package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.9.0.tar.gz
md5=8f891209d18b6540df9c34b2d1a6a783
sha512=737770b87a057674bceefe77e8526720732552f51f424afcebcb6a628267eab522c4fd993caca1ae8ed7ace65a4a87e485af10c1676e51ca5939509a1b841ac2
doc/src/catala.runtime_ocaml/runtime.ml.html
Source file runtime.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr>, Emile Rolley <emile.rolley@tuta.io> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Ppx_yojson_conv_lib.Yojson_conv.Primitives type nonrec unit = unit type nonrec bool = bool (* An integer number of cents *) type money = Z.t type integer = Z.t type decimal = Q.t type date = Dates_calc.Dates.date type date_rounding = Dates_calc.Dates.date_rounding type duration = Dates_calc.Dates.period module Eoption = struct type 'a t = ENone of unit | ESome of 'a end type io_input = NoInput | OnlyInput | Reentrant [@@deriving yojson_of] type io_log = { io_input : io_input; io_output : bool } [@@deriving yojson_of] type source_position = { filename : string; start_line : int; start_column : int; end_line : int; end_column : int; law_headings : string list; } [@@deriving yojson_of] exception EmptyError exception AssertionFailed of source_position exception ConflictError of source_position exception UncomparableDurations exception IndivisibleDurations exception ImpossibleDate exception NoValueProvided of source_position (* TODO: register exception printers for the above (Printexc.register_printer) *) let round (q : Q.t) : Z.t = (* The mathematical formula is [round(q) = sgn(q) * floor(abs(q) + 0.5)]. However, Zarith's [Q.to_bigint] does not floor. Instead, it rounds towards 0 (that is, [-0.1] is rounded to [0]). We work around this by using [Z.fdiv], integer division with rounding towards [-inf], and implementing the trick from https://gmplib.org/list-archives/gmp-discuss/2009-May/003767.html *) let sgn = Q.sign q in let abs = Q.abs q in let n = Q.num abs in let d = Q.den abs in let abs_round = Z.(fdiv ((of_int 2 * n) + d) (of_int 2 * d)) in Z.(of_int sgn * abs_round) let money_of_cents_string (cents : string) : money = Z.of_string cents let money_of_units_int (units : int) : money = Z.(of_int units * of_int 100) let money_of_cents_integer (cents : integer) : money = cents let money_to_float (m : money) : float = Z.to_float m /. 100. let money_of_decimal (d : decimal) : money = (* Turn units to cents then round to nearest cent *) round Q.(d * of_int 100) let money_to_string (m : money) : string = Format.asprintf "%.2f" Q.(to_float (of_bigint m / of_int 100)) let money_to_cents m = m let money_round (m : money) : money = (* Turn cents to units then round to nearest unit, and convert back *) let units = Q.(of_bigint m / of_int 100) in Z.(round units * of_int 100) let decimal_of_string (d : string) : decimal = Q.of_string d let decimal_to_float (d : decimal) : float = Q.to_float d let decimal_of_float (d : float) : decimal = Q.of_float d let decimal_of_integer (d : integer) : decimal = Q.of_bigint d let decimal_to_string ~(max_prec_digits : int) (i : decimal) : string = let sign = Q.sign i in let n = Z.abs (Q.num i) in let d = Z.abs (Q.den i) in let int_part = Z.ediv n d in let n = ref (Z.erem n d) in let digits = ref [] in let leading_zeroes (digits : Z.t list) : int = match List.fold_right (fun digit num_leading_zeroes -> match num_leading_zeroes with | `End _ -> num_leading_zeroes | `Begin i -> if Z.(digit = zero) then `Begin (i + 1) else `End i) digits (`Begin 0) with | `End i -> i | `Begin i -> i in while !n <> Z.zero && List.length !digits - leading_zeroes !digits < max_prec_digits do n := Z.mul !n (Z.of_int 10); digits := Z.ediv !n d :: !digits; n := Z.erem !n d done; Format.asprintf "%s%a.