package containers-thread

  1. Overview
  2. Docs

Source file CCPool.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

(* This file is free software, part of containers. See file "license" for more details. *)

(** {1 Thread Pool, and Futures} *)

type +'a state =
  | Done of 'a
  | Waiting
  | Failed of exn

module type PARAM = sig
  val max_size : int
  (** Maximum number of threads in the pool *)
end

exception Stopped

(*$inject
  module P = Make(struct let max_size = 30 end)
  module P2 = Make(struct let max_size = 15 end)
  module Fut = P.Fut
  module Fut2 = P2.Fut
*)

(** {2 Thread pool} *)
module Make(P : PARAM) = struct
  type job =
    | Job1 : ('a -> _) * 'a -> job
    | Job2 : ('a -> 'b -> _) * 'a * 'b -> job
    | Job3 : ('a -> 'b -> 'c -> _) * 'a * 'b * 'c -> job
    | Job4 : ('a -> 'b -> 'c -> 'd -> _) * 'a * 'b * 'c * 'd -> job

  type t = {
    mutable stop : bool;  (* indicate that threads should stop *)
    mutable exn_handler: (exn -> unit);
    mutex : Mutex.t;
    cond : Condition.t;
    jobs : job Queue.t;  (* waiting jobs *)
    mutable cur_size : int; (* total number of threads *)
    mutable cur_idle : int; (* number of idle threads *)
  } (** Dynamic, growable thread pool *)

  let nop_ _ = ()

  (* singleton pool *)
  let pool = {
    stop = false;
    exn_handler = nop_;
    cond = Condition.create();
    cur_size = 0;
    cur_idle = 0;
    jobs = Queue.create ();
    mutex = Mutex.create ();
  }

  let set_exn_handler f = pool.exn_handler <- f

  let with_lock_ t f =
    Mutex.lock t.mutex;
    try
      let x = f t in
      Mutex.unlock t.mutex;
      x
    with e ->
      Mutex.unlock t.mutex;
      raise e

  let incr_size_ p = p.cur_size <- p.cur_size + 1
  let decr_size_ p = p.cur_size <- p.cur_size - 1
  let incr_idle_ p = p.cur_idle <- p.cur_idle + 1
  let decr_idle_ p = p.cur_idle <- p.cur_idle - 1

  (* next thing a thread should do *)
  type command =
    | Process of job
    | Wait (* wait on condition *)
    | Die (* thread has no work to do *)

  (* thread: seek what to do next (including dying).
     Assumes the pool is locked. *)
  let get_next_ pool =
    (*Printf.printf "get_next (cur=%d, idle=%d, stop=%B)\n%!" pool.cur_size pool.cur_idle pool.stop;*)
    if pool.stop || (Queue.is_empty pool.jobs && pool.cur_size > 0) then (
      (* die: the thread would be idle otherwise  *)
      (*Printf.printf "time… to die (cur=%d, idle=%d, stop=%B)\n%!" pool.cur_size pool.cur_idle pool.stop;*)
      decr_size_ pool;
      Die
    ) else if Queue.is_empty pool.jobs then (
      Wait
    ) else (
      let job = Queue.pop pool.jobs in
      Process job
    )

  (* Thread: entry point. They seek jobs in the queue *)
  let rec serve pool =
    assert (pool.cur_size <= P.max_size);
    assert (pool.cur_size > 0);
    let cmd = with_lock_ pool get_next_ in
    run_cmd cmd

  (* run a command *)
  and run_cmd = function
    | Die -> ()
    | Wait ->
      with_lock_ pool
        (fun p ->
           incr_idle_ pool;
           Condition.wait p.cond p.mutex;
           decr_idle_ pool);
      serve pool
    | Process (Job1 (f, x)) ->
      begin try ignore (f x) with e -> pool.exn_handler e end; serve pool
    | Process (Job2 (f, x, y)) ->
      begin try ignore (f x y) with e -> pool.exn_handler e end; serve pool
    | Process (Job3 (f, x, y, z)) ->
      begin try ignore (f x y z) with e -> pool.exn_handler e end; serve pool
    | Process (Job4 (f, x, y, z, w)) ->
      begin try ignore (f x y z w) with e -> pool.exn_handler e end; serve pool

  (* create a new worker thread *)
  let launch_worker_ pool =
    with_lock_ pool
      (fun pool ->
         incr_size_ pool;
         ignore (Thread.create serve pool))

