Typical use case: one wants to memoize a function f : 'a -> 'b. Code sample:
let f x =
print_endline "call f";
x + 1;;
let f' = with_cache (lru 256) f;;
f' 0;; (* prints *)
f' 1;; (* prints *)
f' 0;; (* doesn't print, returns cached value *)
with_cache c f behaves like f, but caches calls to f in the cache c. It always returns the same value as f x, if f x returns, or raise the same exception. However, f may not be called if x is in the cache.
with_cache_rec c f is a function that first, applies f to some f' = fix f, such that recursive calls to f' are cached in c. It is similar to with_cache but with a function that takes as first argument its own recursive version. Example (memoized Fibonacci function):
let fib = with_cache_rec (lru 256)
(fun fib' n -> match n with
| 1 | 2 -> 1
| _ -> fib' (n-1) + fib' (n-2)
);;
fib 70;;
Linear cache with the given size. It stores key/value pairs in an array and does linear search at every call, so it should only be used with small size.
Replacing cache of the given size. Equality and hash functions can be parametrized. It's a hash table that handles collisions by replacing the old value with the new (so a cache entry is evicted when another entry with the same hash (modulo size) is added). Never grows wider than the given size.