%a%s" (if sign < 0 then "-" else "") Z.pp_print int_part (Format.pp_print_list ~pp_sep:(fun _fmt () -> ()) (fun fmt digit -> Format.fprintf fmt "%a" Z.pp_print digit)) (List.rev !digits) (if List.length !digits - leading_zeroes !digits = max_prec_digits then "…" else "") let decimal_round (q : decimal) : decimal = Q.of_bigint (round q) let decimal_of_money (m : money) : decimal = Q.div (Q.of_bigint m) (Q.of_int 100) let integer_of_string (s : string) : integer = Z.of_string s let integer_to_string (i : integer) : string = Z.to_string i let integer_to_int (i : integer) : int = Z.to_int i let integer_of_int (i : int) : integer = Z.of_int i let integer_exponentiation (i : integer) (e : int) : integer = Z.pow i e let integer_log2 = Z.log2 let year_of_date (d : date) : integer = let y, _, _ = Dates_calc.Dates.date_to_ymd d in Z.of_int y let month_number_of_date (d : date) : integer = let _, m, _ = Dates_calc.Dates.date_to_ymd d in Z.of_int m let is_leap_year (y : integer) = let y = Z.to_int y in Dates_calc.Dates.is_leap_year y let day_of_month_of_date (d : date) : integer = let _, _, d = Dates_calc.Dates.date_to_ymd d in Z.of_int d let date_of_numbers (year : int) (month : int) (day : int) : date = try Dates_calc.Dates.make_date ~year ~month ~day with _ -> raise ImpossibleDate let date_to_string (d : date) : string = Format.asprintf "%a" Dates_calc.Dates.format_date d let first_day_of_month = Dates_calc.Dates.first_day_of_month let last_day_of_month = Dates_calc.Dates.last_day_of_month let duration_of_numbers (year : int) (month : int) (day : int) : duration = Dates_calc.Dates.make_period ~years:year ~months:month ~days:day let duration_to_string (d : duration) : string = Format.asprintf "%a" Dates_calc.Dates.format_period d (* breaks previous format *) (* let x, y, z = CalendarLib.Date.Period.ymd d in * let to_print = * List.filter (fun (a, _) -> a <> 0) [x, "years"; y, "months"; z, "days"] * in * match to_print with * | [] -> "empty duration" * | _ -> * Format.asprintf "%a" * (Format.pp_print_list * ~pp_sep:(fun fmt () -> Format.fprintf fmt ",@ ") * (fun fmt (d, l) -> Format.fprintf fmt "%d %s" d l)) * to_print *) let duration_to_years_months_days (d : duration) : int * int * int = Dates_calc.Dates.period_to_ymds d let yojson_of_money (m : money) = `Float (money_to_float m) let yojson_of_integer (i : integer) = `Int (integer_to_int i) let yojson_of_decimal (d : decimal) = `Float (decimal_to_float d) let yojson_of_date (d : date) = `String (date_to_string d) let yojson_of_duration (d : duration) = `String (duration_to_string d) type runtime_value = | Unit | Bool of bool | Money of money | Integer of integer | Decimal of decimal | Date of date | Duration of duration | Enum of string list * (string * runtime_value) | Struct of string list * (string * runtime_value) list | Array of runtime_value array | Unembeddable [@@deriving yojson_of] let unembeddable _ = Unembeddable let embed_unit () = Unit let embed_bool x = Bool x let embed_money x = Money x let embed_integer x = Integer x let embed_decimal x = Decimal x let embed_date x = Date x let embed_duration x = Duration x let embed_array f x = Array (Array.map f x) type information = string list [@@deriving yojson_of] type raw_event = | BeginCall of information | EndCall of information | VariableDefinition of information * io_log * runtime_value | DecisionTaken of source_position type event = | VarComputation of var_def | FunCall of fun_call | SubScopeCall of { name : information; inputs : var_def list; body : event list; } [@@deriving yojson_of] and var_def = { pos : source_position option; name : information; io : io_log; value : runtime_value; fun_calls : fun_call list option; } and fun_call = { fun_name : information; fun_inputs : var_def list; body : event list; output : var_def; } let log_ref : raw_event list ref = ref [] let reset_log () = log_ref := [] let retrieve_log () = List.rev !log_ref let log_begin_call info f = log_ref := BeginCall info :: !log_ref; f let log_end_call info x = log_ref := EndCall info :: !log_ref; x let log_variable_definition (info : string list) (io : io_log) embed (x : 'a) = log_ref := VariableDefinition (info, io, embed x) :: !log_ref; x let log_decision_taken pos x = if x then log_ref := DecisionTaken pos :: !log_ref; x let rec pp_events ?