :: l' ->
      let acc' =
        match f x with
        | None -> acc
        | Some y -> y :: acc
      in
      recurse acc' l'
  in
  recurse [] l

let keep_some l = filter_map (fun x -> x) l

let keep_ok l =
  filter_map
    (function
      | Ok x -> Some x
      | Error _ -> None)
    l

let all_some l =
  try
    Some
      (map
         (function
           | Some x -> x
           | None -> raise Exit)
         l)
  with Exit -> None

let all_ok l =
  let err = ref None in
  try
    Ok
      (map
         (function
           | Ok x -> x
           | Error e ->
             err := Some e;
             raise Exit)
         l)
  with Exit ->
    (match !err with
    | None -> assert false
    | Some e -> Error e)

let group_by (type k) ?(hash = Hashtbl.hash) ?(eq = Stdlib.( = )) l =
  let module Tbl = Hashtbl.Make (struct
    type t = k

    let equal = eq
    let hash = hash
  end) in
  (* compute group table *)
  let tbl = Tbl.create 32 in
  List.iter
    (fun x ->
      let l = try Tbl.find tbl x with Not_found -> [] in
      Tbl.replace tbl x (x :: l))
    l;
  Tbl.fold (fun _ x acc -> x :: acc) tbl []

let join ~join_row s1 s2 : _ t =
  flat_map (fun a -> filter_map (join_row a) s2) s1

let join_by (type a) ?(eq = Stdlib.( = )) ?(hash = Hashtbl.hash) f1 f2 ~merge c1
    c2 =
  let module Tbl = Hashtbl.Make (struct
    type t = a

    let equal = eq
    let hash = hash
  end) in
  let tbl = Tbl.create 32 in
  List.iter
    (fun x ->
      let key = f1 x in
      Tbl.add tbl key x)
    c1;
  let res = ref [] in
  List.iter
    (fun y ->
      let key = f2 y in
      let xs = Tbl.find_all tbl key in
      List.iter
        (fun x ->
          match merge key x y with
          | None -> ()
          | Some z -> res := z :: !res)
        xs)
    c2;
  !res

type ('a, 'b) join_all_cell = {
  mutable ja_left: 'a list;
  mutable ja_right: 'b list;
}

let join_all_by (type a) ?(eq = Stdlib.( = )) ?(hash = Hashtbl.hash) f1 f2
    ~merge c1 c2 =
  let module Tbl = Hashtbl.Make (struct
    type t = a

    let equal = eq
    let hash = hash
  end) in
  let tbl = Tbl.create 32 in
  (* build the map [key -> cell] *)
  List.iter
    (fun x ->
      let key = f1 x in
      try
        let c = Tbl.find tbl key in
        c.ja_left <- x :: c.ja_left
      with Not_found -> Tbl.add tbl key { ja_left = [ x ]; ja_right = [] })
    c1;
  List.iter
    (fun y ->
      let key = f2 y in
      try
        let c = Tbl.find tbl key in
        c.ja_right <- y :: c.ja_right
      with Not_found -> Tbl.add tbl key { ja_left = []; ja_right = [ y ] })
    c2;
  Tbl.fold
    (fun key cell res ->
      match merge key cell.ja_left cell.ja_right with
      | None -> res
      | Some z -> z :: res)
    tbl []

let group_join_by (type a) ?(eq = Stdlib.( = )) ?(hash = Hashtbl.hash) f c1 c2 =
  let module Tbl = Hashtbl.Make (struct
    type t = a

    let equal = eq
    let hash = hash
  end) in
  let tbl = Tbl.create 32 in
  List.iter (fun x -> Tbl.replace tbl x []) c1;
  List.iter
    (fun y ->
      (* project [y] into some element of [c1] *)
      let key = f y in
      try
        let l = Tbl.find tbl key in
        Tbl.replace tbl key (y :: l)
      with Not_found -> ())
    c2;
  Tbl.fold (fun k v l -> (k, v) :: l) tbl []

let mem ?(eq = Stdlib.( = )) x l =
  let rec search eq x l =
    match l with
    | [] -> false
    | y :: l' -> eq x y || search eq x l'
  in
  search eq x l

