package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.10.0.tar.gz
md5=5abd76e8c51a47670645e91b21b57fc5
sha512=9c6fbe50c0b5a60566e877eeddadca0a339e2ce35deb5c1beceb03bc40eb6af2d519313e71859d88645b53fad591d4fa5288c633b185c9d765603da0f5b7dd7b
doc/src/catala.shared_ast/interpreter.ml.html
Source file interpreter.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr>, Emile Rolley <emile.rolley@tuta.io>, Alain Delaët <alain.delaet--tixeuil@inria.Fr>, Louis Gesbert <louis.gesbert@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** Reference interpreter for the default calculus *) open Catala_utils open Definitions open Op module Runtime = Runtime_ocaml.Runtime (** {1 Helpers} *) let is_empty_error : type a. (a, 'm) gexpr -> bool = fun e -> match Mark.remove e with EEmpty -> true | _ -> false (* TODO: we should provide a generic way to print logs, that work across the different backends: python, ocaml, javascript, and interpreter *) let indent_str = ref "" (** {1 Evaluation} *) let print_log lang entry infos pos e = if Global.options.trace then match entry with | VarDef _ -> Message.log "%s%a %a: @{<green>%s@}" !indent_str Print.log_entry entry Print.uid_list infos (Message.unformat (fun ppf -> (if Global.options.debug then Print.expr ~debug:true () else Print.UserFacing.expr lang) ppf e)) | PosRecordIfTrueBool -> ( match pos <> Pos.no_pos, Mark.remove e with | true, ELit (LBool true) -> Message.log "%s@[<v>%a@{<green>Definition applied@}:@,%a@]" !indent_str Print.log_entry entry Pos.format_loc_text pos | _ -> ()) | BeginCall -> Message.log "%s%a %a" !indent_str Print.log_entry entry Print.uid_list infos; indent_str := !indent_str ^ " " | EndCall -> indent_str := String.sub !indent_str 0 (String.length !indent_str - 2); Message.log "%s%a %a" !indent_str Print.log_entry entry Print.uid_list infos (* Todo: this should be handled early when resolving overloads. Here we have proper structural equality, but the OCaml backend for example uses the builtin equality function instead of this. *) let handle_eq pos evaluate_operator m lang e1 e2 = let eq_eval = evaluate_operator (Eq, pos) m lang in let open Runtime.Oper in match e1, e2 with | ELit LUnit, ELit LUnit -> true | ELit (LBool b1), ELit (LBool b2) -> not (o_xor b1 b2) | ELit (LInt x1), ELit (LInt x2) -> o_eq_int_int x1 x2 | ELit (LRat x1), ELit (LRat x2) -> o_eq_rat_rat x1 x2 | ELit (LMoney x1), ELit (LMoney x2) -> o_eq_mon_mon x1 x2 | ELit (LDuration x1), ELit (LDuration x2) -> o_eq_dur_dur (Expr.pos_to_runtime (Expr.mark_pos m)) x1 x2 | ELit (LDate x1), ELit (LDate x2) -> o_eq_dat_dat x1 x2 | EArray es1, EArray es2 -> ( try List.for_all2 (fun e1 e2 -> match Mark.remove (eq_eval [e1; e2]) with | ELit (LBool b) -> b | _ -> assert false (* should not happen *)) es1 es2 with Invalid_argument _ -> false) | EStruct { fields = es1; name = s1 }, EStruct { fields = es2; name = s2 } -> StructName.equal s1 s2 && StructField.Map.equal (fun e1 e2 -> match Mark.remove (eq_eval [e1; e2]) with | ELit (LBool b) -> b | _ -> assert false (* should not happen *)) es1 es2 | ( EInj { e = e1; cons = i1; name = en1 }, EInj { e = e2; cons = i2; name = en2 } ) -> ( try EnumName.equal en1 en2 && EnumConstructor.equal i1 i2 && match Mark.remove (eq_eval [e1; e2]) with | ELit (LBool b) -> b | _ -> assert false (* should not happen *) with Invalid_argument _ -> false) | _, _ -> false (* comparing anything else return false *) (* Call-by-value: the arguments are expected to be already evaluated here *) let rec evaluate_operator evaluate_expr ((op, opos) : < overloaded : no ; .. > operator Mark.pos) m lang args = let pos = Expr.mark_pos m in let rpos () = Expr.pos_to_runtime opos in let div_pos () = (* Division by 0 errors point to their 2nd operand *) Expr.pos_to_runtime @@ match args with _ :: denom :: _ -> Expr.pos denom | _ -> opos in let err () = Message.error ~extra_pos: ([ ( Format.asprintf "Operator (value %a):" (Print.operator ~debug:true) op, opos ); ] @ List.mapi (fun i arg -> ( Format.asprintf "Argument n°%d, value %a" (i + 1) (Print.UserFacing.expr lang) arg, Expr.pos arg )) args) "Operator %a applied to the wrong@ arguments@ (should not happen if the \ term was well-typed)" (Print.operator ~debug:true) op in let open Runtime.Oper in Mark.add m @@ match op, args with | Length, [(EArray es, _)] -> ELit (LInt (Runtime.integer_of_int (List.length es))) | Log (entry, infos), [e'] -> print_log lang entry infos pos e'; Mark.remove e' | (FromClosureEnv | ToClosureEnv), [e'] -> (* [FromClosureEnv] and [ToClosureEnv] are just there to bypass the need for existential types when typing code after closure conversion. There are effectively no-ops. *) Mark.remove