package containers

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file CCParse.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
module Memo_tbl = Hashtbl.Make (struct
  type t = int * int (* id of parser, position *)

  let equal ((a, b) : t) (c, d) = a = c && b = d
  let hash = Hashtbl.hash
end)

module Memo_state = struct
  (* table of closures, used to implement universal type *)
  type t = (unit -> unit) Memo_tbl.t

  (* unique ID for each parser *)
  let id_ = ref 0
end

(* state common to all parser instances *)
type common_state = {
  str: string;
  mutable line_offsets: int array option;
  mutable memo: Memo_state.t option;
}

type position = {
  pos_cs: common_state;
  pos_offset: int;
  mutable pos_lc: (int * int) option;
}

module Position = struct
  type t = position

  let compute_line_offsets_ (s : string) : int array =
    let lines = CCVector.create () in
    let i = ref 0 in
    CCVector.push lines 0;
    while !i < String.length s do
      match String.index_from s !i '\n' with
      | exception Not_found -> i := String.length s
      | j ->
        CCVector.push lines j;
        i := j + 1
    done;
    CCVector.to_array lines

  let line_offsets_ cs =
    match cs.line_offsets with
    | Some lines -> lines
    | None ->
      let lines = compute_line_offsets_ cs.str in
      cs.line_offsets <- Some lines;
      lines

  let int_cmp_ : int -> int -> int = compare

  (* TODO: use pos_cs.line_offsets *)
  (* actually re-compute line and column from the buffer *)
  let compute_line_and_col_ (cs : common_state) (off : int) : int * int =
    let offsets = line_offsets_ cs in
    assert (offsets.(0) = 0);
    match CCArray.bsearch ~cmp:int_cmp_ off offsets with
    | `At 0 -> 0, 0
    | `At n -> n - 1, off - offsets.(n - 1) - 1
    | `Just_after n -> n, off - offsets.(n)
    | `Empty -> assert false
    | `All_bigger -> assert false (* off >= 0, and offsets[0] == 0 *)
    | `All_lower ->
      let n = Array.length offsets - 1 in
      n, off - offsets.(n)

  let line_and_column self =
    match self.pos_lc with
    | Some tup -> tup
    | None ->
      let tup = compute_line_and_col_ self.pos_cs self.pos_offset in
      self.pos_lc <- Some tup;
      (* save *)
      tup

  let line self = fst (line_and_column self)
  let column self = snd (line_and_column self)

  let pp out self =
    let l, c = line_and_column self in
    Format.fprintf out "at line %d, column %d" l c
end

module Error = struct
  type t = { msg: unit -> string; pos: position }

  let position self = self.pos
  let line_and_column self = Position.line_and_column self.pos
  let msg self = self.msg ()

  let to_string self =
    let line, col = line_and_column self in
    Printf.sprintf "at line %d, char %d: %s" line col (self.msg ())

  let pp out self =
    let line, col = line_and_column self in
    Format.fprintf out "@[<hv>at line %d, char %d:@ %s@]" line col (self.msg ())
end

type +'a or_error = ('a, Error.t) result

type state = {
  cs: common_state;
  i: int; (* offset in [str] *)
  j: int; (* end pointer in [str], excluded. [len = j-i] *)
}
(** Purely functional state passed around *)
(* FIXME: replace memo with:
   [global : global_st ref]

   where:
   [type global = {
     mutable memo: Memo_state.t option;
     line_offsets: int CCVector.vector;
   }

   with line_offsets used to cache the offset where each line begins,
   and is computed lazily, to make {!Position.line_and_column}
   faster if called many times.
*)

let[@inline] char_equal (a : char) b = Stdlib.( = ) a b
let string_equal = String.equal

