package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.9.0.tar.gz
md5=8f891209d18b6540df9c34b2d1a6a783
sha512=737770b87a057674bceefe77e8526720732552f51f424afcebcb6a628267eab522c4fd993caca1ae8ed7ace65a4a87e485af10c1676e51ca5939509a1b841ac2
doc/src/catala.dcalc/from_scopelang.ml.html
Source file from_scopelang.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Catala_utils open Shared_ast type scope_var_ctx = { scope_var_name : ScopeVar.t; scope_var_typ : naked_typ; scope_var_io : Desugared.Ast.io; } type scope_input_var_ctx = { scope_input_name : StructField.t; scope_input_io : Runtime.io_input Mark.pos; scope_input_typ : naked_typ; scope_input_thunked : bool; (* For reentrant variables: if true, the type t of the field has been changed to (unit -> t). Otherwise, the type was already a function and wasn't changed so no additional wrapping will be needed *) } type 'm scope_ref = | Local_scope_ref of 'm Ast.expr Var.t | External_scope_ref of ScopeName.t Mark.pos type 'm scope_sig_ctx = { scope_sig_local_vars : scope_var_ctx list; (** List of scope variables *) scope_sig_scope_ref : 'm scope_ref; (** Var or external representing the scope *) scope_sig_input_struct : StructName.t; (** Scope input *) scope_sig_output_struct : StructName.t; (** Scope output *) scope_sig_in_fields : scope_input_var_ctx ScopeVar.Map.t; (** Mapping between the input scope variables and the input struct fields. *) } type 'm ctx = { decl_ctx : decl_ctx; scope_name : ScopeName.t option; scopes_parameters : 'm scope_sig_ctx ScopeName.Map.t; toplevel_vars : ('m Ast.expr Var.t * naked_typ) TopdefName.Map.t; scope_vars : ('m Ast.expr Var.t * naked_typ * Desugared.Ast.io) ScopeVar.Map.t; subscope_vars : ('m Ast.expr Var.t * naked_typ * Desugared.Ast.io) ScopeVar.Map.t SubScopeName.Map.t; date_rounding : date_rounding; } let mark_tany m pos = Expr.with_ty m (Mark.add pos TAny) ~pos (* Expression argument is used as a type witness, its type and positions aren't used *) let pos_mark_mk (type a m) (e : (a, m) gexpr) : (Pos.t -> m mark) * ((_, Pos.t) Mark.ed -> m mark) = let pos_mark pos = Expr.map_mark (fun _ -> pos) (fun _ -> TAny, pos) (Mark.get e) in let pos_mark_as e = pos_mark (Mark.get e) in pos_mark, pos_mark_as let merge_defaults ~(is_func : bool) (caller : (dcalc, 'm) boxed_gexpr) (callee : (dcalc, 'm) boxed_gexpr) : (dcalc, 'm) boxed_gexpr = (* the merging of the two defaults, from the reentrant caller and the callee, is straightfoward in the general case and a little subtler when the variable being defined is a function. *) if is_func then let m_callee = Mark.get callee in let unboxed_callee = Expr.unbox callee in match Mark.remove unboxed_callee with | EAbs { binder; tys } -> let vars, body = Bindlib.unmbind binder in let m_body = Mark.get body in let caller = let m = Mark.get caller in let pos = Expr.mark_pos m in Expr.make_app caller (List.map2 (fun (var : (dcalc, 'm) naked_gexpr Bindlib.var) ty -> Expr.evar var (* we have to correctly propagate types when doing this rewriting *) (Expr.with_ty m_body ~pos:(Expr.mark_pos m_body) ty)) (Array.to_list vars) tys) tys pos in let ltrue = Expr.elit (LBool true) (Expr.with_ty m_callee (Mark.add (Expr.mark_pos m_callee) (TLit TBool))) in let cons = Expr.make_puredefault (Expr.rebox body) in let d = Expr.edefault ~excepts:[caller] ~just:ltrue ~cons (Mark.get cons) in Expr.make_abs vars (Expr.make_erroronempty d) tys (Expr.mark_pos m_callee) | _ -> assert false (* should not happen because there should always be a lambda at the beginning of a default with a function type *) else let caller = let m = Mark.get caller in let pos = Expr.mark_pos m in Expr.make_app caller [Expr.elit LUnit (Expr.with_ty m (Mark.add pos (TLit TUnit)))] [TLit TUnit, pos] pos in let body = let m = Mark.get callee in let ltrue = Expr.elit (LBool true) (Expr.with_ty m (Mark.add (Expr.mark_pos m) (TLit TBool))) in let cons = Expr.make_puredefault callee in Expr.make_erroronempty (Expr.edefault ~excepts:[caller] ~just:ltrue ~cons (Mark.get cons)) in body let tag_with_log_entry (e : 'm Ast.expr boxed) (l : log_entry) (markings : Uid.MarkedString.info list) : 'm Ast.expr boxed = let m = mark_tany (Mark.get e) (Expr.pos e) in if Cli.globals.trace then Expr.eappop ~op:(Log (l, markings)) ~tys:[TAny, Expr.pos e] ~args:[e] m else e (* In a list of exceptions, it is normally an error if more than a single one apply at the same time. This relaxes this constraint slightly, allowing a conflict if all the triggered conflicting exception yield syntactically equal results (and as long as none of these exceptions have exceptions