  (* heuristic criterion for starting a new thread. *)
  let can_start_thread_ p = p.cur_size < P.max_size

  let run_job job =
    (* acquire lock and push job in queue, or start thread directly
       if the queue is empty *)
    with_lock_ pool
      (fun pool ->
         if pool.stop then raise Stopped;
         if Queue.is_empty pool.jobs && can_start_thread_ pool && pool.cur_idle = 0 then (
           (* create the thread now, on [job], as it will not break order of
              jobs. We do not want to wait for the busy threads to do our task
              if we are allowed to spawn a new thread. *)
           incr_size_ pool;
           ignore (Thread.create run_cmd (Process job))
         ) else (
           (* cannot start thread, push and wait for some worker to pick it up *)
           Queue.push job pool.jobs;
           Condition.broadcast pool.cond; (* wake up some worker, if any *)
           (* might want to process in the background, if all threads are busy *)
           if not (Queue.is_empty pool.jobs)
           && pool.cur_idle = 0
           && can_start_thread_ pool then (
             launch_worker_ pool;
           )
         ))

  (* run the function on the argument in the given pool *)
  let run1 f x = run_job (Job1 (f, x))

  let run f = run1 f ()

  let run2 f x y = run_job (Job2 (f, x, y))

  let run3 f x y z = run_job (Job3 (f, x, y, z))

  let run4 f x y z w = run_job (Job4 (f, x, y, z, w))

  let active () = not pool.stop

  (* kill threads in the pool *)
  let stop () =
    with_lock_ pool
      (fun p ->
         p.stop <- true;
         Queue.clear p.jobs)

  (* stop threads if pool is GC'd *)
  let () = Gc.finalise (fun _ -> stop ()) pool

  (** {6 Futures} *)
  module Fut = struct
    type 'a handler = 'a state -> unit

    (** A proper future, with a delayed computation *)
    type 'a cell = {
      mutable state : 'a state;
      mutable handlers : 'a handler list;   (* handlers *)
      f_mutex : Mutex.t;
      condition : Condition.t;
    }

    (** A future value of type 'a *)
    type 'a t =
      | Return of 'a
      | FailNow of exn
      | Run of 'a cell

    type 'a future = 'a t

    (** {2 Basic Future functions} *)

    let return x = Return x

    let fail e = FailNow e

    let create_cell () = {
      state = Waiting;
      handlers = [];
      f_mutex = Mutex.create ();
      condition = Condition.create ();
    }

    let with_lock_ cell f =
      Mutex.lock cell.f_mutex;
      try
        let x = f cell in
        Mutex.unlock cell.f_mutex;
        x
      with e ->
        Mutex.unlock cell.f_mutex;
        raise e

    (* TODO: exception handler for handler errors *)

    let set_done_ cell x =
      with_lock_ cell
        (fun cell -> match cell.state with
           | Waiting ->  (* set state and signal *)
             cell.state <- Done x;
             Condition.broadcast cell.condition;
             List.iter
               (fun f -> try f cell.state with e -> pool.exn_handler e)
               cell.handlers
           | _ -> assert false)

    let set_fail_ cell e =
      with_lock_ cell
        (fun cell -> match cell.state with
           | Waiting ->
             cell.state <- Failed e;
             Condition.broadcast cell.condition;
             List.iter
               (fun f -> try f cell.state with e -> pool.exn_handler e)
               cell.handlers
           | _ -> assert false)

    (* calls [f x], and put result or exception in [cell] *)
    let run_and_set1 cell f x =
      try
        let y = f x in
        set_done_ cell y
      with e ->
        set_fail_ cell e

    let run_and_set2 cell f x y =
      try
        let z = f x y in
        set_done_ cell z
      with e ->
        set_fail_ cell e

    let make1 f x =
      let cell = create_cell() in
      run3 run_and_set1 cell f x;
      Run cell

    let make f = make1 f ()

    (*$R
      List.iter
        (fun n ->
          let l = Iter.(1 -- n) |> Iter.to_list in
          let l = List.rev_map (fun i ->
            Fut.make
              (fun () ->
                Thread.delay 0.01;
                1
            )) l in
          let l' = List.map Fut.get l in
          OUnit.assert_equal n (List.fold_left (+) 0 l');
        )
        [ 10; 300; ]
    *)