(* FIXME: printer for error
   let () = Printexc.register_printer
       (function
         | ParseError (b,msg) ->
           Some (Format.sprintf "@[<v>%s@ %s@]" (msg()) (string_of_branch b))
         | _ -> None)
*)

let[@inline] const_str_ x () : string = x

let state_of_string str =
  let s =
    {
      cs = { str; memo = None; line_offsets = None };
      i = 0;
      j = String.length str;
    }
  in
  s

let[@inline] is_done st = st.i >= st.j
let[@inline] cur st = st.cs.str.[st.i]

let pos_of_st_ st : position =
  { pos_cs = st.cs; pos_offset = st.i; pos_lc = None }

let mk_error_ st msg : Error.t = { Error.msg; pos = pos_of_st_ st }

(* consume one char, passing it to [ok]. *)
let consume_ st ~ok ~err =
  if is_done st then (
    let msg = const_str_ "unexpected end of input" in
    err (mk_error_ st msg)
  ) else (
    let c = st.cs.str.[st.i] in
    ok { st with i = st.i + 1 } c
  )

type 'a t = {
  run: 'b. state -> ok:(state -> 'a -> 'b) -> err:(Error.t -> 'b) -> 'b;
}
[@@unboxed]
(** Takes the input and two continuations:
    {ul
      {- [ok] to call with the result and new state when it's done}
      {- [err] to call when the parser met an error}
    }
*)

let return x : _ t = { run = (fun st ~ok ~err:_ -> ok st x) }
let pure = return

let map f (p : 'a t) : _ t =
  { run = (fun st ~ok ~err -> p.run st ~ok:(fun st x -> ok st (f x)) ~err) }

let bind f (p : 'a t) : _ t =
  {
    run =
      (fun st ~ok ~err ->
        p.run st
          ~ok:(fun st x ->
            let p2 = f x in
            p2.run st ~ok ~err)
          ~err);
  }

let ap (f : _ t) (a : _ t) : _ t =
  {
    run =
      (fun st ~ok ~err ->
        f.run st
          ~ok:(fun st f -> a.run st ~ok:(fun st x -> ok st (f x)) ~err)
          ~err);
  }

let ap_left (a : _ t) (b : _ t) : _ t =
  {
    run =
      (fun st ~ok ~err ->
        a.run st ~ok:(fun st x -> b.run st ~ok:(fun st _ -> ok st x) ~err) ~err);
  }

let ap_right (a : _ t) (b : _ t) : _ t =
  {
    run =
      (fun st ~ok ~err ->
        a.run st ~ok:(fun st _ -> b.run st ~ok:(fun st x -> ok st x) ~err) ~err);
  }

let or_ (p1 : 'a t) (p2 : 'a t) : _ t =
  {
    run = (fun st ~ok ~err -> p1.run st ~ok ~err:(fun _e -> p2.run st ~ok ~err));
  }

let both a b =
  {
    run =
      (fun st ~ok ~err ->
        a.run st
          ~ok:(fun st xa -> b.run st ~ok:(fun st xb -> ok st (xa, xb)) ~err)
          ~err);
  }

let set_error_message msg (p : 'a t) : _ t =
  {
    run =
      (fun st ~ok ~err ->
        p.run st ~ok ~err:(fun _e -> err (mk_error_ st (const_str_ msg))));
  }

module Infix = struct
  let[@inline] ( >|= ) p f = map f p
  let[@inline] ( >>= ) p f = bind f p
  let ( <*> ) = ap
  let ( <* ) = ap_left
  let ( *> ) = ap_right
  let ( <|> ) = or_
  let ( ||| ) = both
  let[@inline] ( <?> ) p msg = set_error_message msg p
  let ( let+ ) = ( >|= )
  let ( let* ) = ( >>= )
  let ( and+ ) = both
  let ( and* ) = ( and+ )
end

include Infix

let map2 f x y = pure f <*> x <*> y
let map3 f x y z = pure f <*> x <*> y <*> z

let junk_ (st : state) : state =
  assert (st.i < st.j);
  { st with i = st.i + 1 }

let eoi =
  {
    run =
      (fun st ~ok ~err ->
        if is_done st then
          ok st ()
        else
          err (mk_error_ st (const_str_ "expected end of input")));
  }

let with_pos p : _ t =
  {
    run =
      (fun st ~ok ~err ->
        p.run st ~ok:(fun st' x -> ok st' (x, pos_of_st_ st)) ~err);
  }

let pos : _ t = { run = (fun st ~ok ~err:_ -> ok st (pos_of_st_ st)) }

(* a slice is just a state, which makes {!recurse} quite easy. *)
type slice = state