let add_nodup ~eq x l =
  if mem ~eq x l then
    l
  else
    x :: l

let remove_one ~eq x l =
  let rec remove_one ~eq x acc l =
    match l with
    | [] -> assert false
    | y :: tl when eq x y -> List.rev_append acc tl
    | y :: tl -> remove_one ~eq x (y :: acc) tl
  in
  if mem ~eq x l then
    remove_one ~eq x [] l
  else
    l

let subset ~eq l1 l2 = List.for_all (fun t -> mem ~eq t l2) l1

let uniq ~eq l =
  let rec uniq eq acc l =
    match l with
    | [] -> List.rev acc
    | x :: xs when List.exists (eq x) xs -> uniq eq acc xs
    | x :: xs -> uniq eq (x :: acc) xs
  in
  uniq eq [] l

let union ~eq l1 l2 =
  let rec union eq acc l1 l2 =
    match l1 with
    | [] -> List.rev_append acc l2
    | x :: xs when mem ~eq x l2 -> union eq acc xs l2
    | x :: xs -> union eq (x :: acc) xs l2
  in
  union eq [] l1 l2

let inter ~eq l1 l2 =
  let rec inter eq acc l1 l2 =
    match l1 with
    | [] -> List.rev acc
    | x :: xs when mem ~eq x l2 -> inter eq (x :: acc) xs l2
    | _ :: xs -> inter eq acc xs l2
  in
  inter eq [] l1 l2

let mapi f l =
  let r = ref 0 in
  map
    (fun x ->
      let y = f !r x in
      incr r;
      y)
    l

let iteri f l =
  let rec aux f i l =
    match l with
    | [] -> ()
    | x :: l' ->
      f i x;
      aux f (i + 1) l'
  in
  aux f 0 l

let iteri2 f l1 l2 =
  let rec aux f i l1 l2 =
    match l1, l2 with
    | [], [] -> ()
    | [], _ | _, [] -> invalid_arg "iteri2"
    | x1 :: l1', x2 :: l2' ->
      f i x1 x2;
      aux f (i + 1) l1' l2'
  in
  aux f 0 l1 l2

let foldi f acc l =
  let rec foldi f acc i l =
    match l with
    | [] -> acc
    | x :: l' ->
      let acc = f acc i x in
      foldi f acc (i + 1) l'
  in
  foldi f acc 0 l

let foldi2 f acc l1 l2 =
  let rec foldi f acc i l1 l2 =
    match l1, l2 with
    | [], [] -> acc
    | [], _ | _, [] -> invalid_arg "foldi2"
    | x1 :: l1', x2 :: l2' ->
      let acc = f acc i x1 x2 in
      foldi f acc (i + 1) l1' l2'
  in
  foldi f acc 0 l1 l2

let rec get_at_idx_rec i l =
  match l with
  | [] -> raise Not_found
  | x :: _ when i = 0 -> x
  | _ :: l' -> get_at_idx_rec (i - 1) l'

let get_at_idx_exn i l =
  let i =
    if i < 0 then
      length l + i
    else
      i
  in
  get_at_idx_rec i l

let get_at_idx i l = try Some (get_at_idx_exn i l) with Not_found -> None

let set_at_idx i x l0 =
  let rec aux l acc i =
    match l with
    | [] -> l0
    | _ :: l' when i = 0 -> List.rev_append acc (x :: l')
    | y :: l' -> aux l' (y :: acc) (i - 1)
  in
  let i =
    if i < 0 then
      length l0 + i
    else
      i
  in
  aux l0 [] i

let insert_at_idx i x l =
  let rec aux l acc i x =
    match l with
    | [] -> List.rev_append acc [ x ]
    | y :: l' when i = 0 -> List.rev_append acc (x :: y :: l')
    | y :: l' -> aux l' (y :: acc) (i - 1) x
  in
  let i =
    if i < 0 then
      length l + i
    else
      i
  in
  aux l [] i x