    (*$R
      List.iter
        (fun n ->
          let l = Iter.(1 -- n) |> Iter.to_list in
          let l = List.rev_map (fun i ->
            Fut2.make
              (fun () ->
                Thread.delay 0.01;
                1
            )) l in
          let l' = List.map Fut2.get l in
          OUnit.assert_equal n (List.fold_left (+) 0 l');
        )
        [ 10; 300; ]
    *)


    let make2 f x y =
      let cell = create_cell() in
      run4 run_and_set2 cell f x y;
      Run cell

    let get = function
      | Return x -> x
      | FailNow e -> raise e
      | Run cell ->
        let rec get_ cell = match cell.state with
          | Waiting ->
            Condition.wait cell.condition cell.f_mutex; (* wait *)
            get_ cell
          | Done x -> x
          | Failed e -> raise e
        in
        with_lock_ cell get_

    (* access the result without locking *)
    let get_nolock_ = function
      | Return x
      | Run {state=Done x; _} -> x
      | FailNow _
      | Run {state=(Failed _ | Waiting); _} -> assert false

    let state = function
      | Return x -> Done x
      | FailNow e -> Failed e
      | Run cell ->
        with_lock_ cell (fun cell -> cell.state)

    let is_not_waiting = function
      | Waiting -> false
      | Failed _ | Done _ -> true

    let is_done = function
      | Return _
      | FailNow _ -> true
      | Run cell ->
        with_lock_ cell (fun c -> is_not_waiting c.state)

    (** {2 Combinators *)

    let add_handler_ cell f =
      with_lock_ cell
        (fun cell -> match cell.state with
           | Waiting -> cell.handlers <- f :: cell.handlers
           | Done _ | Failed _ -> f cell.state)

    let on_finish fut k = match fut with
      | Return x -> k (Done x)
      | FailNow e -> k (Failed e)
      | Run cell -> add_handler_ cell k

    let on_success fut k =
      on_finish fut
        (function
          | Done x -> k x
          | _ -> ())

    let on_failure fut k =
      on_finish fut
        (function
          | Failed e -> k e
          | _ -> ())

    let map_cell_ ~async f cell ~into:cell' =
      add_handler_ cell
        (function
          | Done x ->
            if async
            then run3 run_and_set1 cell' f x
            else run_and_set1 cell' f x
          | Failed e -> set_fail_ cell' e
          | Waiting -> assert false);
      Run cell'

    let map_ ~async f fut = match fut with
      | Return x ->
        if async
        then make1 f x
        else Return (f x)
      | FailNow e -> FailNow e
      | Run cell -> map_cell_ ~async f cell ~into:(create_cell())

    let map f fut = map_ ~async:false f fut

    let map_async f fut = map_ ~async:true f fut

    let app_ ~async f x = match f, x with
      | Return f, Return x ->
        if async
        then make1 f x
        else Return (f x)
      | FailNow e, _
      | _, FailNow e -> FailNow e
      | Return f, Run x ->
        map_cell_ ~async (fun x -> f x) x ~into:(create_cell())
      | Run f, Return x ->
        map_cell_ ~async (fun f -> f x) f ~into:(create_cell())
      | Run f, Run x ->
        let cell' = create_cell () in
        add_handler_ f
          (function
            | Done f -> ignore (map_cell_ ~async f x ~into:cell')
            | Failed e -> set_fail_ cell' e
            | Waiting -> assert false);
        Run cell'

    let app f x = app_ ~async:false f x

    let app_async f x = app_ ~async:true f x

    (*$R
      let a = Fut.make (fun () -> 1) in
      let b = Fut.return 42 in
      let c = Fut.monoid_product CCPair.make a b in
      OUnit.assert_equal (1,42) (Fut.get c)
    *)

    (*$R
      let a = Fut.make (fun () -> 1) in
      let b = Fut.make (fun () -> 42) in
      let c = Fut.monoid_product CCPair.make a b in
      OUnit.assert_equal (1,42) (Fut.get c)
    *)