module Slice = struct
  type t = slice

  let length sl = sl.j - sl.i
  let is_empty sl = sl.i = sl.j
  let to_string sl = String.sub sl.cs.str sl.i (length sl)
end

let recurse slice p : _ t =
  {
    run =
      (fun st ~ok ~err ->
        (* make sure these states are related. all slices share the
           same reference as the initial state they derive from. *)
        assert (Stdlib.(st.cs == slice.cs));
        p.run slice ~ok:(fun _st x -> ok st x) ~err);
  }

let all =
  {
    run =
      (fun st ~ok ~err:_ ->
        if is_done st then
          ok st st
        else (
          let st_done = { st with i = st.j } in
          ok st_done st
        ));
  }

let all_str = all >|= Slice.to_string

let fail msg : _ t =
  { run = (fun st ~ok:_ ~err -> err (mk_error_ st (const_str_ msg))) }

let failf msg = Printf.ksprintf fail msg
let fail_lazy msg = { run = (fun st ~ok:_ ~err -> err (mk_error_ st msg)) }

let parsing what p =
  {
    run =
      (fun st ~ok ~err ->
        p.run st ~ok ~err:(fun e ->
            let msg () =
              Printf.sprintf "while parsing %s:\n%s" what (e.Error.msg ())
            in
            err { e with Error.msg }));
  }

let empty = { run = (fun st ~ok ~err:_ -> ok st ()) }
let any_char = { run = (fun st ~ok ~err -> consume_ st ~ok ~err) }

let char c : _ t =
  {
    run =
      (fun st ~ok ~err ->
        consume_ st
          ~ok:(fun st c2 ->
            if char_equal c c2 then
              ok st c
            else (
              let msg () = Printf.sprintf "expected '%c', got '%c'" c c2 in
              err (mk_error_ st msg)
            ))
          ~err);
  }

let char_if ?descr p =
  {
    run =
      (fun st ~ok ~err ->
        consume_ st
          ~ok:(fun st c ->
            if p c then
              ok st c
            else (
              let msg () =
                let rest =
                  match descr with
                  | None -> ""
                  | Some d -> Printf.sprintf ", expected %s" d
                in
                Printf.sprintf "unexpected char '%c'%s" c rest
              in
              err (mk_error_ st msg)
            ))
          ~err);
  }

let take_if p : slice t =
  {
    run =
      (fun st ~ok ~err:_ ->
        let i = ref st.i in
        while
          let st = { st with i = !i } in
          (not (is_done st)) && p (cur st)
        do
          incr i
        done;
        ok { st with i = !i } { st with j = !i });
  }

let take1_if ?descr p =
  take_if p >>= fun sl ->
  if Slice.is_empty sl then (
    let msg () =
      let what =
        match descr with
        | None -> ""
        | Some d -> Printf.sprintf " for %s" d
      in
      Printf.sprintf "expected non-empty sequence of chars%s" what
    in
    fail_lazy msg
  ) else
    return sl

let chars_if p = take_if p >|= Slice.to_string

let chars1_if ?descr p =
  {
    run =
      (fun st ~ok ~err ->
        (chars_if p).run st
          ~ok:(fun st s ->
            if string_equal s "" then (
              let msg () =
                let what =
                  match descr with
                  | None -> ""
                  | Some d -> Printf.sprintf " for %s" d
                in
                Printf.sprintf "expected non-empty sequence of chars%s" what
              in
              err (mk_error_ st msg)
            ) else
              ok st s)
          ~err);
  }

exception Fold_fail of state * string

let chars_fold ~f acc0 =
  {
    run =
      (fun st ~ok ~err ->
        let i0 = st.i in
        let i = ref i0 in
        let acc = ref acc0 in
        let continue = ref true in
        try
          while !continue do
            let st = { st with i = !i } in
            if is_done st then
              continue := false
            else (
              let c = cur st in
              match f !acc c with
              | `Continue acc' ->
                incr i;
                acc := acc'
              | `Stop a ->
                acc := a;
                continue := false
              | `Consume_and_stop a ->
                acc := a;
                incr i;
                continue := false
              | `Fail msg -> raise (Fold_fail (st, msg))
            )
          done;
          ok { st with i = !i } (!acc, { st with j = !i })
        with Fold_fail (st, msg) -> err (mk_error_ st (const_str_ msg)));
  }