let remove_at_idx i l0 =
  let rec aux l acc i =
    match l with
    | [] -> l0
    | _ :: l' when i = 0 -> List.rev_append acc l'
    | y :: l' -> aux l' (y :: acc) (i - 1)
  in
  let i =
    if i < 0 then
      length l0 + i
    else
      i
  in
  aux l0 [] i

let range_by ~step i j =
  let rec range i j acc =
    if i = j then
      i :: acc
    else
      range i (j - step) (j :: acc)
  in
  if step = 0 then
    raise (Invalid_argument "CCList.range_by")
  else if
    if step > 0 then
      i > j
    else
      i < j
  then
    []
  else
    range i (((j - i) / step * step) + i) []

let range i j =
  let rec up i j acc =
    if i = j then
      i :: acc
    else
      up i (j - 1) (j :: acc)
  and down i j acc =
    if i = j then
      i :: acc
    else
      down i (j + 1) (j :: acc)
  in
  if i <= j then
    up i j []
  else
    down i j []

let range' i j =
  if i < j then
    range i (j - 1)
  else if i = j then
    []
  else
    range i (j + 1)

let ( -- ) = range
let ( --^ ) = range'

let replicate i x =
  let rec aux acc i =
    if i = 0 then
      acc
    else
      aux (x :: acc) (i - 1)
  in
  aux [] i

let repeat i l =
  let rec aux acc i =
    if i = 0 then
      List.rev acc
    else
      aux (List.rev_append l acc) (i - 1)
  in
  aux [] i

module Assoc = struct
  type ('a, 'b) t = ('a * 'b) list

  let rec search_exn eq l x =
    match l with
    | [] -> raise Not_found
    | (y, z) :: l' ->
      if eq x y then
        z
      else
        search_exn eq l' x

  let get_exn ~eq x l = search_exn eq l x
  let get ~eq x l = try Some (search_exn eq l x) with Not_found -> None

  (* search for a binding for [x] in [l], and calls [f x (Some v) rest]
     or [f x None rest] depending on whether it finds the binding.
     [rest] is the list of the other bindings *)
  let rec search_set eq acc l x ~f =
    match l with
    | [] -> f x None acc
    | (x', y') :: l' ->
      if eq x x' then
        f x (Some y') (List.rev_append acc l')
      else
        search_set eq ((x', y') :: acc) l' x ~f

  let set ~eq x y l = search_set eq [] l x ~f:(fun x _ l -> (x, y) :: l)

  let mem ?(eq = Stdlib.( = )) x l =
    try
      ignore (search_exn eq l x);
      true
    with Not_found -> false

  let update ~eq f x l =
    search_set eq [] l x ~f:(fun x opt_y rest ->
        match f opt_y with
        | None -> rest (* drop *)
        | Some y' -> (x, y') :: rest)

  let remove ~eq x l =
    search_set eq [] l x ~f:(fun _ opt_y rest ->
        match opt_y with
        | None -> l (* keep as is *)
        | Some _ -> rest)

  let keys l = map (fun (k, _) -> k) l
  let values l = map (fun (_, v) -> v) l
  let map_values f l = map (fun (k, v) -> k, f v) l
end

let assoc = Assoc.get_exn
let assoc_opt = Assoc.get
let mem_assoc = Assoc.mem
let remove_assoc = Assoc.remove

(** {2 References on Lists} *)

module Ref = struct
  type 'a t = 'a list ref

  let push l x = l := x :: !l

  let pop l =
    match !l with
    | [] -> None
    | x :: tail ->
      l := tail;
      Some x

  let pop_exn l =
    match !l with
    | [] -> failwith "CCList.Ref.pop_exn"
    | x :: tail ->
      l := tail;
      x

  let create () = ref []
  let clear l = l := []
  let lift f l = f !l
  let push_list r l = r := List.rev_append l !r
end