e' | (ToClosureEnv | FromClosureEnv), _ -> err () | Eq, [(e1, _); (e2, _)] -> ELit (LBool (handle_eq opos (evaluate_operator evaluate_expr) m lang e1 e2)) | Map, [f; (EArray es, _)] -> EArray (List.map (fun e' -> evaluate_expr (Mark.copy e' (EApp { f; args = [e']; tys = [Expr.maybe_ty (Mark.get e')] }))) es) | Map2, [f; (EArray es1, _); (EArray es2, _)] -> EArray (List.map2 (fun e1 e2 -> evaluate_expr (Mark.add m (EApp { f; args = [e1; e2]; tys = [ Expr.maybe_ty (Mark.get e1); Expr.maybe_ty (Mark.get e2); ]; }))) es1 es2) | Reduce, [_; default; (EArray [], _)] -> Mark.remove default | Reduce, [f; _; (EArray (x0 :: xn), _)] -> Mark.remove (List.fold_left (fun acc x -> evaluate_expr (Mark.copy f (EApp { f; args = [acc; x]; tys = [ Expr.maybe_ty (Mark.get acc); Expr.maybe_ty (Mark.get x); ]; }))) x0 xn) | Concat, [(EArray es1, _); (EArray es2, _)] -> EArray (es1 @ es2) | Filter, [f; (EArray es, _)] -> EArray (List.filter (fun e' -> match evaluate_expr (Mark.copy e' (EApp { f; args = [e']; tys = [Expr.maybe_ty (Mark.get e')] })) with | ELit (LBool b), _ -> b | _ -> Message.error ~pos:(Expr.pos (List.nth args 0)) "%a" Format.pp_print_text "This predicate evaluated to something else than a boolean \ (should not happen if the term was well-typed)") es) | Fold, [f; init; (EArray es, _)] -> Mark.remove (List.fold_left (fun acc e' -> evaluate_expr (Mark.copy e' (EApp { f; args = [acc; e']; tys = [ Expr.maybe_ty (Mark.get acc); Expr.maybe_ty (Mark.get e'); ]; }))) init es) | (Length | Log _ | Eq | Map | Map2 | Concat | Filter | Fold | Reduce), _ -> err () | Not, [(ELit (LBool b), _)] -> ELit (LBool (o_not b)) | GetDay, [(ELit (LDate d), _)] -> ELit (LInt (o_getDay d)) | GetMonth, [(ELit (LDate d), _)] -> ELit (LInt (o_getMonth d)) | GetYear, [(ELit (LDate d), _)] -> ELit (LInt (o_getYear d)) | FirstDayOfMonth, [(ELit (LDate d), _)] -> ELit (LDate (o_firstDayOfMonth d)) | LastDayOfMonth, [(ELit (LDate d), _)] -> ELit (LDate (o_lastDayOfMonth d)) | And, [(ELit (LBool b1), _); (ELit (LBool b2), _)] -> ELit (LBool (o_and b1 b2)) | Or, [(ELit (LBool b1), _); (ELit (LBool b2), _)] -> ELit (LBool (o_or b1 b2)) | Xor, [(ELit (LBool b1), _); (ELit (LBool b2), _)] -> ELit (LBool (o_xor b1 b2)) | ( ( Not | GetDay | GetMonth | GetYear | FirstDayOfMonth | LastDayOfMonth | And | Or | Xor ), _ ) -> err () | Minus_int, [(ELit (LInt x), _)] -> ELit (LInt (o_minus_int x)) | Minus_rat, [(ELit (LRat x), _)] -> ELit (LRat (o_minus_rat x)) | Minus_mon, [(ELit (LMoney x), _)] -> ELit (LMoney (o_minus_mon x)) | Minus_dur, [(ELit (LDuration x), _)] -> ELit (LDuration (o_minus_dur x)) | ToRat_int, [(ELit (LInt i), _)] -> ELit (LRat (o_torat_int i)) | ToRat_mon, [(ELit (LMoney i), _)] -> ELit (LRat (o_torat_mon i)) | ToMoney_rat, [(ELit (LRat i), _)] -> ELit (LMoney (o_tomoney_rat i)) | Round_mon, [(ELit (LMoney m), _)] -> ELit (LMoney (o_round_mon m)) | Round_rat, [(ELit (LRat m), _)] -> ELit (LRat (o_round_rat m)) | Add_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] -> ELit (LInt (o_add_int_int x y)) | Add_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] -> ELit (LRat (o_add_rat_rat x y)) | Add_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] -> ELit (LMoney (o_add_mon_mon x y)) | Add_dat_dur r, [(ELit (LDate x), _); (ELit (LDuration y), _)] -> ELit (LDate (o_add_dat_dur r x y)) | Add_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] -> ELit (LDuration (o_add_dur_dur x y)) | Sub_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] -> ELit (LInt (o_sub_int_int x y)) | Sub_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] -> ELit (LRat (o_sub_rat_rat x y)) | Sub_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] -> ELit (LMoney (o_sub_mon_mon x y)) | Sub_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] -> ELit (LDuration (o_sub_dat_dat x y)) | Sub_dat_dur, [(ELit (LDate x), _); (ELit (LDuration y), _)] -> ELit (LDate (o_sub_dat_dur x y)) | Sub_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] -> ELit (LDuration (o_sub_dur_dur x y)) | Mult_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] -> ELit (LInt (o_mult_int_int x y)) | Mult_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] -> ELit (LRat (o_mult_rat_rat x y)) | Mult_mon_rat, [(ELit (LMoney x), _); (ELit (LRat y), _)] -> ELit (LMoney (o_mult_mon_rat x y)) | Mult_dur_int, [(ELit (LDuration x), _); (ELit (LInt y), _)] -> ELit (LDuration (o_mult_dur_int x y)) | Div_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] -> ELit (LRat (o_div_int_int (div_pos ()) x y)) | Div_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] -> ELit (LRat (o_div_rat_rat (div_pos ()) x y)) | Div_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] -> ELit (LRat (o_div_mon_mon (div_pos ()) x y)) | Div_mon_rat, [(ELit (LMoney x), _); (ELit (LRat y), _)] -> ELit (LMoney (o_div_mon_rat (div_pos ()) x y)) | Div_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] -> ELit (LRat (o_div_dur_dur (div_pos ()) x y)) | Lt_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] -> ELit (LBool (o_lt_int_int x y)) | Lt_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] -> ELit (LBool (o_lt_rat_rat x y)) | Lt_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] -> ELit (LBool (o_lt_mon_mon x y)) | Lt_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] -> ELit (LBool (o_lt_dat_dat x y)) | Lt_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] -> ELit (LBool (o_lt_dur_dur (rpos ()) x y)) | Lte_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] -> ELit (LBool (o_lte_int_int x y)) | Lte_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] -> ELit (LBool (o_lte_rat_rat x y)) | Lte_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] -> ELit (LBool (o_lte_mon_mon x y)) | Lte_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] -> ELit (LBool (o_lte_dat_dat x y)) | Lte_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] -> ELit (LBool (o_lte_dur_dur (rpos ()) x y)) | Gt_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] -> ELit (LBool (o_gt_int_int x y)) | Gt_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] -> ELit (LBool (o_gt_rat_rat x y)) | Gt_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] -> ELit (LBool (o_gt_mon_mon x y)) | Gt_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] -> ELit (LBool (o_gt_dat_dat x y)) | Gt_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] -> ELit (LBool (o_gt_dur_dur (rpos ()) x y)) | Gte_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] -> ELit (LBool (o_gte_int_int x y)) | Gte_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] -> ELit (LBool (o_gte_rat_rat x y)) | Gte_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] -> ELit (LBool (o_gte_mon_mon x y)) | Gte_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] -> ELit (LBool (o_gte_dat_dat x y)) | Gte_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] -> ELit (LBool (o_gte_dur_dur (rpos ()) x y)) | Eq_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] -> ELit (LBool (o_eq_int_int x y)) | Eq_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] -> ELit (LBool (o_eq_rat_rat x y)) | Eq_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] -> ELit (LBool (o_eq_mon_mon x y)) | Eq_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] -> ELit (LBool (o_eq_dat_dat x y)) | Eq_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] -> ELit (LBool (o_eq_dur_dur (rpos ()) x y)) | HandleDefault, [(EArray excepts, _); just; cons] -> ( (* This case is for lcalc with exceptions: we rely OCaml exception handling here *) match List.filter_map (fun e -> try Some (evaluate_expr (Expr.unthunk_term_nobox e)) with Runtime.Empty -> None) excepts with | [] -> ( let just = evaluate_expr (Expr.unthunk_term_nobox just) in match Mark.remove just with | ELit (LBool true) -> Mark.remove (evaluate_expr (Expr.unthunk_term_nobox cons)) | ELit (LBool false) -> raise Runtime.Empty | _ -> Message.error ~pos "Default justification has not been reduced to a boolean at@ \ evaluation@ (should not happen if the term was well-typed@\n\ %a@." Expr.format just) | [e] -> Mark.remove e | es -> raise Runtime.( Error (Conflict, List.map (fun e -> Expr.pos_to_runtime (Expr.pos e)) es)) ) | HandleDefaultOpt, [(EArray exps, _); justification; conclusion] -> ( let valid_exceptions = ListLabels.filter exps ~f:(function | EInj { name; cons; _ }, _ when EnumName.equal name Expr.option_enum -> EnumConstructor.equal cons Expr.some_constr | _ -> err ()) in match valid_exceptions with | [] -> ( let e = evaluate_expr (Expr.unthunk_term_nobox justification) in match Mark.remove e with | ELit (LBool true) -> Mark.remove (evaluate_expr (Expr.unthunk_term_nobox conclusion)) | ELit (LBool false) -> EInj { name = Expr.option_enum; cons = Expr.none_constr; e = Mark.copy justification (ELit LUnit); } | EInj { name; cons; e } when EnumName.equal name Expr.option_enum && EnumConstructor.equal cons Expr.none_constr -> EInj { name = Expr.option_enum; cons = Expr.none_constr; e = Mark.copy e (ELit LUnit); } | _ -> err ()) | [((EInj { cons; name; _ } as e), _)] when EnumName.equal name Expr.option_enum && EnumConstructor.equal cons Expr.some_constr -> e | [_] -> err () | excs -> raise Runtime.( Error (Conflict, List.map Expr.