themselves) NOTE: the choice of the exception that will be triggered and show in the trace is arbitrary (but deterministic). *) let collapse_similar_outcomes (type m) (excepts : m Scopelang.Ast.expr list) : m Scopelang.Ast.expr list = let module ExprMap = Map.Make (struct type t = m Scopelang.Ast.expr let compare = Expr.compare let format = Expr.format end) in let cons_map = List.fold_left (fun map -> function | (EDefault { excepts = []; cons; _ }, _) as e -> ExprMap.update cons (fun prev -> Some (e :: Option.value ~default:[] prev)) map | _ -> map) ExprMap.empty excepts in let _, excepts = List.fold_right (fun e (cons_map, excepts) -> match e with | EDefault { excepts = []; cons; _ }, _ -> let collapsed_exc = List.fold_left (fun acc -> function | EDefault { excepts = []; just; cons }, pos -> [EDefault { excepts = acc; just; cons }, pos] | _ -> assert false) [] (ExprMap.find cons cons_map) in ExprMap.add cons [] cons_map, collapsed_exc @ excepts | e -> cons_map, e :: excepts) excepts (cons_map, []) in excepts let input_var_needs_thunking typ io_in = (* For "context" (or reentrant) variables, we thunk them as [(fun () -> e)] so that we can put them in default terms at the initialisation of the function body, allowing an empty error to recover the default value. *) match Mark.remove io_in.Desugared.Ast.io_input, typ with | Runtime.Reentrant, TArrow _ -> false (* we don't need to thunk expressions that are already functions *) | Runtime.Reentrant, _ -> true | _ -> false let input_var_typ typ io_in = let pos = Mark.get io_in.Desugared.Ast.io_input in if input_var_needs_thunking typ io_in then TArrow ([TLit TUnit, pos], (typ, pos)), pos else typ, pos let thunk_scope_arg var_ctx e = match var_ctx.scope_input_io, var_ctx.scope_input_thunked with | (Runtime.NoInput, _), _ -> invalid_arg "thunk_scope_arg" | (Runtime.OnlyInput, _), false -> e | (Runtime.Reentrant, _), false -> e | (Runtime.Reentrant, pos), true -> Expr.make_abs [| Var.make "_" |] e [TLit TUnit, pos] pos | _ -> assert false let rec translate_expr (ctx : 'm ctx) (e : 'm Scopelang.Ast.expr) : 'm Ast.expr boxed = let m = Mark.get e in match Mark.remove e with | EMatch { e = e1; name; cases = e_cases } -> let enum_sig = EnumName.Map.find name ctx.decl_ctx.ctx_enums in let d_cases, remaining_e_cases = (* FIXME: these checks should probably be moved to a better place *) EnumConstructor.Map.fold (fun constructor _ (d_cases, e_cases) -> let case_e = try EnumConstructor.Map.find constructor e_cases with EnumConstructor.Map.Not_found _ -> Message.raise_spanned_error (Expr.pos e) "The constructor %a of enum %a is missing from this pattern \ matching" EnumConstructor.format constructor EnumName.format name in let case_d = translate_expr ctx case_e in ( EnumConstructor.Map.add constructor case_d d_cases, EnumConstructor.Map.remove constructor e_cases )) enum_sig (EnumConstructor.Map.empty, e_cases) in if not (EnumConstructor.Map.is_empty remaining_e_cases) then Message.raise_spanned_error (Expr.pos e) "Pattern matching is incomplete for enum %a: missing cases %a" EnumName.format name (EnumConstructor.Map.format_keys ~pp_sep:(fun fmt () -> Format.fprintf fmt ", ")) remaining_e_cases; let e1 = translate_expr ctx e1 in Expr.ematch ~e:e1 ~name ~cases:d_cases m | EScopeCall { scope; args } -> let pos = Expr.mark_pos m in let sc_sig = ScopeName.Map.find scope ctx.scopes_parameters in let in_var_map = ScopeVar.Map.merge (fun var_name (str_field : scope_input_var_ctx option) expr -> match str_field, expr with | None, None -> assert false | Some ({ scope_input_io = Reentrant, iopos; _ } as var_ctx), None -> let ty0 = match var_ctx.scope_input_typ with | TArrow ([_], ty) -> ty | _ -> assert false (* reentrant field must be thunked with correct function type at this point *) in Some ( var_ctx.scope_input_name, Expr.make_abs [| Var.make "_" |] (Expr.eemptyerror (Expr.with_ty m ty0)) [TAny, iopos] pos ) | Some var_ctx, Some e -> Some ( var_ctx.scope_input_name, thunk_scope_arg var_ctx (translate_expr ctx e) ) | Some var_ctx, None -> Message.raise_multispanned_error [ None, pos; ( Some "Declaration of the missing input variable", Mark.get (StructField.get_info var_ctx.scope_input_name) ); ] "Definition of input variable '%a' missing in this scope call" ScopeVar.format var_name | None, Some e -> Message.raise_multispanned_error_full ~suggestion: (List.map (fun v -> Mark.remove (ScopeVar.get_info v)) (ScopeVar.Map.keys sc_sig.scope_sig_in_fields)) [ None, Expr.pos e; ( Some (fun ppf -> Format.fprintf ppf "Declaration of scope %a" ScopeName.format scope), Mark.get (ScopeName.get_info