let chars_fold_transduce ~f acc0 =
  {
    run =
      (fun st ~ok ~err ->
        let i0 = st.i in
        let i = ref i0 in
        let acc = ref acc0 in
        let continue = ref true in
        let buf = Buffer.create 16 in
        try
          while !continue do
            let st = { st with i = !i } in
            if is_done st then
              continue := false
            else (
              let c = cur st in
              match f !acc c with
              | `Continue acc' ->
                incr i;
                acc := acc'
              | `Yield (acc', c') ->
                incr i;
                acc := acc';
                Buffer.add_char buf c'
              | `Stop -> continue := false
              | `Consume_and_stop ->
                incr i;
                continue := false
              | `Fail msg -> raise (Fold_fail (st, msg))
            )
          done;
          ok { st with i = !i } (!acc, Buffer.contents buf)
        with Fold_fail (st, msg) -> err (mk_error_ st (const_str_ msg)));
  }

let skip_chars p : _ t =
  let rec self =
    {
      run =
        (fun st ~ok ~err ->
          if (not (is_done st)) && p (cur st) then (
            let st = junk_ st in
            self.run st ~ok ~err
          ) else
            ok st ());
    }
  in
  self

let is_alpha = function
  | 'a' .. 'z' | 'A' .. 'Z' -> true
  | _ -> false

let is_num = function
  | '0' .. '9' -> true
  | _ -> false

let is_alpha_num = function
  | 'a' .. 'z' | 'A' .. 'Z' | '0' .. '9' -> true
  | _ -> false

let is_space = function
  | ' ' | '\t' -> true
  | _ -> false

let is_white = function
  | ' ' | '\t' | '\n' -> true
  | _ -> false

let space = char_if is_space
let white = char_if is_white

let endline =
  char_if ~descr:"end-of-line ('\\n')" (function
    | '\n' -> true
    | _ -> false)

let skip_space = skip_chars is_space
let skip_white = skip_chars is_white

let try_or p1 ~f ~else_:p2 =
  {
    run =
      (fun st ~ok ~err ->
        p1.run st
          ~ok:(fun st x -> (f x).run st ~ok ~err)
          ~err:(fun _ -> p2.run st ~ok ~err));
  }

let try_or_l ?(msg = "try_or_l ran out of options") ?else_ l : _ t =
  {
    run =
      (fun st ~ok ~err ->
        let rec loop = function
          | (test, p) :: tl ->
            test.run st
              ~ok:(fun _ _ -> p.run st ~ok ~err) (* commit *)
              ~err:(fun _ -> loop tl)
          | [] ->
            (match else_ with
            | None -> err (mk_error_ st (const_str_ msg))
            | Some p -> p.run st ~ok ~err)
        in
        loop l);
  }

let suspend f =
  {
    run =
      (fun st ~ok ~err ->
        let p = f () in
        p.run st ~ok ~err);
  }

(* read [len] chars at once *)
let take len : slice t =
  {
    run =
      (fun st ~ok ~err ->
        if st.i + len <= st.j then (
          let slice = { st with j = st.i + len } in
          let st = { st with i = st.i + len } in
          ok st slice
        ) else (
          let msg () =
            Printf.sprintf "expected to be able to consume %d chars" len
          in
          err (mk_error_ st msg)
        ));
  }

let take_until_success p : (slice * _) t =
  {
    run =
      (fun st ~ok ~err ->
        let i = ref st.i in
        let st_after_p = ref st in
        let continue = ref true in
        let res = ref None in

        while !continue && !i <= st.j do
          let st' = { st with i = !i } in
          p.run st'
            ~ok:(fun new_st x ->
              (* success *)
              res := Some x;
              continue := false;
              (* parsing will continue where [p] left off *)
              st_after_p := new_st)
            ~err:(fun _ -> incr i)
        done;

        match !res with
        | None ->
          err
            (mk_error_ st (const_str_ "take_until_success: no position worked"))
        | Some x ->
          let slice = { st with j = !i } in
          ok !st_after_p (slice, x));
  }