(fun e -> pos_to_runtime (pos e)) excs)) ) | ( ( Minus_int | Minus_rat | Minus_mon | Minus_dur | ToRat_int | ToRat_mon | ToMoney_rat | Round_rat | Round_mon | Add_int_int | Add_rat_rat | Add_mon_mon | Add_dat_dur _ | Add_dur_dur | Sub_int_int | Sub_rat_rat | Sub_mon_mon | Sub_dat_dat | Sub_dat_dur | Sub_dur_dur | Mult_int_int | Mult_rat_rat | Mult_mon_rat | Mult_dur_int | Div_int_int | Div_rat_rat | Div_mon_mon | Div_mon_rat | Div_dur_dur | Lt_int_int | Lt_rat_rat | Lt_mon_mon | Lt_dat_dat | Lt_dur_dur | Lte_int_int | Lte_rat_rat | Lte_mon_mon | Lte_dat_dat | Lte_dur_dur | Gt_int_int | Gt_rat_rat | Gt_mon_mon | Gt_dat_dat | Gt_dur_dur | Gte_int_int | Gte_rat_rat | Gte_mon_mon | Gte_dat_dat | Gte_dur_dur | Eq_int_int | Eq_rat_rat | Eq_mon_mon | Eq_dat_dat | Eq_dur_dur | HandleDefault | HandleDefaultOpt ), _ ) -> err () (* /S\ dark magic here. This relies both on internals of [Lcalc.to_ocaml] *and* of the OCaml runtime *) let rec runtime_to_val : type d e. (decl_ctx -> ((d, e, _) interpr_kind, 'm) gexpr -> ((d, e, _) interpr_kind, 'm) gexpr) -> decl_ctx -> 'm mark -> typ -> Obj.t -> (((d, e, yes) interpr_kind as 'a), 'm) gexpr = fun eval_expr ctx m ty o -> let m = Expr.map_ty (fun _ -> ty) m in match Mark.remove ty with | TLit TBool -> ELit (LBool (Obj.obj o)), m | TLit TUnit -> ELit LUnit, m | TLit TInt -> ELit (LInt (Obj.obj o)), m | TLit TRat -> ELit (LRat (Obj.obj o)), m | TLit TMoney -> ELit (LMoney (Obj.obj o)), m | TLit TDate -> ELit (LDate (Obj.obj o)), m | TLit TDuration -> ELit (LDuration (Obj.obj o)), m | TTuple ts -> ( ETuple (List.map2 (runtime_to_val eval_expr ctx m) ts (Array.to_list (Obj.obj o))), m ) | TStruct name -> StructName.Map.find name ctx.ctx_structs |> StructField.Map.to_seq |> Seq.map2 (fun o (fld, ty) -> fld, runtime_to_val eval_expr ctx m ty o) (Array.to_seq (Obj.obj o)) |> StructField.Map.of_seq |> fun fields -> EStruct { name; fields }, m | TEnum name -> (* we only use non-constant constructors of arity 1, which allows us to always use the tag directly (ordered as declared in the constr map), and the field 0 *) let cons_map = EnumName.Map.find name ctx.ctx_enums in let cons, ty = List.nth (EnumConstructor.Map.bindings cons_map) (Obj.tag o - Obj.first_non_constant_constructor_tag) in let e = runtime_to_val eval_expr ctx m ty (Obj.field o 0) in EInj { name; cons; e }, m | TOption ty -> ( match Obj.tag o - Obj.first_non_constant_constructor_tag with | 0 -> let e = runtime_to_val eval_expr ctx m (TLit TUnit, Pos.no_pos) (Obj.field o 0) in EInj { name = Expr.option_enum; cons = Expr.none_constr; e }, m | 1 -> let e = runtime_to_val eval_expr ctx m ty (Obj.field o 0) in EInj { name = Expr.option_enum; cons = Expr.some_constr; e }, m | _ -> assert false) | TClosureEnv -> assert false | TArray ty -> ( EArray (List.map (runtime_to_val eval_expr ctx m ty) (Array.to_list (Obj.obj o))), m ) | TArrow (targs, tret) -> ECustom { obj = o; targs; tret }, m | TDefault ty -> runtime_to_val eval_expr ctx m ty o | TAny -> assert false and val_to_runtime : type d e. (decl_ctx -> ((d, e, _) interpr_kind, 'm) gexpr -> ((d, e, _) interpr_kind, 'm) gexpr) -> decl_ctx -> typ -> ((d, e, _) interpr_kind, 'm) gexpr -> Obj.t = fun eval_expr ctx ty v -> match Mark.remove ty, Mark.remove v with | _, EEmpty -> raise Runtime.Empty | TLit TBool, ELit (LBool b) -> Obj.repr b | TLit TUnit, ELit LUnit -> Obj.repr () | TLit TInt, ELit (LInt i) -> Obj.repr i | TLit TRat, ELit (LRat r) -> Obj.repr r | TLit TMoney, ELit (LMoney m) -> Obj.repr m | TLit TDate, ELit (LDate t) -> Obj.repr t | TLit TDuration, ELit (LDuration d) -> Obj.repr d | TTuple ts, ETuple es -> List.map2 (val_to_runtime eval_expr ctx) ts es |> Array.of_list |> Obj.repr | TStruct name1, EStruct { name; fields } -> assert (StructName.equal name name1); let fld_tys = StructName.Map.find name ctx.ctx_structs in Seq.map2 (fun (_, ty) (_, v) -> val_to_runtime eval_expr ctx ty v) (StructField.Map.to_seq fld_tys) (StructField.Map.to_seq fields) |> Array.of_seq |> Obj.repr | TEnum name1, EInj { name; cons; e } -> assert (EnumName.equal name name1); let cons_map = EnumName.Map.find name ctx.ctx_enums in let rec find_tag n = function | [] -> assert false | (c, ty) :: _ when EnumConstructor.equal c cons -> n, ty | _ :: r -> find_tag (n + 1) r in let tag, ty = find_tag Obj.first_non_constant_constructor_tag (EnumConstructor.Map.bindings cons_map) in let field = val_to_runtime eval_expr ctx ty e in let o = Obj.with_tag tag (Obj.repr (Some ())) in Obj.set_field o 0 field; o | TOption ty, EInj { name; cons; e } -> assert (EnumName.equal name Expr.option_enum); let tag, ty = (* None is before Some because the constructors have been defined in this order in [expr.ml], and the ident maps preserve definition ordering *) if EnumConstructor.equal cons Expr.none_constr then Obj.first_non_constant_constructor_tag, (TLit