(is_first_call = true) ppf events = let rec format_var_def ppf var = Format.fprintf ppf "@[<hov 2><var_def at %a>@ %s:@ %a@]" format_pos_opt var.pos (String.concat "." var.name) format_value var.value and format_pos_opt ppf = function | None -> Format.fprintf ppf "no_pos" | Some pos -> Format.fprintf ppf "%s line %d to %d" pos.filename pos.start_line pos.end_line and format_var_defs ppf = Format.pp_print_list ~pp_sep:(fun ppf () -> Format.fprintf ppf "@ ") format_var_def ppf and format_var_def_with_fun_calls ppf var_with_fun = match var_with_fun.fun_calls with | None | Some [] -> format_var_def ppf var_with_fun | Some fun_calls -> Format.fprintf ppf "@[<hov 2><var_def_with_fun>@ %s: %a@ computed from@ :@ @[<hv 2>[@ %a@;\ <1 -2>]@] @]" (String.concat "." var_with_fun.name) format_value var_with_fun.value (Format.pp_print_list ~pp_sep:(fun ppf () -> Format.fprintf ppf ",@ ") (fun ppf fun_call -> format_event ppf (FunCall fun_call))) fun_calls and format_value ppf = function | Unembeddable -> Format.fprintf ppf "fun" | Unit -> Format.fprintf ppf "()" | Bool x -> Format.fprintf ppf "%b" x | Money x -> Format.fprintf ppf "%s€" (money_to_string x) | Integer x -> Format.fprintf ppf "%d" (integer_to_int x) | Decimal x -> Format.fprintf ppf "%s" (decimal_to_string ~max_prec_digits:10 x) | Date x -> Format.fprintf ppf "%s" (date_to_string x) | Duration x -> Format.fprintf ppf "%s" (duration_to_string x) | Enum (_, (name, _)) -> Format.fprintf ppf "%s" name | Struct (name, attrs) -> Format.fprintf ppf "@[<hv 2>%s = {@ %a@;<1 -2>}@]" (String.concat "." name) (Format.pp_print_list ~pp_sep:(fun ppf () -> Format.fprintf ppf ",@,") (fun fmt (name, value) -> Format.fprintf fmt "%s: %a" name format_value value)) attrs | Array elts -> Format.fprintf ppf "@[<hv 2>[@ %a@;<1 -2>]@]" (Format.pp_print_list ~pp_sep:(fun ppf () -> Format.fprintf ppf ";@ ") format_value) (elts |> Array.to_list) and format_event ppf = function | VarComputation var_def_with_fun when Option.is_some var_def_with_fun.fun_calls -> Format.fprintf ppf "%a" format_var_def_with_fun_calls var_def_with_fun | VarComputation var_def -> Format.fprintf ppf "%a" format_var_def var_def | FunCall { fun_name; fun_inputs; body; output } -> Format.fprintf ppf "@[<hov 1><function_call>@ %s :=@ {@[<hv 1>@ input:@ %a,@ output:@ \ %a,@ body:@ [@,\ %a]@]@,\ @]@,\ }" (String.concat "." fun_name) (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.pp_print_string fmt "; ") format_var_def) fun_inputs format_var_def_with_fun_calls output (pp_events ~is_first_call:false) body | SubScopeCall { name; inputs; body } -> Format.fprintf ppf "@[<hv 2><subscope_call>@ %s :=@ {@[<hv 1>@,\ inputs:@ @[<hv 2>[@,\ %a@]],@,\ body:@ @[<hv 2>[@ %a@ ]@]@]@]@,\ }" (String.concat "." name) format_var_defs inputs (pp_events ~is_first_call:false) body in Format.fprintf ppf ("@[<hv 1>%a@]" ^^ if is_first_call then "@." else "") (Format.pp_print_list ~pp_sep:(fun ppf () -> Format.fprintf ppf "@ ") format_event) events module EventParser = struct module VarDefMap = struct module StringMap = Map.Make (String) type t = var_def list StringMap.t let add (name : string) (v : var_def) (map : t) : t = match StringMap.find_opt name map with | Some ls -> StringMap.add name (v :: ls) map | None -> StringMap.add name [v] map (** [get name map] returns the list of definitions if there is a corresponding entry, otherwise, returns an