let any_char_n len : _ t = take len >|= Slice.to_string

let exact s =
  {
    run =
      (fun st ~ok ~err ->
        (* parse a string of length [String.length s] and compare with [s] *)
        (any_char_n (String.length s)).run st
          ~ok:(fun st s2 ->
            if string_equal s s2 then
              ok st s
            else (
              let msg () = Printf.sprintf "expected %S, got %S" s s2 in
              err (mk_error_ st msg)
            ))
          ~err);
  }

let string = exact

let fix f =
  let rec self =
    { run = (fun st ~ok ~err -> (Lazy.force f_self).run st ~ok ~err) }
  and f_self = lazy (f self) in
  self

let try_ p = p

let try_opt p : _ t =
  {
    run =
      (fun st ~ok ~err:_ ->
        p.run st ~ok:(fun st x -> ok st (Some x)) ~err:(fun _ -> ok st None));
  }

let optional p : _ t =
  {
    run =
      (fun st ~ok ~err:_ ->
        p.run st ~ok:(fun st _x -> ok st ()) ~err:(fun _ -> ok st ()));
  }

let many_until ~until p : _ t =
  fix (fun self ->
      try_or until
        ~f:(fun _ -> pure [])
        ~else_:
          ( p >>= fun x ->
            self >|= fun l -> x :: l ))

let many p : _ t =
  fix (fun self ->
      try_or p ~f:(fun x -> self >|= fun tl -> x :: tl) ~else_:(pure []))

(*
(* parse many [p], as a difference list *)
let many_rec_ p : (_ list -> _ list) t =
  let rec self = {
    run=fun st ~ok ~err ->
      if is_done st then ok st (fun l->l) (* empty list *)
      else (
        p.run st
          ~ok:(fun st x ->
              self.run st
                ~ok:(fun st f -> ok st (fun l -> x :: f l))
                ~err)
          ~err
      )
  } in
  self

let many p : _ t = {
  run=fun st ~ok ~err ->
    (many_rec_ p).run st
      ~ok:(fun st f -> ok st (f []))
      ~err
}
   *)

let many1 p =
  p >>= fun x ->
  many p >|= fun l -> x :: l

(* skip can be made efficient by not allocating intermediate parsers *)
let skip p : _ t =
  let rec self =
    {
      run =
        (fun st ~ok ~err ->
          p.run st
            ~ok:(fun st _ -> self.run st ~ok ~err)
            ~err:(fun _ -> ok st ()));
    }
  in
  self

let sep_until ~until ~by p =
  let rec read_p =
    lazy
      ( p >>= fun x ->
        until *> pure [ x ] <|> by *> (Lazy.force read_p >|= fun tl -> x :: tl)
      )
  in
  until *> pure [] <|> Lazy.force read_p

let sep ~by p =
  let rec read_p =
    lazy
      (try_or p
         ~f:(fun x ->
           eoi *> pure [ x ]
           <|> try_or by
                 ~f:(fun _ -> Lazy.force read_p >|= fun tl -> x :: tl)
                 ~else_:(pure [ x ]))
         ~else_:(pure []))
  in
  Lazy.force read_p

let sep1 ~by p =
  p >>= fun x ->
  sep ~by p >|= fun tl -> x :: tl

let lookahead p : _ t =
  {
    run =
      (fun st ~ok ~err ->
        p.run st ~ok:(fun _st x -> ok st x) (* discard p's new state *) ~err);
  }

let lookahead_ignore p : _ t =
  { run = (fun st ~ok ~err -> p.run st ~ok:(fun _st _x -> ok st ()) ~err) }

let set_current_slice sl : _ t =
  {
    run =
      (fun _st ~ok ~err:_ ->
        assert (Stdlib.(_st.cs == sl.cs));
        ok sl ())
      (* jump to slice *);
  }

let split_1 ~on_char : _ t =
  {
    run =
      (fun st ~ok ~err:_ ->
        if st.i >= st.j then
          ok st (st, None)
        else (
          let ret_empty () =
            let st_done = { st with i = st.j } in
            (* empty *)
            ok st_done (st, None)
          in
          match String.index_from st.cs.str st.i on_char with
          | j ->
            if j <= st.j then (
              let x = { st with j } in
              let y = { st with i = min st.j (j + 1) } in
              let st_done = { st with i = st.j } in
              (* empty *)
              ok st_done (x, Some y)
            ) else
              ret_empty ()
          | exception Not_found -> ret_empty ()
        ));
  }