(** {2 Monadic Operations} *)
module type MONAD = sig
  type 'a t

  val return : 'a -> 'a t
  val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t
end

module Traverse (M : MONAD) = struct
  open M

  let map_m f l =
    let rec aux f acc l =
      match l with
      | [] -> return (List.rev acc)
      | x :: tail -> f x >>= fun x' -> aux f (x' :: acc) tail
    in
    aux f [] l

  let rec map_m_par f l =
    match l with
    | [] -> M.return []
    | x :: tl ->
      let x' = f x in
      let tl' = map_m_par f tl in
      x' >>= fun x' ->
      tl' >>= fun tl' -> M.return (x' :: tl')

  let sequence_m l = map_m (fun x -> x) l

  let rec fold_m f acc l =
    match l with
    | [] -> return acc
    | x :: l' -> f acc x >>= fun acc' -> fold_m f acc' l'
end

(** {2 Conversions} *)

type 'a iter = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
type 'a printer = Format.formatter -> 'a -> unit
type 'a random_gen = Random.State.t -> 'a

let random_len len g st = init len (fun _ -> g st)

let random g st =
  let len = Random.State.int st 1_000 in
  random_len len g st

let random_non_empty g st =
  let len = 1 + Random.State.int st 1_000 in
  random_len len g st

let random_choose l =
  match l with
  | [] -> raise Not_found
  | _ :: _ ->
    let len = List.length l in
    fun st ->
      let i = Random.State.int st len in
      List.nth l i

let random_sequence l st = map (fun g -> g st) l

let to_string ?(start = "") ?(stop = "") ?(sep = ", ") item_to_string l =
  let l = List.map item_to_string l in
  start ^ String.concat sep l ^ stop

let to_iter l k = List.iter k l

let rec to_seq l () =
  match l with
  | [] -> Seq.Nil
  | x :: tl -> Seq.Cons (x, to_seq tl)

let of_iter i =
  let l = ref [] in
  i (fun x -> l := x :: !l);
  List.rev !l

let of_seq_rev l =
  let rec loop acc s =
    match s () with
    | Seq.Nil -> acc
    | Seq.Cons (x, tl) -> loop (x :: acc) tl
  in
  loop [] l

[@@@iflt 5.1]

let of_seq l =
  let rec direct i seq =
    if i <= 0 then
      List.rev (of_seq_rev seq)
    else (
      match seq () with
      | Seq.Nil -> []
      | Seq.Cons (x, tl) -> x :: direct (i - 1) tl
    )
  in
  direct direct_depth_default_ l

[@@@endif]

let to_gen l =
  let l = ref l in
  fun () ->
    match !l with
    | [] -> None
    | x :: l' ->
      l := l';
      Some x

[@@@iflt 5.1]

let of_gen g =
  let rec direct i g =
    if i = 0 then
      safe [] g
    else (
      match g () with
      | None -> []
      | Some x -> x :: direct (i - 1) g
    )
  and safe acc g =
    match g () with
    | None -> List.rev acc
    | Some x -> safe (x :: acc) g
  in
  direct direct_depth_default_ g

[@@@else_]

let[@tail_mod_cons] rec of_gen g =
  match g () with
  | None -> []
  | Some x -> x :: of_gen g

[@@@endif]

module Infix = struct
  let[@inline] ( >|= ) l f = map f l
  let[@inline] ( >>= ) l f = flat_map f l
  let ( @ ) = ( @ )
  let ( <*> ) = ( <*> )
  let ( <$> ) = map
  let ( -- ) = ( -- )
  let ( --^ ) = ( --^ )
  let ( let+ ) = ( >|= )
  let ( let* ) = ( >>= )
  let[@inline] ( and+ ) l1 l2 = product (fun x y -> x, y) l1 l2
  let ( and* ) = ( and+ )
  let ( and& ) = combine_shortest
end

include Infix

(** {2 IO} *)

let pp ?(pp_start = fun _ () -> ()) ?(pp_stop = fun _ () -> ())
    ?(pp_sep = fun fmt () -> Format.fprintf fmt ",@ ") pp_item fmt l =
  let rec print fmt l =
    match l with
    | x :: (_ :: _ as l) ->
      pp_item fmt x;
      pp_sep fmt ();
      print fmt l
    | [ x ] -> pp_item fmt x
    | [] -> ()
  in
  pp_start fmt ();
  print fmt l;
  pp_stop fmt ()
OCaml

Innovation. Community. Security.