scope) ); ] "Unknown input variable '%a' in scope call of '%a'" ScopeVar.format var_name ScopeName.format scope) sc_sig.scope_sig_in_fields args in let field_map = ScopeVar.Map.fold (fun _ (fld, e) acc -> StructField.Map.add fld e acc) in_var_map StructField.Map.empty in let arg_struct = Expr.estruct ~name:sc_sig.scope_sig_input_struct ~fields:field_map (mark_tany m pos) in let called_func = let m = mark_tany m pos in let e = match sc_sig.scope_sig_scope_ref with | Local_scope_ref v -> Expr.evar v m | External_scope_ref name -> Expr.eexternal ~name:(Mark.map (fun s -> External_scope s) name) m in tag_with_log_entry e BeginCall [ScopeName.get_info scope; Mark.add (Expr.pos e) "direct"] in let single_arg = tag_with_log_entry arg_struct (VarDef { log_typ = TStruct sc_sig.scope_sig_input_struct; log_io_output = false; log_io_input = OnlyInput; }) [ ScopeName.get_info scope; Mark.add (Expr.pos e) "direct"; Mark.add (Expr.pos e) "input"; ] in let direct_output_info = [ ScopeName.get_info scope; Mark.add (Expr.pos e) "direct"; Mark.add (Expr.pos e) "output"; ] in (* calling_expr = scope_function scope_input_struct *) let calling_expr = Expr.eapp ~f:called_func ~args:[single_arg] ~tys:[TStruct sc_sig.scope_sig_input_struct, pos] m in (* For the purposes of log parsing explained in Runtime.EventParser, we need to wrap this function call in a flurry of log tags. Specifically, we are mascarading this scope call as a function call. In a normal function call, the log parser expects the output of the function to be defined as a default, hence the production of the output should yield a PosRecordIfTrueBool (which is not the case here). To remedy this absence we fabricate a fake PosRecordIfTrueBool attached to a silent let binding to "true" before returning the output value. But this is not sufficient. Indeed for the tricky case of [tests/test_scope/scope_call3.catala_en], when a scope returns a function, because we insert loggins calls at the call site of the function and not during its definition, then we're missing the call log instructions of the function returned. To avoid this trap, we need to rebind the resulting scope output struct by eta-expanding the functions to insert logging instructions. *) let result_var = Var.make "result" in let result_eta_expanded_var = Var.make "result" in (* result_eta_expanded = { struct_output_function_field = lambda x -> log (struct_output.struct_output_function_field x) ... } *) let result_eta_expanded = Expr.estruct ~name:sc_sig.scope_sig_output_struct ~fields: (StructField.Map.mapi (fun field typ -> let original_field_expr = Expr.estructaccess ~e: (Expr.make_var result_var (Expr.with_ty m (TStruct sc_sig.scope_sig_output_struct, Expr.pos e))) ~field ~name:sc_sig.scope_sig_output_struct (Expr.with_ty m typ) in match Mark.remove typ with | TArrow (ts_in, t_out) -> (* Here the output scope struct field is a function so we eta-expand it and insert logging instructions. Invariant: works because there is no partial evaluation. *) let params_vars = ListLabels.mapi ts_in ~f:(fun i _ -> Var.make ("param" ^ string_of_int i)) in let f_markings = [ScopeName.get_info scope; StructField.get_info field] in let args = List.mapi (fun i (param_var, t_in) -> tag_with_log_entry (Expr.make_var param_var (Expr.with_ty m t_in)) (VarDef { log_typ = Mark.remove t_in; log_io_output = false; log_io_input = OnlyInput; }) (f_markings @ [Mark.add (Expr.pos e) ("input" ^ string_of_int i)])) (List.combine params_vars ts_in) in Expr.make_abs (Array.of_list params_vars) (tag_with_log_entry (tag_with_log_entry (Expr.eapp ~f: (tag_with_log_entry original_field_expr BeginCall f_markings) ~args ~tys:ts_in (Expr.with_ty m t_out)) (VarDef { log_typ = Mark.remove t_out; log_io_output = true; log_io_input = NoInput; }) (f_markings @ [Mark.add (Expr.pos e) "output"])) EndCall f_markings) ts_in (Expr.pos e) | _ -> original_field_expr) (StructName.Map.find sc_sig.scope_sig_output_struct ctx.decl_ctx.ctx_structs)) (Expr.with_ty m (TStruct sc_sig.scope_sig_output_struct, Expr.pos e)) in (* Here we have to go through an if statement that records a decision being taken with a log. We can't just do a let-in with the true boolean value enclosed in the log because it might get optimized by a compiler later down the chain. *) (* if_then_else_returned = if log true then result_eta_expanded else result_eta_expanded *) let if_then_else_returned = Expr.eifthenelse (tag_with_log_entry (Expr.box (Mark.add (Expr.with_ty m (TLit TBool, Expr.pos e)) (ELit (LBool true)))) PosRecordIfTrueBool direct_output_info) (Expr.make_var result_eta_expanded_var (Expr.with_ty m (TStruct sc_sig.scope_sig_output_struct, Expr.pos e))) (Expr.make_var result_eta_expanded_var (Expr.with_ty m (TStruct sc_sig.scope_sig_output_struct, Expr.pos e))) (Expr.with_ty m (TStruct sc_sig.scope_sig_output_struct, Expr.pos e)) in (* let result_var = calling_expr in let result_eta_expanded_var = result_eta_expaneded in log (if_then_else_returned ) *) Expr.make_let_in result_var (TStruct sc_sig.scope_sig_output_struct, Expr.pos e) calling_expr (Expr.make_let_in result_eta_expanded_var (TStruct sc_sig.scope_sig_output_struct, Expr.pos e) result_eta_expanded (tag_with_log_entry (tag_with_log_entry if_then_else_returned (VarDef { log_typ = TStruct sc_sig.scope_sig_output_struct; log_io_output = true; log_io_input = NoInput; }) direct_output_info) EndCall [ScopeName.get_info scope; Mark.add (Expr.pos e) "direct"]) (Expr.pos e)) (Expr.pos e) | EApp { f; args; tys } -> (* We insert various log calls to record arguments and outputs of user-defined functions belonging to scopes *) let e1_func = translate_expr ctx f in let markings = match ctx.scope_name, Mark.remove f with | Some sname, ELocation loc -> ( match loc with | ScopelangScopeVar { name = v, _; _ } -> [ScopeName.get_info sname; ScopeVar.get_info v] | SubScopeVar { scope; var = v, _; _ } -> [ScopeName.get_info scope; ScopeVar.get_info v] | ToplevelVar _ -> []) | _ -> [] in let e1_func = match markings with | [] -> e1_func | m -> tag_with_log_entry e1_func BeginCall m in let new_args = List.map (translate_expr ctx) args in let input_typs = List.map Mark.remove tys in let output_typ = (* NOTE: this is a temporary solution, it works because it's assumed that all function have explicit types. However, this will change -- for more information see https://github.com/CatalaLang/catala/pull/280#discussion_r898851693. *) let retrieve_out_typ_or_any var vars = let _, typ, _ = ScopeVar.Map.find (Mark.remove var) vars in match typ with | TArrow (_, marked_output_typ) -> Mark.remove marked_output_typ | _ -> TAny in match Mark.remove f with | ELocation (ScopelangScopeVar { name = var }) -> retrieve_out_typ_or_any var ctx.scope_vars | ELocation (SubScopeVar { alias; var; _ }) -> ctx.subscope_vars |> SubScopeName.Map.find (Mark.remove alias) |> retrieve_out_typ_or_any var | ELocation (ToplevelVar { name }) -> ( let typ = TopdefName.Map.find (Mark.remove name) ctx.decl_ctx.ctx_topdefs in match Mark.remove typ with | TArrow (_, (tout, _)) -> tout | _ -> Message.raise_spanned_error (Expr.pos e) "Application of non-function toplevel variable") | _ -> TAny in (* Message.emit_debug "new_args %d, input_typs: %d, input_typs %a" (List.length new_args) (List.length input_typs) (Format.pp_print_list Print.typ_debug) (List.map (Mark.add Pos.no_pos) input_typs); *) let new_args = ListLabels.mapi (List.combine new_args input_typs) ~f:(fun i (new_arg, input_typ) -> match markings with | _ :: _ as m -> tag_with_log_entry new_arg (VarDef { log_typ = input_typ; log_io_output = false; log_io_input = OnlyInput; }) (m @ [Mark.add (Expr.pos e) ("input" ^ string_of_int i)]) | _ -> new_arg) in let new_e = Expr.eapp ~f:e1_func ~args:new_args ~tys m in let new_e = match markings with | [] -> new_e | m -> tag_with_log_entry (tag_with_log_entry new_e (VarDef { log_typ = output_typ; log_io_output = true; log_io_input = NoInput; }) (m @ [Mark.add (Expr.pos e) "output"])) EndCall m in new_e | EDefault { excepts; just; cons } -> let excepts = collapse_similar_outcomes excepts in Expr.edefault ~excepts:(List.map (translate_expr ctx) excepts) ~just:(translate_expr ctx just) ~cons:(translate_expr ctx cons) m | EPureDefault e -> Expr.epuredefault (translate_expr ctx e) m | ELocation (ScopelangScopeVar { name = a }) -> let v, _, _ = ScopeVar.Map.find (Mark.remove a) ctx.scope_vars in Expr.evar v m | ELocation (SubScopeVar { alias = s; var = a; _ }) -> ( try let v, _, _ = ScopeVar.Map.find (Mark.remove a) (SubScopeName.Map.find (Mark.remove s) ctx.subscope_vars) in Expr.evar v m with ScopeVar.Map.Not_found _ | SubScopeName.Map.Not_found _ -> Message.raise_multispanned_error [ Some "Incriminated variable usage:", Expr.pos e; ( Some "Incriminated subscope variable declaration:", Mark.get (ScopeVar.get_info (Mark.remove a)) ); ( Some "Incriminated subscope declaration:", Mark.get (SubScopeName.get_info (Mark.remove s)) ); ] "The variable %a.