let split_list_at_most ~on_char n : slice list t =
  let rec loop acc n =
    if n <= 0 then
      (* add the rest to [acc] *)
      all >|= fun rest ->
      let acc = rest :: acc in
      List.rev acc
    else
      try_or eoi ~f:(fun _ -> return (List.rev acc)) ~else_:(parse_1 acc n)
  and parse_1 acc n =
    split_1 ~on_char >>= fun (sl1, rest) ->
    let acc = sl1 :: acc in
    match rest with
    | None -> return (List.rev acc)
    | Some rest -> recurse rest (loop acc (n - 1))
  in
  loop [] n

let split_2 ~on_char : _ t =
  split_list_at_most ~on_char 3 >>= function
  | [ a; b ] -> return (a, b)
  | _ -> fail "split_2: expected 2 fields exactly"

let split_3 ~on_char : _ t =
  split_list_at_most ~on_char 4 >>= function
  | [ a; b; c ] -> return (a, b, c)
  | _ -> fail "split_3: expected 3 fields exactly"

let split_4 ~on_char : _ t =
  split_list_at_most ~on_char 5 >>= function
  | [ a; b; c; d ] -> return (a, b, c, d)
  | _ -> fail "split_4: expected 4 fields exactly"

let split_list ~on_char : slice list t =
  let rec loop acc =
    try_or eoi ~f:(fun _ -> return (List.rev acc)) ~else_:(parse_1 acc)
  and parse_1 acc =
    split_1 ~on_char >>= fun (sl1, rest) ->
    let acc = sl1 :: acc in
    match rest with
    | None -> return (List.rev acc)
    | Some rest -> recurse rest (loop acc)
  in
  loop []

let each_split ~on_char p : 'a list t =
  let rec loop acc =
    split_1 ~on_char >>= fun (sl1, rest) ->
    (* parse [sl1] with [p] *)
    recurse sl1 p >>= fun x ->
    let acc = x :: acc in
    match rest with
    | None -> return (List.rev acc)
    | Some rest -> recurse rest (loop acc)
  in
  loop []

let line : slice t =
  split_1 ~on_char:'\n' >>= fun (sl, rest) ->
  match rest with
  | None -> return sl
  | Some rest -> set_current_slice rest >|= fun () -> sl

let line_str = line >|= Slice.to_string
let each_line p : _ t = each_split ~on_char:'\n' p

let memo (type a) (p : a t) : a t =
  let id = !Memo_state.id_ in
  incr Memo_state.id_;
  let r = ref None in

  (* used for universal encoding *)
  {
    run =
      (fun st ~ok ~err ->
        let tbl =
          match st.cs.memo with
          | Some t -> t
          | None ->
            let tbl = Memo_tbl.create 32 in
            st.cs.memo <- Some tbl;
            tbl
        in

        match
          r := None;
          let f = Memo_tbl.find tbl (st.i, id) in
          f ();
          !r
        with
        | None -> assert false
        | Some (Ok (st, x)) -> ok st x
        | Some (Error e) -> err e
        | exception Not_found ->
          (* parse, and save *)
          p.run st
            ~ok:(fun st' x ->
              Memo_tbl.replace tbl (st.i, id) (fun () ->
                  r := Some (Ok (st', x)));
              ok st' x)
            ~err:(fun e ->
              Memo_tbl.replace tbl (st.i, id) (fun () -> r := Some (Error e));
              err e));
  }

let fix_memo f =
  let rec p = { run = (fun st ~ok ~err -> (Lazy.force p').run st ~ok ~err) }
  and p' = lazy (memo (f p)) in
  p

exception ParseError of Error.t

let stringify_result = function
  | Ok _ as x -> x
  | Error e -> Error (Error.to_string e)

let parse_string_exn p s =
  p.run (state_of_string s)
    ~ok:(fun _st x -> x)
    ~err:(fun e -> raise (ParseError e))

let parse_string_e p s =
  p.run (state_of_string s) ~ok:(fun _st x -> Ok x) ~err:(fun e -> Error e)

