package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.10.0.tar.gz
md5=5abd76e8c51a47670645e91b21b57fc5
sha512=9c6fbe50c0b5a60566e877eeddadca0a339e2ce35deb5c1beceb03bc40eb6af2d519313e71859d88645b53fad591d4fa5288c633b185c9d765603da0f5b7dd7b
doc/src/catala.shared_ast/definitions.ml.html
Source file definitions.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020-2022 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr>, Alain Delaët-Tixeuil <alain.delaet--tixeuil@inria.fr>, Louis Gesbert <louis.gesbert@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module defines generic types for types, literals and expressions shared through several of the different ASTs. *) (* Doesn't define values, so OK to have without an mli *) open Catala_utils module Runtime = Runtime_ocaml.Runtime module ModuleName = Uid.Module module ScopeName = Uid.Gen_qualified (struct let style = Ocolor_types.(Fg (C4 hi_magenta)) end) () module TopdefName = Uid.Gen_qualified (struct let style = Ocolor_types.(Fg (C4 hi_green)) end) () module StructName = Uid.Gen_qualified (struct let style = Ocolor_types.(Fg (C4 cyan)) end) () module StructField = Uid.Gen (struct let style = Ocolor_types.(Fg (C4 magenta)) end) () module EnumName = Uid.Gen_qualified (struct let style = Ocolor_types.(Fg (C4 cyan)) end) () module EnumConstructor = Uid.Gen (struct let style = Ocolor_types.(Fg (C4 magenta)) end) () (** Only used by surface *) module RuleName = Uid.Gen (struct let style = Ocolor_types.(Fg (C4 hi_white)) end) () module LabelName = Uid.Gen (struct let style = Ocolor_types.(Fg (C4 hi_cyan)) end) () (** Used for unresolved structs/maps in desugared *) module Ident = String (** Only used by desugared/scopelang *) module ScopeVar = Uid.Gen (struct let style = Ocolor_types.(Fg (C4 hi_white)) end) () type scope_var_or_subscope = | ScopeVar of ScopeVar.t | SubScope of ScopeVar.t * ScopeName.t * bool Mark.pos (* The bool is true if the output of the subscope is to be forwarded *) module StateName = Uid.Gen (struct let style = Ocolor_types.(Fg (C4 hi_cyan)) end) () (** {1 Abstract syntax tree} *) (** Define a common base type for the expressions in most passes of the compiler *) (** {2 Phantom types used to select relevant cases on the generic AST} we instantiate them with a polymorphic variant to take advantage of sub-typing. The values aren't actually used. *) (** These types allow to select the features present in any given expression type *) type yes = Yes type no = | No (** Phantom types used in the definitions below. We don't make them abstract, because the typer needs to know that their intersection is empty. *) type desugared = < monomorphic : yes ; polymorphic : yes ; overloaded : yes ; resolved : no ; syntacticNames : yes ; scopeVarStates : yes ; scopeVarSimpl : no ; explicitScopes : yes ; assertions : no ; defaultTerms : yes ; exceptions : no ; custom : no > (* Technically, desugared before name resolution has [syntacticNames: yes; resolvedNames: no], and after name resolution has the opposite; but the disambiguation being done by the typer, we don't encode this invariant at the type level. Indeed, unfortunately, we cannot express the [<resolvedNames: _; 'a> -> <resolvedNames: yes; 'a>] that would be needed for the typing function. *) type scopelang = < monomorphic : yes ; polymorphic : yes ; overloaded : no ; resolved : yes ; syntacticNames : no ; scopeVarStates : no ; scopeVarSimpl : yes ; explicitScopes : yes ; assertions : no ; defaultTerms : yes ; exceptions : no ; custom : no > type dcalc = < monomorphic : yes ; polymorphic : yes ; overloaded : no ; resolved : yes ; syntacticNames : no ; scopeVarStates : no ; scopeVarSimpl : no ; explicitScopes : no ; assertions : yes ; defaultTerms : yes ; exceptions : no ; custom : no > type lcalc = < monomorphic : yes ; polymorphic : yes ; overloaded : no ; resolved : yes ; syntacticNames : no ; scopeVarStates : no ; scopeVarSimpl : no ; explicitScopes : no ; assertions : yes ; defaultTerms : no ; exceptions : yes ; custom : no > type 'a any = < .. > as 'a (** ['a any] is 'a, but adds the constraint that it should be restricted to valid AST kinds *) type dcalc_lcalc_features = < monomorphic : yes ; polymorphic : yes ; overloaded : no ; resolved : yes ; syntacticNames : no ; scopeVarStates : no ; scopeVarSimpl : no ; explicitScopes : no ; assertions : yes > (** Features that are common to Dcalc and Lcalc *) type ('a, 'b) dcalc_lcalc = < dcalc_lcalc_features ; defaultTerms : 'a ; exceptions : 'b ; custom : no > (** This type regroups Dcalc and Lcalc ASTs. *) type ('a, 'b, 'c) interpr_kind = < dcalc_lcalc_features ; defaultTerms : 'a ; exceptions : 'b ; custom : 'c > (** This type corresponds to the types handled by the interpreter: it regroups Dcalc and Lcalc ASTs and may have custom terms *) (** {2 Types} *) type typ_lit = TBool | TUnit | TInt | TRat | TMoney | TDate | TDuration type typ = naked_typ Mark.pos and naked_typ = | TLit of typ_lit | TTuple of typ list | TStruct of StructName.t | TEnum of EnumName.t | TOption of typ | TArrow of typ list * typ | TArray of typ | TDefault of typ | TAny | TClosureEnv (** Hides an existential type needed for closure conversion *) (** {2 Constants and operators} *) type date = Runtime.date type date_rounding = Runtime.date_rounding type duration = Runtime.duration type var_def_log = { log_typ : naked_typ; log_io_input : Runtime.io_input; log_io_output : bool; } type log_entry = | VarDef of var_def_log (** During code generation, we need to know the type of the variable being logged for embedding as well as its I/O properties. *) | BeginCall | EndCall | PosRecordIfTrueBool module Op = struct (** Classification of operators on how they should be typed *) type monomorphic = < monomorphic : yes > (** Operands and return types of the operator are fixed *) type polymorphic = < polymorphic : yes > (** The operator is truly polymorphic: it's the same runtime function that may work on multiple types. We require that resolving the argument types from right to left trivially resolves all type variables declared in the operator type. *) type overloaded = < overloaded : yes > (** The operator is ambiguous and requires the types of its arguments to be known before it can be typed, using a pre-defined table *) type resolved = < resolved : yes > (** Explicit monomorphic versions of the overloaded operators *) type _ t = (* unary *) (* * monomorphic *) | Not : < monomorphic ; .. > t | GetDay : < monomorphic ; .. > t | GetMonth : < monomorphic ; .. > t | GetYear : < monomorphic ; .. > t | FirstDayOfMonth : < monomorphic ; .. > t | LastDayOfMonth : < monomorphic ; .. > t (* * polymorphic *) | Length : < polymorphic ; .. > t | Log : log_entry * Uid.MarkedString.info list -> < polymorphic ; .. > t | ToClosureEnv : < polymorphic ; .. > t | FromClosureEnv : < polymorphic ; .. > t (* * overloaded *) | Minus : < overloaded ; .. > t | Minus_int : < resolved ; .. > t | Minus_rat : < resolved ; .. > t | Minus_mon : < resolved ; .. > t | Minus_dur : < resolved ; .. > t | ToRat : < overloaded ; .. > t | ToRat_int : < resolved ; .. > t | ToRat_mon : < resolved ; .. > t | ToMoney : < overloaded ; .. > t | ToMoney_rat : < resolved ; .. > t | Round : < overloaded ; .. > t | Round_rat : < resolved ; .. > t | Round_mon : < resolved ; .. > t (* binary *) (* * monomorphic *) | And : < monomorphic ; .. > t | Or : < monomorphic ; .. > t | Xor : < monomorphic ; .. > t (* * polymorphic *) | Eq : < polymorphic ; .. > t | Map : < polymorphic ; .. > t | Map2 : < polymorphic ; .. > t | Concat : < polymorphic ; .. > t | Filter : < polymorphic ; .. > t (* * overloaded *) | Add : < overloaded ; .. > t | Add_int_int : < resolved ; .. > t | Add_rat_rat : < resolved ; .. > t | Add_mon_mon : < resolved ; .. > t | Add_dat_dur : date_rounding -> < resolved ; .. > t | Add_dur_dur : < resolved ; .. > t | Sub : < overloaded ; .. > t | Sub_int_int : < resolved ; .. > t | Sub_rat_rat : < resolved ; .. > t | Sub_mon_mon : < resolved ; .. > t | Sub_dat_dat : < resolved ; .. > t | Sub_dat_dur : < resolved ; .. > t | Sub_dur_dur : < resolved ; .. > t | Mult : < overloaded ; .. > t | Mult_int_int : < resolved ; .. > t | Mult_rat_rat : < resolved ; .. > t | Mult_mon_rat : < resolved ; .. > t | Mult_dur_int : < resolved ; .. > t | Div : < overloaded ; .. > t | Div_int_int : < resolved ; .. > t | Div_rat_rat : < resolved ; .. > t | Div_mon_rat : < resolved ; .. > t | Div_mon_mon : < resolved ; .. > t | Div_dur_dur : < resolved ; .. > t | Lt : < overloaded ; .. > t | Lt_int_int : < resolved ; .. > t | Lt_rat_rat : < resolved ; .. > t | Lt_mon_mon : < resolved ; .. > t | Lt_dat_dat : < resolved ; .. > t | Lt_dur_dur : < resolved ; .. > t | Lte : < overloaded ; .. > t | Lte_int_int : < resolved ; .. > t | Lte_rat_rat : < resolved ; .. > t | Lte_mon_mon : < resolved ; .. > t | Lte_dat_dat : < resolved ; .. > t | Lte_dur_dur : < resolved ; .. > t | Gt : < overloaded ; .. > t | Gt_int_int : < resolved ; .. > t | Gt_rat_rat : < resolved ; .. > t | Gt_mon_mon : < resolved ; .. > t | Gt_dat_dat : < resolved ; .. > t | Gt_dur_dur : < resolved ; .. > t | Gte : < overloaded ; .. > t | Gte_int_int : < resolved ; .. > t | Gte_rat_rat : < resolved ; .. > t | Gte_mon_mon : < resolved ; .. > t | Gte_dat_dat : < resolved ; .. > t | Gte_dur_dur : < resolved ; .. > t (* Todo: Eq is not an overload at the moment, but it should be one. The trick is that it needs generation of specific code for arrays, every struct and enum: operators [Eq_structs of StructName.t], etc. *) | Eq_int_int : < resolved ; .. > t | Eq_rat_rat : < resolved ; .. > t | Eq_mon_mon : < resolved ; .. > t | Eq_dur_dur : < resolved ; .. > t | Eq_dat_dat : < resolved ; .. > t (* ternary *) (* * polymorphic *) | Reduce : < polymorphic ; .. > t | Fold : < polymorphic ; .. > t | HandleDefault : < polymorphic ; .. > t | HandleDefaultOpt : < polymorphic ; .. > t end type 'a operator = 'a Op.t (** {2 Markings} *) type untyped = { pos : Pos.t } [@@caml.unboxed] type typed = { pos : Pos.t; ty : typ } type 'a custom = { pos : Pos.t; custom : 'a } (** Using empty markings will ensure terms can't be constructed: used for example in interfaces to ensure that they don't contain any expressions *) type nil = | (** The generic type of AST markings. Using a GADT allows functions to be polymorphic in the marking, but still do transformations