%a cannot be used here, as it is not part of subscope \ %a's results. Maybe you forgot to qualify it as an output?" SubScopeName.format (Mark.remove s) ScopeVar.format (Mark.remove a) SubScopeName.format (Mark.remove s)) | ELocation (ToplevelVar { name }) -> let path = TopdefName.path (Mark.remove name) in if path = [] then let v, _ = TopdefName.Map.find (Mark.remove name) ctx.toplevel_vars in Expr.evar v m else Expr.eexternal ~name:(Mark.map (fun n -> External_value n) name) m | EAppOp { op = Add_dat_dur _; args; tys } -> let args = List.map (translate_expr ctx) args in Expr.eappop ~op:(Add_dat_dur ctx.date_rounding) ~args ~tys m | EAppOp { op; args; tys } -> let args = List.map (translate_expr ctx) args in Expr.eappop ~op:(Operator.translate op) ~args ~tys m | ( EVar _ | EAbs _ | ELit _ | EStruct _ | EStructAccess _ | ETuple _ | ETupleAccess _ | EInj _ | EEmptyError | EErrorOnEmpty _ | EArray _ | EIfThenElse _ ) as e -> Expr.map ~f:(translate_expr ctx) (e, m) (** The result of a rule translation is a list of assignment, with variables and expressions. We also return the new translation context available after the assignment to use in later rule translations. The list is actually a continuation yielding a [Dcalc.scope_body_expr] by giving it what should come later in the chain of let-bindings. *) let translate_rule (ctx : 'm ctx) (rule : 'm Scopelang.Ast.rule) ((sigma_name, pos_sigma) : Uid.MarkedString.info) : ('m Ast.expr scope_body_expr Bindlib.box -> 'm Ast.expr scope_body_expr Bindlib.box) * 'm ctx = match rule with | Definition ((ScopelangScopeVar { name = a }, var_def_pos), tau, a_io, e) -> let pos_mark, _ = pos_mark_mk e in let a_name = ScopeVar.get_info (Mark.remove a) in let a_var = Var.make (Mark.remove a_name) in let new_e = translate_expr ctx e in let a_expr = Expr.make_var a_var (pos_mark var_def_pos) in let is_func = match Mark.remove tau with TArrow _ -> true | _ -> false in let merged_expr = match Mark.remove a_io.io_input with | OnlyInput -> failwith "should not happen" (* scopelang should not contain any definitions of input only variables *) | Reentrant -> merge_defaults ~is_func a_expr new_e | NoInput -> new_e in let merged_expr = tag_with_log_entry merged_expr (VarDef { log_typ = Mark.remove tau; log_io_output = Mark.remove a_io.io_output; log_io_input = Mark.remove a_io.io_input; }) [sigma_name, pos_sigma; a_name] in ( (fun next -> Bindlib.box_apply2 (fun next merged_expr -> ScopeLet { scope_let_next = next; scope_let_typ = tau; scope_let_expr = merged_expr; scope_let_kind = ScopeVarDefinition; scope_let_pos = Mark.get a; }) (Bindlib.bind_var a_var next) (Expr.Box.lift merged_expr)), { ctx with scope_vars = ScopeVar.Map.add (Mark.remove a) (a_var, Mark.remove tau, a_io) ctx.scope_vars; } ) | Definition ((SubScopeVar { alias = subs_index; var = subs_var; _ }, _), tau, a_io, e) -> let a_name = Mark.map (fun str -> str ^ "." ^ Mark.remove (ScopeVar.get_info (Mark.remove subs_var))) (SubScopeName.get_info (Mark.remove subs_index)) in let a_var = Var.make (Mark.remove a_name) in let new_e = tag_with_log_entry (translate_expr ctx e) (VarDef { log_typ = Mark.remove tau; log_io_output = false; log_io_input = Mark.remove a_io.Desugared.Ast.io_input; }) [sigma_name, pos_sigma; a_name] in let thunked_or_nonempty_new_e = match a_io.Desugared.Ast.io_input with | Runtime.NoInput, _ -> assert false | Runtime.OnlyInput, _ -> new_e | Runtime.Reentrant, pos -> ( match Mark.remove tau with | TArrow _ -> new_e | _ -> Expr.thunk_term new_e (Expr.with_pos pos (Mark.get new_e))) in ( (fun next -> Bindlib.box_apply2 (fun next thunked_or_nonempty_new_e -> ScopeLet { scope_let_next = next; scope_let_pos = Mark.get a_name; scope_let_typ = input_var_typ (Mark.remove tau) a_io; scope_let_expr = thunked_or_nonempty_new_e; scope_let_kind = SubScopeVarDefinition; }) (Bindlib.bind_var a_var next) (Expr.Box.lift thunked_or_nonempty_new_e)), { ctx with subscope_vars = SubScopeName.Map.update (Mark.remove subs_index) (fun map -> match map with | Some map -> Some (ScopeVar.Map.add (Mark.remove subs_var) (a_var, Mark.remove tau, a_io) map) | None -> Some (ScopeVar.Map.singleton (Mark.remove subs_var) (a_var, Mark.remove tau, a_io))) ctx.subscope_vars; } ) | Definition ((ToplevelVar _, _), _, _, _) -> assert false (* A global variable can't be defined locally. The [Definition] constructor could be made more specific to avoid this case, but the added complexity didn't seem worth it *) | Call (subname, subindex, m) -> let subscope_sig = ScopeName.Map.find subname ctx.scopes_parameters in let scope_sig_decl = ScopeName.Map.find subname ctx.decl_ctx.ctx_scopes in let all_subscope_vars = subscope_sig.scope_sig_local_vars in let all_subscope_input_vars = List.filter (fun var_ctx -> match Mark.remove var_ctx.scope_var_io.Desugared.Ast.io_input with | NoInput -> false | _ -> true) all_subscope_vars in let called_scope_input_struct = subscope_sig.scope_sig_input_struct in let called_scope_return_struct = subscope_sig.scope_sig_output_struct in let all_subscope_output_vars = List.filter_map (fun var_ctx -> if Mark.remove var_ctx.scope_var_io.Desugared.Ast.io_output then (* Retrieve the actual expected output type through the scope output struct definition *) let str = StructName.Map.find called_scope_return_struct ctx.decl_ctx.ctx_structs in let fld = ScopeVar.Map.find var_ctx.scope_var_name scope_sig_decl.out_struct_fields in let ty = StructField.Map.find fld str in Some { var_ctx with scope_var_typ = Mark.remove ty } else None) all_subscope_vars in let pos_call = Mark.get (SubScopeName.get_info subindex) in let scope_dcalc_ref = let m = mark_tany m pos_call in match subscope_sig.scope_sig_scope_ref with | Local_scope_ref var -> Expr.make_var var m | External_scope_ref name -> Expr.eexternal ~name:(Mark.map (fun n -> External_scope n) name) m in let subscope_vars_defined = try SubScopeName.Map.find subindex ctx.subscope_vars with SubScopeName.Map.Not_found _ -> ScopeVar.Map.empty in let subscope_var_not_yet_defined subvar = not (ScopeVar.Map.mem subvar subscope_vars_defined) in let subscope_args = List.fold_left (fun acc (subvar : scope_var_ctx) -> let e = if subscope_var_not_yet_defined subvar.scope_var_name then (* This is a redundant check. Normally, all subscope variables should have been defined (even an empty definition, if they're not defined by any rule in the source code) by the translation from desugared to the scope language. *) Expr.empty_thunked_term m else let a_var, _, _ = ScopeVar.Map.find subvar.scope_var_name subscope_vars_defined in Expr.make_var a_var (mark_tany m pos_call) in let field = (ScopeVar.Map.find subvar.scope_var_name subscope_sig.scope_sig_in_fields) .scope_input_name in StructField.Map.add field e acc) StructField.Map.empty all_subscope_input_vars in let subscope_struct_arg = Expr.estruct ~name:called_scope_input_struct ~fields:subscope_args (mark_tany m pos_call) in let all_subscope_output_vars_dcalc = List.map (fun (subvar : scope_var_ctx) -> let sub_dcalc_var = Var.make (Mark.remove (SubScopeName.get_info subindex) ^ "." ^ Mark.remove (ScopeVar.get_info subvar.scope_var_name)) in subvar, sub_dcalc_var) all_subscope_output_vars in let subscope_func = tag_with_log_entry scope_dcalc_ref BeginCall [ sigma_name, pos_sigma; SubScopeName.get_info subindex; ScopeName.get_info subname; ] in let call_expr = tag_with_log_entry (Expr.eapp ~f:subscope_func ~args:[subscope_struct_arg] ~tys:[TStruct called_scope_input_struct, Expr.mark_pos m] (mark_tany m pos_call)) EndCall [ sigma_name, pos_sigma; SubScopeName.get_info subindex; ScopeName.get_info subname; ] in let result_tuple_var = Var.make "result" in let result_tuple_typ = TStruct called_scope_return_struct, pos_sigma in let call_scope_let next = Bindlib.box_apply2 (fun next call_expr -> ScopeLet { scope_let_next = next; scope_let_pos = pos_sigma; scope_let_kind = CallingSubScope; scope_let_typ = result_tuple_typ; scope_let_expr = call_expr; }) (Bindlib.bind_var result_tuple_var next) (Expr.Box.lift call_expr) in let result_bindings_lets next = List.fold_right (fun (var_ctx, v) next -> let field = ScopeVar.Map.find var_ctx.scope_var_name scope_sig_decl.out_struct_fields in Bindlib.box_apply2 (fun next r -> ScopeLet { scope_let_next = next; scope_let_pos = pos_sigma; scope_let_typ = var_ctx.scope_var_typ, pos_sigma; scope_let_kind = DestructuringSubScopeResults; scope_let_expr = ( EStructAccess { name = called_scope_return_struct; e = r; field }, mark_tany m pos_sigma ); }) (Bindlib.bind_var v next) (Expr.Box.lift (Expr.make_var result_tuple_var (mark_tany m pos_sigma)))) all_subscope_output_vars_dcalc next in ( (fun next -> call_scope_let (result_bindings_lets next)), { ctx with subscope_vars = SubScopeName.Map.add subindex (List.fold_left (fun acc (var_ctx, dvar) -> ScopeVar.Map.add var_ctx.scope_var_name (dvar, var_ctx.scope_var_typ, var_ctx.scope_var_io) acc) ScopeVar.Map.empty all_subscope_output_vars_dcalc) ctx.subscope_vars; } ) | Assertion e -> let new_e = translate_expr ctx e in let scope_let_pos = Expr.pos e in let scope_let_typ = TLit TUnit, scope_let_pos in ( (fun next -> Bindlib.box_apply2 (fun next new_e -> ScopeLet { scope_let_next = next; scope_let_pos; scope_let_typ; scope_let_expr = Mark.add (Expr.map_ty (fun _ -> scope_let_typ) (Mark.get e)) (EAssert new_e); scope_let_kind = Assertion; }) (Bindlib.bind_var (Var.make "_") next) (Expr.Box.lift new_e)), ctx ) let translate_rules (ctx : 'm ctx) (scope_name : ScopeName.t) (rules : 'm Scopelang.Ast.rule list) ((sigma_name, pos_sigma) : Uid.MarkedString.info) (mark : 'm mark) (scope_sig : 'm scope_sig_ctx) : 'm Ast.expr scope_body_expr Bindlib.box * 'm ctx = let scope_lets, new_ctx = List.fold_left (fun (scope_lets, ctx) rule -> let new_scope_lets, new_ctx = translate_rule ctx rule (sigma_name, pos_sigma) in (fun next -> scope_lets (new_scope_lets next)), new_ctx) ((fun next -> next), ctx) rules in let scope_sig_decl = ScopeName.Map.find scope_name ctx.decl_ctx.ctx_scopes in let return_exp = Expr.estruct ~name:scope_sig.scope_sig_output_struct ~fields: (ScopeVar.Map.fold (fun var (dcalc_var, _, io) acc -> if Mark.remove io.Desugared.Ast.io_output then let field = ScopeVar.Map.find var scope_sig_decl.out_struct_fields in StructField.Map.add field (Expr.make_var dcalc_var (mark_tany mark pos_sigma)) acc else acc) new_ctx.scope_vars StructField.Map.empty) (mark_tany mark pos_sigma) in ( scope_lets (Bindlib.box_apply (fun return_exp -> Result return_exp) (Expr.Box.lift return_exp)), new_ctx ) (* From a scope declaration and definitions, create the corresponding scope body wrapped in the appropriate call convention. *) let translate_scope_decl (ctx : 'm ctx) (scope_name : ScopeName.t) (sigma : 'm Scopelang.Ast.scope_decl) = let sigma_info = ScopeName.get_info sigma.scope_decl_name in let scope_sig = ScopeName.Map.find sigma.scope_decl_name ctx.scopes_parameters in let scope_variables = scope_sig.scope_sig_local_vars in let ctx = { ctx with scope_name = Some scope_name } in let ctx = (* the context must be initialized for fresh variables for all only-input scope variables *) List.fold_left (fun ctx scope_var -> match Mark.remove scope_var.scope_var_io.io_input with | OnlyInput -> let scope_var_name = ScopeVar.get_info scope_var.scope_var_name in let scope_var_dcalc = Var.make (Mark.remove scope_var_name) in { ctx with scope_vars = ScopeVar.Map.add scope_var.scope_var_name ( scope_var_dcalc, scope_var.scope_var_typ, scope_var.scope_var_io ) ctx.scope_vars; } | _ -> ctx) ctx scope_variables in let date_rounding : date_rounding = match List.find_opt (function Desugared.Ast.DateRounding _, _ -> true) sigma.scope_options with | Some (Desugared.Ast.DateRounding Desugared.Ast.Increasing, _) -> RoundUp | Some (DateRounding Decreasing, _) -> RoundDown | None -> AbortOnRound in let ctx = { ctx with date_rounding } in let scope_input_var = Var.make (Mark.remove (ScopeName.get_info scope_name) ^ "_in") in let scope_input_struct_name = scope_sig.scope_sig_input_struct in let scope_return_struct_name = scope_sig.scope_sig_output_struct in let pos_sigma = Mark.get sigma_info in let scope_mark = (* Find a witness of a mark in the definitions *) match sigma.scope_decl_rules with | [] -> (* Todo: are we sure this can't happen in normal code ? E.g. is calling a scope which only defines input variables already an error at this stage or not ? *) Message.raise_spanned_error pos_sigma "Scope %a has no content" ScopeName.format scope_name | (Definition (_, _, _, (_, m)) | Assertion (_, m) | Call (_, _, m)) :: _ -> m in let rules_with_return_expr, ctx = translate_rules ctx scope_name sigma.scope_decl_rules sigma_info scope_mark scope_sig in let scope_variables = List.map (fun var_ctx -> let dcalc_x, _, _ = ScopeVar.Map.find var_ctx.scope_var_name ctx.scope_vars in var_ctx, dcalc_x) scope_variables in (* first we create variables from the fields of the input struct *) let scope_input_variables = List.filter (fun (var_ctx, _) -> match Mark.remove var_ctx.scope_var_io.io_input with | NoInput -> false | _ -> true) scope_variables in let input_destructurings next = List.fold_right (fun (var_ctx, v) next -> let field = (ScopeVar.Map.find var_ctx.scope_var_name scope_sig.scope_sig_in_fields) .scope_input_name in Bindlib.box_apply2 (fun next r -> ScopeLet { scope_let_kind = DestructuringInputStruct; scope_let_next = next; scope_let_pos = pos_sigma; scope_let_typ = input_var_typ var_ctx.scope_var_typ var_ctx.scope_var_io; scope_let_expr = ( EStructAccess { name = scope_input_struct_name; e = r; field }, mark_tany scope_mark pos_sigma ); }) (Bindlib.bind_var v next) (Expr.Box.lift (Expr.make_var scope_input_var (mark_tany scope_mark pos_sigma)))) scope_input_variables next in Bindlib.box_apply (fun scope_body_expr -> { scope_body_expr; scope_body_input_struct = scope_input_struct_name; scope_body_output_struct = scope_return_struct_name; }) (Bindlib.bind_var scope_input_var (input_destructurings rules_with_return_expr)) let translate_program (prgm : 'm Scopelang.Ast.program) : 'm