let parse_string p s = parse_string_e p s |> stringify_result

let read_all_ ic =
  let buf = Buffer.create 1024 in
  (try
     while true do
       let line = input_line ic in
       Buffer.add_string buf line;
       Buffer.add_char buf '\n'
     done;
     assert false
   with End_of_file -> ());
  Buffer.contents buf

let parse_file_e p file =
  let ic = open_in file in
  let s = read_all_ ic in
  let r = parse_string_e p s in
  close_in ic;
  r

let parse_file p file = parse_file_e p file |> stringify_result

let parse_file_exn p file =
  match parse_file_e p file with
  | Ok x -> x
  | Error e -> raise (ParseError e)

module U = struct
  let list ?(start = "[") ?(stop = "]") ?(sep = ";") p =
    string start *> skip_white
    *> sep_until
         ~until:(skip_white <* string stop)
         ~by:(skip_white *> string sep *> skip_white)
         p

  let int =
    skip_white
    *> chars1_if ~descr:"integer" (fun c -> is_num c || char_equal c '-')
    >>= fun s ->
    try return (int_of_string s) with Failure _ -> fail "expected an int"

  let in_paren (p : 'a t) : 'a t =
    skip_white *> (char '(' *> skip_white *> p <* skip_white <* char ')')

  let in_parens_opt (p : 'a t) : 'a t =
    fix (fun self ->
        skip_white
        *> try_or (char '(')
             ~f:(fun _ -> skip_white *> self <* skip_white <* char ')')
             ~else_:p)

  let option p =
    skip_white
    *> try_or (string "Some")
         ~f:(fun _ -> skip_white *> p >|= fun x -> Some x)
         ~else_:(string "None" *> return None)

  let hexa_int =
    (exact "0x" <|> return "")
    *> ( chars1_if (function
           | '0' .. '9' | 'a' .. 'f' | 'A' .. 'F' -> true
           | _ -> false)
       >|= fun s ->
         let i = ref 0 in
         String.iter
           (fun c ->
             let n =
               match c with
               | '0' .. '9' -> Char.code c - Char.code '0'
               | 'a' .. 'f' -> Char.code c - Char.code 'a' + 10
               | 'A' .. 'F' -> Char.code c - Char.code 'A' + 10
               | _ -> assert false
             in
             i := (!i * 16) + n)
           s;
         !i )

  let prepend_str c s = String.make 1 c ^ s
  let word = map2 prepend_str (char_if is_alpha) (chars_if is_alpha_num)

  let bool =
    skip_white
    *> (string "true" *> return true <|> string "false" *> return false)

  let pair ?(start = "(") ?(stop = ")") ?(sep = ",") p1 p2 =
    skip_white *> string start *> skip_white *> p1 >>= fun x1 ->
    skip_white *> string sep *> skip_white *> p2 >>= fun x2 ->
    skip_white *> string stop *> return (x1, x2)

  let triple ?(start = "(") ?(stop = ")") ?(sep = ",") p1 p2 p3 =
    string start *> skip_white *> p1 >>= fun x1 ->
    skip_white *> string sep *> skip_white *> p2 >>= fun x2 ->
    skip_white *> string sep *> skip_white *> p3 >>= fun x3 ->
    string stop *> return (x1, x2, x3)
end

module Debug_ = struct
  let trace_fail name p =
    {
      run =
        (fun st ~ok ~err ->
          p.run st ~ok ~err:(fun e ->
              Printf.eprintf "trace %s: fail with %s\n%!" name
                (Error.to_string e);
              err e));
    }

  let trace_ ~both name ~print p =
    {
      run =
        (fun st ~ok ~err ->
          p.run st
            ~ok:(fun st x ->
              Printf.eprintf "trace %s: parsed %s\n%!" name (print x);
              ok st x)
            ~err:(fun e ->
              if both then
                Printf.eprintf "trace %s: fail with %s\n%!" name
                  (Error.to_string e);
              err e));
    }

  let trace_success name ~print p = trace_ ~both:false name ~print p
  let trace_success_or_fail name ~print p = trace_ ~both:true name ~print p
end
OCaml

Innovation. Community. Security.