    (*$R
      let a = Fut.make (fun () -> 1) in
      let b = Fut.map succ @@ Fut.make (fun () -> 41) in
      let c = Fut.monoid_product CCPair.make a b in
      OUnit.assert_equal (1,42) (Fut.get c)
    *)

    let monoid_product f x y = match x, y with
      | Return x, Return y -> Return (f x y)
      | FailNow e, _
      | _, FailNow e -> FailNow e
      | Return x, Run y ->
        map_cell_ ~async:false (fun y -> f x y) y ~into:(create_cell())
      | Run x, Return y ->
        map_cell_ ~async:false (fun x -> f x y) x ~into:(create_cell())
      | Run x, Run y ->
        let cell' = create_cell () in
        add_handler_ x
          (function
            | Done x -> ignore (map_cell_ ~async:false (fun y->f x y) y ~into:cell')
            | Failed e -> set_fail_ cell' e
            | Waiting -> assert false);
        Run cell'

    let flat_map f fut = match fut with
      | Return x -> f x
      | FailNow e -> FailNow e
      | Run cell ->
        let cell' = create_cell() in
        add_handler_ cell
          (function
            | Done x ->
              let fut' = f x in
              on_finish fut'
                (function
                  | Done y -> set_done_ cell' y
                  | Failed e -> set_fail_ cell' e
                  | Waiting -> assert false
                )
            | Failed e -> set_fail_ cell' e
            | Waiting -> assert false
          );
        Run cell'

    let and_then fut f = flat_map (fun _ -> f ()) fut

    type _ array_or_list =
      | A_ : 'a array -> 'a array_or_list
      | L_ : 'a list -> 'a array_or_list

    let iter_aol
      : type a. a array_or_list -> (a -> unit) -> unit
      = fun aol f -> match aol with
        | A_ a -> Array.iter f a
        | L_ l -> List.iter f l

    (* [sequence_ l f] returns a future that waits for every element of [l]
       to return of fail, and call [f ()] to obtain the result (as a closure)
       in case every element succeeded (otherwise a failure is
       returned automatically) *)
    let sequence_
      : type a res. a t array_or_list -> (unit -> res) -> res t
      = fun aol f ->
        let n = match aol with
          | A_ a -> Array.length a
          | L_ l -> List.length l
        in
        assert (n>0);
        let cell = create_cell() in
        let n_err = CCLock.create 0 in (* number of failed threads *)
        let n_ok = CCLock.create 0 in (* number of succeeding threads *)
        iter_aol aol
          (fun fut ->
             on_finish fut
               (function
                 | Failed e ->
                   let x = CCLock.incr_then_get n_err in
                   (* if first failure, then seal [cell]'s fate now *)
                   if x=1 then set_fail_ cell e
                 | Done _ ->
                   let x = CCLock.incr_then_get n_ok in
                   (* if [n] successes, then [cell] succeeds. Otherwise, some
                      job has not finished or some job has failed. *)
                   if x = n then (
                     let res = f () in
                     set_done_ cell res
                   )
                 | Waiting -> assert false));
        Run cell

    (* map an array of futures to a future array *)
    let sequence_a a = match a with
      | [||] -> return [||]
      | _ ->
        sequence_ (A_ a)
          (fun () -> Array.map get_nolock_ a)

    let map_a f a = sequence_a (Array.map f a)

    let sequence_l l = match l with
      | [] -> return []
      | _ :: _ ->
        let l = List.rev l in
        sequence_ (L_ l) (fun () -> List.rev_map get_nolock_ l)

    (* reverse twice *)
    let map_l f l =
      match l with
      | [] -> return []
      | _ ->
        let l = List.rev_map f l in
        sequence_ (L_ l)
          (fun () -> List.rev_map get_nolock_ l)

    (*$=
      [2;3] (Fut.get @@ Fut.map_l (fun x -> Fut.return (x+1)) [1;2])
      [] (Fut.get @@ Fut.map_l (fun x -> Fut.return (x+1)) [])
    *)

    (*$R
      let l = CCList.(1 -- 50) in
      let l' = l
        |> List.map
          (fun x -> Fut.make (fun () -> Thread.delay 0.1; x*10))
        |> Fut.sequence_l
        |> Fut.map (List.fold_left (+) 0)
      in
      let expected = List.fold_left (fun acc x -> acc + 10 * x) 0 l in
      OUnit.assert_equal expected (Fut.get l')
    *)

    (*$R
      let l = CCList.(1 -- 100_000) in
      let l' = l
        |> CCList.map
          (fun x -> Fut.make (fun () -> 1))
        |> Fut.sequence_l
        |> Fut.map (List.fold_left (+) 0)
      in
      let expected = 100_000 in
      OUnit.assert_equal expected (Fut.get l')
    *)