TUnit, Pos.no_pos) else if EnumConstructor.equal cons Expr.some_constr then Obj.first_non_constant_constructor_tag + 1, ty else assert false in let field = val_to_runtime eval_expr ctx ty e in let o = Obj.with_tag tag (Obj.repr (Some ())) in Obj.set_field o 0 field; o | TArray ty, EArray es -> Array.of_list (List.map (val_to_runtime eval_expr ctx ty) es) |> Obj.repr | TArrow (targs, tret), _ -> let m = Mark.get v in (* we want stg like [fun args -> val_to_runtime (eval_expr ctx (EApp (v, args)))] but in curried form *) let rec curry acc = function | [] -> let args = List.rev acc in let tys = List.map (fun a -> Expr.maybe_ty (Mark.get a)) args in val_to_runtime eval_expr ctx tret (eval_expr ctx (EApp { f = v; args; tys }, m)) | targ :: targs -> Obj.repr (fun x -> curry (runtime_to_val eval_expr ctx m targ x :: acc) targs) in curry [] targs | TDefault ty, _ -> val_to_runtime eval_expr ctx ty v | _ -> Message.error ~internal:true "Could not convert value of type %a@ to@ runtime:@ %a" (Print.typ ctx) ty Expr.format v let rec : type d e. decl_ctx -> Global.backend_lang -> ((d, e, yes) interpr_kind, 't) gexpr -> ((d, e, yes) interpr_kind, 't) gexpr = fun ctx lang e -> let m = Mark.get e in let pos = Expr.mark_pos m in match Mark.remove e with | EVar _ -> Message.error ~pos "%a" Format.pp_print_text "free variable found at evaluation (should not happen if term was \ well-typed)" | EExternal { name } -> let path = match Mark.remove name with | External_value td -> TopdefName.path td | External_scope s -> ScopeName.path s in let ty = try match Mark.remove name with | External_value name -> TopdefName.Map.find name ctx.ctx_topdefs | External_scope name -> let scope_info = ScopeName.Map.find name ctx.ctx_scopes in ( TArrow ( [TStruct scope_info.in_struct_name, pos], (TStruct scope_info.out_struct_name, pos) ), pos ) with TopdefName.Map.Not_found _ | ScopeName.Map.Not_found _ -> Message.error ~pos "Reference to %a@ could@ not@ be@ resolved" Print.external_ref name in let runtime_path = ( List.map ModuleName.to_string path, match Mark.remove name with | External_value name -> Mark.remove (TopdefName.get_info name) | External_scope name -> Mark.remove (ScopeName.get_info name) ) (* we have the guarantee that the two cases won't collide because they have different capitalisation rules inherited from the input *) in let o = Runtime.lookup_value runtime_path in runtime_to_val (fun ctx -> evaluate_expr ctx lang) ctx m ty o | EApp { f = e1; args; _ } -> ( let e1 = evaluate_expr ctx lang e1 in let args = List.map (evaluate_expr ctx lang) args in match Mark.remove e1 with | EAbs { binder; _ } -> if Bindlib.mbinder_arity binder = List.length args then evaluate_expr ctx lang (Bindlib.msubst binder (Array.of_list (List.map Mark.remove args))) else Message.error ~pos "wrong function call, expected %d arguments, got %d" (Bindlib.mbinder_arity binder) (List.length args) | ECustom { obj; targs; tret } -> (* Applies the arguments one by one to the curried form *) let o = List.fold_left2 (fun fobj targ arg -> (Obj.obj fobj : Obj.t -> Obj.t) (val_to_runtime (fun ctx -> evaluate_expr ctx lang) ctx targ arg)) obj targs args in runtime_to_val (fun ctx -> evaluate_expr ctx lang) ctx m tret o | _ -> Message.error ~pos ~internal:true "%a" Format.pp_print_text "function has not been reduced to a lambda at evaluation (should not \ happen if the term was well-typed") | EAppOp { op; args; _ } -> let args = List.map (evaluate_expr ctx lang) args in evaluate_operator (evaluate_expr ctx lang) op m lang args | EAbs _ | ELit _ | ECustom _ | EEmpty -> e (* these are values *) | EStruct { fields = es; name } -> let fields, es = List.split (StructField.Map.bindings es) in let es = List.map (evaluate_expr ctx lang) es in Mark.add m (EStruct { fields = StructField.Map.of_seq (Seq.zip (List.to_seq fields) (List.to_seq es)); name; }) | EStructAccess { e; name = s; field } -> ( let e = evaluate_expr ctx lang e in match Mark.remove e with | EStruct { fields = es; name } -> ( if not (StructName.equal s name) then Message.error ~extra_pos:["", pos; "", Expr.pos e] "%a" Format.pp_print_text "Error during struct access: not the same structs (should not happen \ if the term was well-typed)"; match StructField.Map.find_opt field es with | Some e' -> e' | None -> Message.error ~pos:(Expr.pos e) "Invalid field access %a@ in@ struct@ %a@ (should not happen if the \ term was well-typed)" StructField.format field StructName.format s) | _ -> Message.error ~pos:(Expr.pos e) "The expression %a@ should@ be@ a@ struct@ %a@ but@ is@ not@ (should \ not happen if the term was well-typed)" (Print.UserFacing.expr lang) e StructName.format s) | ETuple