on types when appropriate. The [Custom] case can be used within passes that need to store specific information, e.g. typing *) type _ mark = | Untyped : untyped -> untyped mark | Typed : typed -> typed mark | Custom : 'a custom -> 'a custom mark type ('a, 'm) marked = ('a, 'm mark) Mark.ed (** Type of values marked with the above standard mark GADT *) (** {2 Generic expressions} *) (** Define a common base type for the expressions in most passes of the compiler *) (** Literals are the same throughout compilation except for the [LEmptyError] case which is eliminated midway through. *) type lit = | LBool of bool | LInt of Runtime.integer | LRat of Runtime.decimal | LMoney of Runtime.money | LUnit | LDate of date | LDuration of duration (** External references are resolved to strings that point to functions or constants in the end, but we need to keep different references for typing *) type external_ref = | External_value of TopdefName.t | External_scope of ScopeName.t (** Locations are handled differently in [desugared] and [scopelang] *) type 'a glocation = | DesugaredScopeVar : { name : ScopeVar.t Mark.pos; state : StateName.t option; } -> < scopeVarStates : yes ; .. > glocation | ScopelangScopeVar : { name : ScopeVar.t Mark.pos; } -> < scopeVarSimpl : yes ; .. > glocation | ToplevelVar : { name : TopdefName.t Mark.pos; } -> < explicitScopes : yes ; .. > glocation type ('a, 'm) gexpr = (('a, 'm) naked_gexpr, 'm) marked and ('a, 'm) naked_gexpr = ('a, 'a, 'm) base_gexpr (** General expressions: groups all expression cases of the different ASTs, and uses a GADT to eliminate irrelevant cases for each one. The ['t] annotations are also totally unconstrained at this point. The dcalc exprs, for ex ample, are then defined with [type naked_expr = dcalc naked_gexpr] plus the annotations. A few tips on using this GADT: - To write a function that handles cases from different ASTs, explicit the type variables: [fun (type a) (x: a naked_gexpr) -> ...] - For recursive functions, you may need to additionally explicit the generalisation of the variable: [let rec f: type a . a naked_gexpr -> ...] - Always think of using the pre-defined map/fold functions in [Expr] rather than completely defining your recursion manually. The first argument of the base_gexpr type caracterises the "deep" type of the AST, while the second is the shallow type. They are always equal for well-formed AST types, but differentiating them ephemerally allows us to do well-typed recursive transformations on the AST that change its type *) and ('a, 'b, 'm) base_gexpr = (* Constructors common to all ASTs *) | ELit : lit -> ('a, < .. >, 'm) base_gexpr | EApp : { f : ('a, 'm) gexpr; args : ('a, 'm) gexpr list; (** length may be 1 even if arity > 1 in desugared. scopelang performs detuplification, so length = arity afterwards *) tys : typ list; (** Set to [[]] before disambiguation *) } -> ('a, < .. >, 'm) base_gexpr | EAppOp : { op : 'a operator Mark.pos; args : ('a, 'm) gexpr list; tys : typ list; } -> ('a, < .. >, 'm) base_gexpr | EArray : ('a, 'm) gexpr list -> ('a, < .. >, 'm) base_gexpr | EVar : ('a, 'm) naked_gexpr Bindlib.var -> ('a, _, 'm) base_gexpr | EAbs : { binder : (('a, 'a, 'm) base_gexpr, ('a, 'm) gexpr) Bindlib.mbinder; tys : typ list; } -> ('a, < .. >, 'm) base_gexpr | EIfThenElse : { cond : ('a, 'm) gexpr; etrue : ('a, 'm) gexpr; efalse : ('a, 'm) gexpr; } -> ('a, < .. >, 'm) base_gexpr | EStruct : { name : StructName.t; fields : ('a, 'm) gexpr StructField.Map.t; } -> ('a, < .. >, 'm) base_gexpr | EInj : { name : EnumName.t; e : ('a, 'm) gexpr; cons : EnumConstructor.t; } -> ('a, < .. >, 'm) base_gexpr | EMatch : { name : EnumName.t; e : ('a, 'm) gexpr; cases : ('a, 'm) gexpr EnumConstructor.Map.t; } -> ('a, < .. >, 'm) base_gexpr | ETuple : ('a, 'm) gexpr list -> ('a, < .. >, 'm) base_gexpr | ETupleAccess : { e : ('a, 'm) gexpr; index : int; size : int; } -> ('a, < .. >, 'm) base_gexpr (* Early stages *) | ELocation : 'b glocation -> ('a, (< .. > as 'b), 'm) base_gexpr | EScopeCall : { scope : ScopeName.t; args : ('a, 'm) gexpr ScopeVar.Map.t; } -> ('a, < explicitScopes : yes ; .. >, 'm) base_gexpr | EDStructAmend : { name_opt : StructName.t option; e : ('a, 'm) gexpr; fields : ('a, 'm) gexpr Ident.Map.t; } -> ('a, < syntacticNames : yes ; .. >, 'm) base_gexpr | EDStructAccess : { name_opt : StructName.t option; e : ('a, 'm) gexpr; field : Ident.t; } -> ('a, < syntacticNames : yes ; .. >, 'm) base_gexpr (** [desugared] has ambiguous struct fields *) | EStructAccess : { name : StructName.t; e : ('a, 'm) gexpr; field : StructField.t; } -> ('a, < .. >, 'm) base_gexpr (** Resolved struct/enums, after name resolution in [desugared] *) (* Lambda-like *) | EExternal : { name : external_ref Mark.pos; } -> ('a, < explicitScopes : no ; .. >, 't) base_gexpr | EAssert : ('a, 'm) gexpr -> ('a, < assertions : yes ; .. >, 'm) base_gexpr | EFatalError : Runtime.error -> ('a, < .. >, 'm) base_gexpr (* Default terms *) | EDefault : { excepts : ('a, 'm) gexpr list; just : ('a, 'm) gexpr; cons : ('a, 'm) gexpr; } -> ('a, < defaultTerms : yes ; .. >, 'm) base_gexpr | EPureDefault : ('a, 'm) gexpr -> ('a, < defaultTerms : yes ; .. >, 'm) base_gexpr (** "return" of a pure term, so that it can be typed as [default] *) | EEmpty : ('a, < defaultTerms : yes ; .. >, 'm) base_gexpr | EErrorOnEmpty : ('a, 'm) gexpr -> ('a, < defaultTerms : yes ; .. >, 'm) base_gexpr (* Lambda calculus with exceptions *) | ERaiseEmpty : ('a, < exceptions : yes ; .. >, 'm) base_gexpr | ECatchEmpty : { body : ('a, 'm) gexpr; handler : ('a, 'm) gexpr; } -> ('a, < exceptions : yes ; .. >, 'm) base_gexpr (* Only used during evaluation *) | ECustom : { obj : Obj.t; targs : typ list; tret : typ; } -> ('a, < custom : yes ; .. >, 't) base_gexpr (** A function of the given type, as a runtime OCaml object. The specified types for arguments and result must be the Catala types corresponding to the runtime types of the function. *) (** Useful for errors and printing, for example *) type any_expr = AnyExpr : ('a, _) gexpr -> any_expr type ('a, 'm) boxed_gexpr = (('a, 'm) naked_gexpr Bindlib.box, 'm) marked (** The annotation is lifted outside of the box for expressions *) type 'e boxed = ('a, 'm) boxed_gexpr constraint 'e = ('a, 'm) gexpr (** [('a, 'm) gexpr boxed] is [('a, 'm) boxed_gexpr]. The difference with [('a, 'm) gexpr Bindlib.box] is that the annotations is outside of the box, and can therefore be accessed without the need to resolve the box *) type ('e, 'b) binder = (('a, 'm) naked_gexpr, 'b) Bindlib.binder constraint 'e = ('a, 'm) gexpr (** The expressions use the {{:https://lepigre.fr/ocaml-bindlib/} Bindlib} library, based on higher-order abstract syntax *) type ('e, 'b) mbinder = (('a, 'm) naked_gexpr, 'b) Bindlib.mbinder constraint 'e = ('a, 'm) gexpr (** {2 Higher-level program structure} *) (** Constructs scopes and programs on top of