    (*$R
      let l = CCList.(1 -- 50) in
      let l' = l
        |> List.map
          (fun x -> Fut.make (fun () -> Thread.delay 0.1; if x = 5 then raise Exit; x))
        |> Fut.sequence_l
        |> Fut.map (List.fold_left (+) 0)
      in
      OUnit.assert_raises Exit (fun () -> Fut.get l')
    *)

    (*$R
      let rec fib x = if x<2 then 1 else fib (x-1)+fib(x-2) in
      let l =
        CCList.(1--10_000)
        |> List.rev_map
          (fun x-> Fut.make (fun () -> Thread.yield(); fib (x mod 20)))
        |> Fut.(map_l (fun x->x>|= fun x->x+1))
      in
      OUnit.assert_bool "not done" (Fut.state l = Waiting);
      let l' = Fut.get l in
      OUnit.assert_equal 10_000 (List.length l');
    *)

    (*$R
      let l = CCList.(1 -- 50) in
      let l' = l
        |> List.map
          (fun x -> Fut2.make (fun () -> Thread.delay 0.1; x*10))
        |> Fut2.sequence_l
        |> Fut2.map (List.fold_left (+) 0)
      in
      let expected = List.fold_left (fun acc x -> acc + 10 * x) 0 l in
      OUnit.assert_equal expected (Fut2.get l')
    *)

    (*$R
      let l = CCList.(1 -- 50) in
      let l' = l
        |> List.map
          (fun x -> Fut2.make (fun () -> Thread.delay 0.1; if x = 5 then raise Exit; x))
        |> Fut2.sequence_l
        |> Fut2.map (List.fold_left (+) 0)
      in
      OUnit.assert_raises Exit (fun () -> Fut2.get l')
    *)

    (*$R
      let rec fib x = if x<2 then 1 else fib (x-1)+fib(x-2) in
      let l =
        CCList.(1--10_000)
        |> List.rev_map
          (fun x-> Fut2.make (fun () -> Thread.yield(); fib (x mod 20)))
        |> Fut2.(map_l (fun x->x>|= fun x->x+1))
      in
      OUnit.assert_bool "not done" (Fut2.state l = Waiting);
      let l' = Fut2.get l in
      OUnit.assert_equal 10_000 (List.length l');
    *)


    let choose_
      : type a. a t array_or_list -> a t
      = fun aol ->
        let cell = create_cell() in
        let is_done = CCLock.create false in
        iter_aol aol
          (fun fut ->
             on_finish fut
               (fun res -> match res with
                  | Waiting -> assert false
                  | Done x ->
                    let was_done = CCLock.get_then_clear is_done in
                    if not was_done then set_done_ cell x
                  | Failed e ->
                    let was_done = CCLock.get_then_clear is_done in
                    if not was_done then set_fail_ cell e));
        Run cell

    let choose_a a = choose_ (A_ a)

    let choose_l l = choose_ (L_ l)

    let sleep time = make1 Thread.delay time

    (*$R
      let start = Unix.gettimeofday () in
      let pause = 0.2 and n = 10 in
      let l = CCList.(1 -- n)
        |> List.map (fun _ -> Fut.make (fun () -> Thread.delay pause))
      in
      List.iter Fut.get l;
      let stop = Unix.gettimeofday () in
      OUnit.assert_bool "some_parallelism" (stop -. start < float_of_int n *. pause);
    *)

    (*$R
      let start = Unix.gettimeofday () in
      let pause = 0.2 and n = 10 in
      let l = CCList.(1 -- n)
        |> List.map (fun _ -> Fut2.make (fun () -> Thread.delay pause))
      in
      List.iter Fut2.get l;
      let stop = Unix.gettimeofday () in
      OUnit.assert_bool "some_parallelism" (stop -. start < float_of_int n *. pause);
    *)

    module Infix = struct
      let (>>=) x f = flat_map f x
      let (>>) a f = and_then a f
      let (>|=) a f = map f a
      let (<*>) = app


    include CCShimsMkLet_.Make(struct
        type nonrec 'a t = 'a t
        let (>>=) = (>>=)
        let (>|=) = (>|=)
        let monoid_product a1 a2 = monoid_product (fun x y->x,y) a1 a2
      end)
    end

    include Infix
  end
end
OCaml

Innovation. Community. Security.