es -> Mark.add m (ETuple (List.map (evaluate_expr ctx lang) es)) | ETupleAccess { e = e1; index; size } -> ( match evaluate_expr ctx lang e1 with | ETuple es, _ when List.length es = size -> List.nth es index | e -> Message.error ~pos:(Expr.pos e) "The expression %a@ was@ expected@ to@ be@ a@ tuple@ of@ size@ %d@ \ (should not happen if the term was well-typed)" (Print.UserFacing.expr lang) e size) | EInj { e; name; cons } -> let e = evaluate_expr ctx lang e in Mark.add m (EInj { e; name; cons }) | EMatch { e; cases; name } -> ( let e = evaluate_expr ctx lang e in match Mark.remove e with | EInj { e = e1; cons; name = name' } -> if not (EnumName.equal name name') then Message.error ~extra_pos:["", Expr.pos e; "", Expr.pos e1] "%a" Format.pp_print_text "Error during match: two different enums found (should not happen if \ the term was well-typed)"; let es_n = match EnumConstructor.Map.find_opt cons cases with | Some es_n -> es_n | None -> Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text "sum type index error (should not happen if the term was \ well-typed)" in let ty = EnumConstructor.Map.find cons (EnumName.Map.find name ctx.ctx_enums) in let new_e = Mark.add m (EApp { f = es_n; args = [e1]; tys = [ty] }) in evaluate_expr ctx lang new_e | _ -> Message.error ~pos:(Expr.pos e) "Expected a term having a sum type as an argument to a match (should \ not happen if the term was well-typed") | EIfThenElse { cond; etrue; efalse } -> ( let cond = evaluate_expr ctx lang cond in match Mark.remove cond with | ELit (LBool true) -> evaluate_expr ctx lang etrue | ELit (LBool false) -> evaluate_expr ctx lang efalse | _ -> Message.error ~pos:(Expr.pos cond) "%a" Format.pp_print_text "Expected a boolean literal for the result of this condition (should \ not happen if the term was well-typed)") | EArray es -> let es = List.map (evaluate_expr ctx lang) es in Mark.add m (EArray es) | EAssert e' -> ( let e = evaluate_expr ctx lang e' in match Mark.remove e with | ELit (LBool true) -> Mark.add m (ELit LUnit) | ELit (LBool false) -> Message.warning "Assertion failed:@ %a" (Print.UserFacing.expr lang) (partially_evaluate_expr_for_assertion_failure_message ctx lang (Expr.skip_wrappers e')); raise Runtime.(Error (AssertionFailed, [Expr.pos_to_runtime pos])) | _ -> Message.error ~pos:(Expr.pos e') "%a" Format.pp_print_text "Expected a boolean literal for the result of this assertion (should \ not happen if the term was well-typed)") | EFatalError err -> raise (Runtime.Error (err, [Expr.pos_to_runtime pos])) | EErrorOnEmpty e' -> ( match evaluate_expr ctx lang e' with | EEmpty, _ -> raise Runtime.(Error (NoValue, [Expr.pos_to_runtime pos])) | exception Runtime.Empty -> raise Runtime.(Error (NoValue, [Expr.pos_to_runtime pos])) | e -> e) | EDefault { excepts; just; cons } -> ( let excepts = List.map (evaluate_expr ctx lang) excepts in let empty_count = List.length (List.filter is_empty_error excepts) in match List.length excepts - empty_count with | 0 -> ( let just = evaluate_expr ctx lang just in match Mark.remove just with | ELit (LBool true) -> evaluate_expr ctx lang cons | ELit (LBool false) -> Mark.copy e EEmpty | _ -> Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text "Default justification has not been reduced to a boolean at \ evaluation (should not happen if the term was well-typed") | 1 -> List.find (fun sub -> not (is_empty_error sub)) excepts | _ -> let poslist = List.filter_map (fun ex -> if is_empty_error ex then None else Some Expr.(pos_to_runtime (pos ex))) excepts in raise Runtime.(Error (Conflict, poslist))) | EPureDefault e -> evaluate_expr ctx lang e | ERaiseEmpty -> raise Runtime.Empty | ECatchEmpty { body; handler } -> ( try evaluate_expr ctx lang body with Runtime.Empty -> evaluate_expr ctx lang handler) | _ -> . and partially_evaluate_expr_for_assertion_failure_message : type d e. decl_ctx -> Global.backend_lang -> ((d, e, yes) interpr_kind, 't) gexpr -> ((d, e, yes) interpr_kind, 't) gexpr = fun ctx lang e -> (* Here we want to print an expression that explains why an assertion has failed. Since assertions have type [bool] and are usually constructed with comparisons and logical operators, we leave those unevaluated at the top of the AST while evaluating everything below. This makes for a good error message. *) match Mark.remove e with | EAppOp { args = [e1; e2]; tys; op = ( ( And | Or | Xor | Eq | Lt_int_int | Lt_rat_rat | Lt_mon_mon | Lt_dat_dat | Lt_dur_dur | Lte_int_int | Lte_rat_rat | Lte_mon_mon | Lte_dat_dat | Lte_dur_dur | Gt_int_int | Gt_rat_rat | Gt_mon_mon | Gt_dat_dat | Gt_dur_dur | Gte_int_int | Gte_rat_rat | Gte_mon_mon | Gte_dat_dat | Gte_dur_dur | Eq_int_int | Eq_rat_rat | Eq_mon_mon | Eq_dur_dur | Eq_dat_dat ), _ ) as op; } -> ( EAppOp { op; tys; args = [ partially_evaluate_expr_for_assertion_failure_message ctx lang e1; partially_evaluate_expr_for_assertion_failure_message ctx lang e2; ]; }, Mark.get e ) | _ -> evaluate_expr ctx lang e let evaluate_expr_safe : type d e. decl_ctx -> Global.backend_lang -> ((d, e, yes) interpr_kind, 't) gexpr -> ((d, e, yes) interpr_kind, 't) gexpr = fun ctx lang e -> try evaluate_expr ctx lang e with Runtime.Error (err, rpos) -> Message.error ~extra_pos:(List.map (fun rp -> "", Expr.runtime_to_pos rp) rpos) "During evaluation: %a." Format.pp_print_text (Runtime.error_message err) (* Typing shenanigan to add custom terms to the AST type. *) let addcustom e = let rec f : type c d e. ((d, e, c) interpr_kind, 't) gexpr -> ((d, e, yes) interpr_kind, 't) gexpr boxed = function | (ECustom _, _) as e -> Expr.map ~f e | EAppOp { op; tys; args }, m -> Expr.eappop ~tys ~args:(List.map f args) ~op:(Operator.translate op) m | (EDefault _, _) as e -> Expr.map ~f e | (EPureDefault _, _) as e -> Expr.map ~f e | (EEmpty, _) as e -> Expr.map ~f e | (EErrorOnEmpty _, _) as e -> Expr.map ~f e | (ECatchEmpty _, _) as e -> Expr.map ~f e | (ERaiseEmpty, _) as e -> Expr.map ~f e | ( ( EAssert _ | EFatalError _ | ELit _ | EApp _ | EArray _ | EVar _ | EExternal _ | EAbs _ | EIfThenElse _ | ETuple _ | ETupleAccess _ | EInj _ | EStruct _ | EStructAccess _ | EMatch _ ), _ ) as e -> Expr.map ~f e | _ -> . in let open struct external id : (('d, 'e, 'c) interpr_kind, 't) gexpr -> (('d, 'e, yes) interpr_kind, 't) gexpr = "%identity" end in if false then Expr.unbox (f e) (* We keep the implementation as a typing proof, but bypass the AST traversal for performance. Note that it's not completely 1-1 since the traversal would do a reboxing of all bound variables *) else id e let delcustom e = let rec f : type c d e. ((d, e, c) interpr_kind, 't) gexpr -> ((d, e, no) interpr_kind, 't) gexpr boxed = function | ECustom _, _ -> invalid_arg "Custom term remaining in evaluated term" | EAppOp { op; args; tys }, m -> Expr.eappop ~tys ~args:(List.map f args) ~op:(Operator.translate op) m | (EDefault _, _) as e -> Expr.map ~f e | (EPureDefault _, _) as e -> Expr.map ~f e | (EEmpty, _) as e -> Expr.map ~f e | (EErrorOnEmpty _, _) as e -> Expr.map ~f e | (ECatchEmpty _, _) as e -> Expr.map ~f e | (ERaiseEmpty, _) as e -> Expr.map ~f e | ( ( EAssert _ | EFatalError _ | ELit _ | EApp _ | EArray _ | EVar _ | EExternal _ | EAbs _ | EIfThenElse _ | ETuple _ | ETupleAccess _ | EInj _ | EStruct _ | EStructAccess _ | EMatch _ ), _ ) as e -> Expr.map ~f e | _ -> . in (* /!\ don't be tempted to use the same trick here, the function does one thing: validate at runtime that the term does not contain [ECustom] nodes. *) Expr.unbox (f e) let interpret_program_lcalc p s : (Uid.MarkedString.info * ('a, 'm) gexpr) list = let e = Expr.unbox @@ Program.to_expr p s in let ctx = p.decl_ctx in match evaluate_expr_safe ctx p.lang (addcustom e) with | (EAbs { tys = [((TStruct s_in, _) as _targs)]; _ }, mark_e) as e -> begin (* At this point, the interpreter seeks to execute the scope but does not have a way to retrieve input values from the command line. [taus] contain the types of the scope arguments. For [context] arguments, we can provide an empty thunked term. But for [input] arguments of another type, we cannot provide anything so we have to fail. *) let taus = StructName.Map.find s_in ctx.ctx_structs in let application_term = let pos = Expr.mark_pos mark_e in StructField.Map.map (fun ty -> match Mark.remove ty with | TArrow (ty_in, (TOption _, _)) -> (* Context args may return an option if avoid_exceptions is on *) Expr.make_abs (Array.of_list @@ List.map (fun _ -> Var.make "_") ty_in) (Expr.einj ~e:(Expr.elit LUnit mark_e) ~cons:Expr.none_constr ~name:Expr.option_enum mark_e : (_, _) boxed_gexpr) ty_in pos | TArrow (ty_in, ty_out) -> (* Or a default term (translated into a plain one if it is off) *) (* Note: this might catch non-context args, but since the compilation to lcalc strips the default around [ty_out] we can't tell with just this info. *) Expr.make_abs (Array.of_list @@ List.map (fun _ -> Var.make "_") ty_in) (Expr.eraiseempty (Expr.with_ty mark_e ty_out)) ty_in (Expr.mark_pos mark_e) | TTuple ((TArrow (ty_in, (TOption _, _)), _) :: _) -> (* ... or a closure if closure conversion is enabled *) Expr.make_tuple [ Expr.make_abs (Array.of_list @@ List.map (fun _ -> Var.make "_") ty_in) (Expr.einj ~e:(Expr.elit LUnit mark_e) ~cons:Expr.none_constr ~name:Expr.option_enum mark_e) ty_in (Expr.mark_pos mark_e); Expr.eappop ~op:(Operator.ToClosureEnv, pos) ~args:[Expr.etuple [] mark_e] ~tys:[TClosureEnv, pos] mark_e; ] mark_e | _ -> Message.error ~pos:(Mark.get ty) "This scope needs an input argument of type@ %a@ %a" Print.typ_debug ty Format.pp_print_text "to be executed. But the Catala built-in interpreter does not \ have a way to retrieve input values from the command line, so \ it cannot execute this scope. Please create another scope that \ provides the input arguments to this one and execute it \ instead.") taus in let to_interpret = Expr.make_app (Expr.box e) [ Expr.estruct ~name:s_in ~fields:application_term (Expr.map_ty (fun (_, pos) -> TStruct s_in, pos) mark_e); ] [TStruct s_in, Expr.pos e] (Expr.pos e) in match Mark.remove (evaluate_expr_safe ctx p.lang (Expr.unbox to_interpret)) with | EStruct { fields; _ } -> List.map (fun (fld, e) -> StructField.get_info fld, e) (StructField.Map.bindings fields) | exception Runtime.Error (err, rpos) -> Message.error ~extra_pos:(List.map (fun rp -> "", Expr.runtime_to_pos rp) rpos) "%a" Format.pp_print_text (Runtime.error_message err) | _ -> Message.error ~pos:(Expr.pos e) ~internal:true "%a" Format.pp_print_text "The interpretation of the program doesn't yield a struct \ corresponding to the scope variables" end | _ -> Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text "The interpreter can only interpret terms starting with functions having \ thunked arguments" (** {1 API} *) let interpret_program_dcalc p s : (Uid.MarkedString.info * ('a, 'm) gexpr) list = let ctx = p.decl_ctx in let e = Expr.unbox (Program.to_expr p s) in match evaluate_expr_safe p.decl_ctx p.lang (addcustom e) with | (EAbs { tys = [((TStruct s_in, _) as _targs)]; _ }, mark_e) as e -> begin (* At this point, the interpreter seeks to execute the scope but does not have a way to retrieve input values from the command line. [taus] contain the types of the scope arguments. For [context] arguments, we can provide an empty thunked term. But for [input] arguments of another type, we cannot provide anything so we have to fail. *) let taus = StructName.Map.find s_in ctx.ctx_structs in let application_term = StructField.Map.map (fun ty -> match Mark.remove ty with | TArrow (ty_in, ty_out) -> Expr.make_abs (Array.of_list @@ List.map (fun _ -> Var.make "_") ty_in) (Bindlib.box EEmpty, Expr.with_ty mark_e ty_out) ty_in (Expr.mark_pos mark_e) | _ -> Message.error ~pos:(Mark.get ty) "%a" Format.pp_print_text "This scope needs input arguments to be executed. But the Catala \ built-in interpreter does not have a way to retrieve input \ values from the command line, so it cannot execute this scope. \ Please create another scope that provides the input arguments \ to this one and execute it instead.") taus in let to_interpret = Expr.make_app (Expr.box e) [ Expr.estruct ~name:s_in ~fields:application_term (Expr.map_ty (fun (_, pos) -> TStruct s_in, pos) mark_e); ] [TStruct s_in, Expr.pos e] (Expr.pos e) in match Mark.remove (evaluate_expr_safe ctx p.lang (Expr.unbox to_interpret)) with | EStruct { fields; _ } -> List.map (fun (fld, e) -> StructField.get_info fld, e) (StructField.Map.bindings fields) | _ -> Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text "The interpretation of a program should always yield a struct \ corresponding to the scope variables" end | _ -> Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text "The interpreter can only interpret terms starting with functions having \ thunked arguments" (* Evaluation may introduce intermediate custom terms ([ECustom], pointers to external functions), straying away from the DCalc and LCalc ASTS. [addcustom] and [delcustom] are needed to expand and shrink the type of the terms to reflect that. *) let evaluate_expr ctx lang e = evaluate_expr ctx lang (addcustom e) let load_runtime_modules prg = let load m = let obj_file = Dynlink.adapt_filename File.(Pos.get_file (Mark.get (ModuleName.get_info m)) -.- "cmo") in if not (Sys.file_exists obj_file) then Message.error ~pos_msg:(fun ppf -> Format.pp_print_string ppf "Module defined here") ~pos:(Mark.get (ModuleName.get_info m)) "Compiled OCaml object %a@ not@ found.@ Make sure it has been suitably \ compiled." File.format obj_file else try Dynlink.loadfile obj_file with Dynlink.Error dl_err -> Message.error "Error loading compiled module from %a:@;<1 2>@[<hov>%a@]" File.format obj_file Format.pp_print_text (Dynlink.error_message dl_err) in let modules_list_topo = Program.modules_to_list prg.decl_ctx.ctx_modules in if modules_list_topo <> [] then Message.debug "Loading shared modules... %a" (Format.pp_print_list ~pp_sep:Format.pp_print_space ModuleName.format) modules_list_topo; List.iter load modules_list_topo
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>