Ast.program = let defs_dependencies = Scopelang.Dependency.build_program_dep_graph prgm in Scopelang.Dependency.check_for_cycle_in_defs defs_dependencies; let defs_ordering = Scopelang.Dependency.get_defs_ordering defs_dependencies in let decl_ctx = prgm.program_ctx in let scopes_parameters : 'm scope_sig_ctx ScopeName.Map.t = let process_scope_sig decl_ctx scope_name scope = let scope_path = ScopeName.path scope_name in let scope_ref = if scope_path = [] then let v = Var.make (Mark.remove (ScopeName.get_info scope_name)) in Local_scope_ref v else External_scope_ref (Mark.copy (ScopeName.get_info scope_name) scope_name) in let scope_info = ScopeName.Map.find scope_name decl_ctx.ctx_scopes in let scope_sig_in_fields = (* Output fields have already been generated and added to the program ctx at this point, because they are visible to the user (manipulated as the return type of ScopeCalls) ; but input fields are used purely internally and need to be created here to implement the call convention for scopes. *) let module S = Scopelang.Ast in ScopeVar.Map.filter_map (fun dvar svar -> match Mark.remove svar.S.svar_io.Desugared.Ast.io_input with | NoInput -> None | OnlyInput | Reentrant -> let info = ScopeVar.get_info dvar in let s = Mark.remove info ^ "_in" in Some { scope_input_name = StructField.fresh (s, Mark.get info); scope_input_io = svar.S.svar_io.Desugared.Ast.io_input; scope_input_typ = Mark.remove (input_var_typ (Mark.remove svar.S.svar_in_ty) svar.S.svar_io); scope_input_thunked = input_var_needs_thunking (Mark.remove svar.S.svar_in_ty) svar.S.svar_io; }) scope.S.scope_sig in { scope_sig_local_vars = List.map (fun (scope_var, svar) -> { scope_var_name = scope_var; scope_var_typ = Mark.remove svar.Scopelang.Ast.svar_in_ty; scope_var_io = svar.Scopelang.Ast.svar_io; }) (ScopeVar.Map.bindings scope.scope_sig); scope_sig_scope_ref = scope_ref; scope_sig_input_struct = scope_info.in_struct_name; scope_sig_output_struct = scope_info.out_struct_name; scope_sig_in_fields; } in let process_scopes scopes = ScopeName.Map.mapi (fun scope_name (scope_decl, _) -> process_scope_sig decl_ctx scope_name scope_decl) scopes in ModuleName.Map.fold (fun _ s -> ScopeName.Map.disjoint_union (process_scopes s)) prgm.Scopelang.Ast.program_modules (process_scopes prgm.Scopelang.Ast.program_scopes) in let ctx_structs = ScopeName.Map.fold (fun _ scope_sig_ctx acc -> let fields = ScopeVar.Map.fold (fun _ sivc acc -> let pos = Mark.get (StructField.get_info sivc.scope_input_name) in StructField.Map.add sivc.scope_input_name (sivc.scope_input_typ, pos) acc) scope_sig_ctx.scope_sig_in_fields StructField.Map.empty in StructName.Map.add scope_sig_ctx.scope_sig_input_struct fields acc) scopes_parameters decl_ctx.ctx_structs in let decl_ctx = { decl_ctx with ctx_structs } in let toplevel_vars = TopdefName.Map.mapi (fun name (_, ty) -> Var.make (Mark.remove (TopdefName.get_info name)), Mark.remove ty) prgm.Scopelang.Ast.program_topdefs in let ctx = { decl_ctx; scope_name = None; scopes_parameters; scope_vars = ScopeVar.Map.empty; subscope_vars = SubScopeName.Map.empty; toplevel_vars; date_rounding = AbortOnRound; } in (* the resulting expression is the list of definitions of all the scopes, ending with the top-level scope. The decl_ctx is filled in left-to-right order, then the chained scopes aggregated from the right. *) let rec translate_defs = function | [] -> Bindlib.box Nil | def :: next -> let dvar, def = match def with | Scopelang.Dependency.Topdef gname -> let expr, ty = TopdefName.Map.find gname prgm.program_topdefs in let expr = translate_expr ctx expr in ( fst (TopdefName.Map.find gname ctx.toplevel_vars), Bindlib.box_apply (fun e -> Topdef (gname, ty, e)) (Expr.Box.lift expr) ) | Scopelang.Dependency.Scope scope_name -> let scope = ScopeName.Map.find scope_name prgm.program_scopes in let scope_body = translate_scope_decl ctx scope_name (Mark.remove scope) in let scope_var = match (ScopeName.Map.find scope_name scopes_parameters) .scope_sig_scope_ref with | Local_scope_ref v -> v | External_scope_ref _ -> assert false in ( scope_var, Bindlib.box_apply (fun body -> ScopeDef (scope_name, body)) scope_body ) in let scope_next = translate_defs next in let next_bind = Bindlib.bind_var dvar scope_next in Bindlib.box_apply2 (fun item next_bind -> Cons (item, next_bind)) def next_bind in let items = translate_defs defs_ordering in Expr.Box.assert_closed items; { code_items = Bindlib.unbox items; decl_ctx; module_name = prgm.Scopelang.Ast.program_module_name; lang = prgm.program_lang; }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>