expressions. The ['e] type parameter throughout is expected to match instances of the [gexpr] type defined above. Markings are constrained to the [mark] GADT defined above. Note that this structure is at the moment only relevant for [dcalc] and [lcalc], as [scopelang] has its own scope structure, as the name implies. *) (** A linked list, but with a binder for each element into the next: [x := let a = e1 in e2] is thus [Cons (e1, {a. Cons (e2, {x. Nil})})] *) type ('e, 'elt, 'last) bound_list = | Last of 'last | Cons of 'elt * ('e, ('e, 'elt, 'last) bound_list) binder (** This kind annotation signals that the let-binding respects a structural invariant. These invariants concern the shape of the expression in the let-binding, and are documented below. *) type scope_let_kind = | DestructuringInputStruct (** [let x = input.field]*) | ScopeVarDefinition (** [let x = error_on_empty e]*) | SubScopeVarDefinition (** [let s.x = fun _ -> e] or [let s.x = error_on_empty e] for input-only subscope variables. *) | CallingSubScope (** [let result = s ({ x = s.x; y = s.x; ...}) ]*) | DestructuringSubScopeResults (** [let s.x = result.x ]**) | Assertion (** [let () = assert e]*) type 'e scope_let = { scope_let_kind : scope_let_kind; scope_let_typ : typ; scope_let_expr : 'e; scope_let_pos : Pos.t; } constraint 'e = ('a any, _) gexpr (** This type is parametrized by the expression type so it can be reused in later intermediate representations. *) type 'e scope_body_expr = ('e, 'e scope_let, 'e) bound_list constraint 'e = ('a any, _) gexpr (** A scope let-binding has all the information necessary to make a proper let-binding expression, plus an annotation for the kind of the let-binding that comes from the compilation of a {!module: Scopelang.Ast} statement. *) type 'e scope_body = { scope_body_input_struct : StructName.t; scope_body_output_struct : StructName.t; scope_body_expr : ('e, 'e scope_body_expr) binder; } constraint 'e = ('a any, _) gexpr (** Instead of being a single expression, we give a little more ad-hoc structure to the scope body by decomposing it in an ordered list of let-bindings, and a result expression that uses the let-binded variables. The first binder is the argument of type [scope_body_input_struct]. *) type 'e code_item = | ScopeDef of ScopeName.t * 'e scope_body | Topdef of TopdefName.t * typ * 'e type 'e code_item_list = ('e, 'e code_item, unit) bound_list type struct_ctx = typ StructField.Map.t StructName.Map.t type enum_ctx = typ EnumConstructor.Map.t EnumName.Map.t type scope_info = { in_struct_name : StructName.t; out_struct_name : StructName.t; out_struct_fields : StructField.t ScopeVar.Map.t; } (** In practice, this is a DAG: beware of repeated names *) type module_tree = M of module_tree ModuleName.Map.t [@@caml.unboxed] type decl_ctx = { ctx_enums : enum_ctx; ctx_structs : struct_ctx; ctx_scopes : scope_info ScopeName.Map.t; ctx_topdefs : typ TopdefName.Map.t; ctx_struct_fields : StructField.t StructName.Map.t Ident.Map.t; (** needed for disambiguation (desugared -> scope) *) ctx_enum_constrs : EnumConstructor.t EnumName.Map.t Ident.Map.t; ctx_scope_index : ScopeName.t Ident.Map.t; (** only used to lookup scopes (in the root module) specified from the cli *) ctx_modules : module_tree; } type 'e program = { decl_ctx : decl_ctx; code_items : 'e code_item_list; lang : Global.backend_lang; module_name : ModuleName.t option; }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>