empty array. *) let get (name : string) (map : t) : var_def list = match StringMap.find_opt name map with Some ls -> ls | None -> [] let empty : t = StringMap.empty end type context = { (* Keeps tracks of the subscope input variable definitions. *) vars : VarDefMap.t; (* Current parsed events. *) events : event list; rest : raw_event list; } let empty_ctx = { vars = VarDefMap.empty; events = []; rest = [] } let io_log_to_string (io : io_log) : string = match io.io_input, io.io_output with | NoInput, false -> "internal" | _ -> Printf.sprintf "%s%s%s" (match io.io_input with | NoInput -> "" | OnlyInput -> "input" | Reentrant -> "reentrant") (match io.io_input, io.io_output with | (OnlyInput | Reentrant), true -> "/" | _ -> "") (if io.io_output then "output" else "") let raw_event_to_string = function | BeginCall name -> Printf.sprintf "BeginCall([ " ^ String.concat ", " name ^ " ])" | EndCall name -> Printf.sprintf "EndCall([ " ^ String.concat ", " name ^ " ])" | VariableDefinition (name, io, value) -> Printf.sprintf "VariableDefinition([ %s ], %s, %s)" (String.concat ", " name) (io_log_to_string io) (yojson_of_runtime_value value |> Yojson.Safe.to_string) | DecisionTaken pos -> Printf.sprintf "DecisionTaken(%s:%d.%d-%d.%d)" pos.filename pos.start_line pos.start_column pos.end_line pos.end_column (** [takewhile p xs] split the list [xs] as the longest prefix of the list [xs] where every element [x] satisfies [p x] and the rest. *) let rec take_while (p : 'a -> bool) (l : 'a list) : 'a list * 'a list = match l with | [] -> [], [] | h :: t when p h -> let t, rest = take_while p t in h :: t, rest | _ -> [], l let parse_raw_events raw_events = let nb_raw_events = List.length raw_events and is_function_call infos = 2 = List.length infos and is_subscope_call infos = 3 = List.length infos and is_var_def name = 2 = List.length name and is_output_var_def name = 3 = List.length name && "output" = List.nth name 2 and is_input_var_def name = 3 = List.length name && String.starts_with ~prefix:"input" (List.nth name 2) and is_subscope_input_var_def name = 2 = List.length name && String.contains (List.nth name 1) '.' in let rec parse_events (ctx : context) : context = match ctx.rest with | [] -> { ctx with events = ctx.events |> List.rev } | VariableDefinition (name, _, _) :: rest when is_var_def name -> (* VariableDefinition without position corresponds to a function definition which are ignored for now in structured events. *) parse_events { ctx with rest } | DecisionTaken pos :: VariableDefinition (name, io, value) :: rest when is_subscope_input_var_def name -> ( match name with | [_; var_dot_subscope_var_name] -> let var_name = List.nth (String.split_on_char '.' var_dot_subscope_var_name) 0 in parse_events { ctx with vars = ctx.vars |> VarDefMap.add var_name { pos = Some pos; name; value; fun_calls = None; io }; rest; } | _ -> failwith "unreachable due to the [is_subscope_input_var_def] test") | DecisionTaken pos :: VariableDefinition (name, io, value) :: rest when is_var_def name || is_output_var_def name -> parse_events { ctx with events = VarComputation { pos = Some pos; name; value; fun_calls = None; io } :: ctx.events; rest; } | DecisionTaken pos :: VariableDefinition _ :: BeginCall infos :: _ when is_function_call infos -> (* Variable definition with function calls. *) let rec parse_fun_calls fun_calls raw_events = match take_while (function VariableDefinition _ -> true | _ -> false) raw_events with | _, BeginCall infos :: _ when is_function_call infos -> let rest, fun_call = parse_fun_call raw_events in parse_fun_calls (fun_call :: fun_calls) rest | _ -> raw_events, fun_calls |> List.rev in let rest, var_comp = let rest, fun_calls = parse_fun_calls [] (List.tl ctx.rest) in match rest with | VariableDefinition (name, io, value) :: rest -> ( rest, VarComputation { pos = Some pos; name; value; fun_calls = Some fun_calls; io } ) | event :: _ -> failwith ("Invalid function call ([ " ^ String.concat ", " infos ^ " ]): expected variable definition (function output), found: " ^ raw_event_to_string event ^ "[" ^ (nb_raw_events - List.length rest + 1 |> string_of_int) ^ "]") | [] -> failwith ("Invalid function call ([ " ^ String.concat ", " infos ^ " ]): expected variable definition (function output), found: \ end of tokens") in parse_events { ctx with events = var_comp :: ctx.events; rest } | VariableDefinition _ :: BeginCall infos :: _ when is_function_call infos -> let rest, fun_call = parse_fun_call ctx.rest in parse_events { ctx with events = FunCall fun_call :: ctx.events; rest } | BeginCall infos :: rest when is_subscope_call infos -> ( match infos with | [_; var_name; _] -> let body_ctx = parse_events { empty_ctx with rest } in let inputs = VarDefMap.get var_name ctx.vars in parse_events { ctx with events = SubScopeCall { name = infos; inputs; body = body_ctx.events } :: ctx.events; rest = body_ctx.rest; } | _ -> failwith "unreachable due to the [is_subscope_call] test") | EndCall _ :: rest -> { ctx with events = ctx.events |> List.rev; rest } | event :: _ -> failwith ("Unexpected event: " ^ raw_event_to_string event) and parse_fun_call events = match take_while (function | VariableDefinition (name, _, _) -> is_input_var_def name | _ -> false) events with | inputs, BeginCall infos :: rest when is_function_call infos -> let fun_inputs = ListLabels.map inputs ~f:(function | VariableDefinition (name, io, value) -> { pos = None; name; value; fun_calls = None; io } | _ -> assert false) in let rest, body, output = let body_ctx = parse_events { vars = VarDefMap.empty; events = []; rest } in let body_rev = List.rev body_ctx.events in body_ctx.rest, body_rev |> List.tl |> List.rev, body_rev |> List.hd in let output = match output with | VarComputation var_def -> var_def | _ -> failwith "Missing function output variable definition." in rest, { fun_name = infos; fun_inputs; body; output } | _ -> failwith "Invalid start of function call." in let ctx = try parse_events { empty_ctx with rest = raw_events } with Failure msg -> (* TODO: discuss what should be done. *) Printf.eprintf "An error occurred while parsing raw events: %s\n" msg; empty_ctx in ctx.events end let handle_default : 'a. source_position -> (unit -> 'a) array -> (unit -> bool) -> (unit -> 'a) -> 'a = fun pos exceptions just cons -> let except = Array.fold_left (fun acc except -> let new_val = try Some (except ()) with EmptyError -> None in match acc, new_val with | None, _ -> new_val | Some _, None -> acc | Some _, Some _ -> raise (ConflictError pos)) None exceptions in match except with | Some x -> x | None -> if just () then cons () else raise EmptyError let handle_default_opt (pos : source_position) (exceptions : 'a Eoption.t array) (just : unit -> bool) (cons : unit -> 'a Eoption.t) : 'a Eoption.t = let except = Array.fold_left (fun acc except -> match acc, except with | Eoption.ENone _, _ -> except | Eoption.ESome _, Eoption.ENone _ -> acc | Eoption.ESome _, Eoption.ESome _ -> raise (ConflictError pos)) (Eoption.ENone ()) exceptions in match except with | Eoption.ESome _ -> except | Eoption.ENone _ -> if just () then cons () else Eoption.ENone () let no_input : unit -> 'a = fun _ -> raise EmptyError (* TODO: add a compare built-in to dates_calc. At the moment this fails on e.g. [3 months, 4 months] *) let compare_periods (p1 : duration) (p2 : duration) : int = try let p1_days = Dates_calc.Dates.period_to_days p1 in let p2_days = Dates_calc.Dates.period_to_days p2 in compare p1_days p2_days with Dates_calc.Dates.AmbiguousComputation -> raise UncomparableDurations (* TODO: same here, although it was tweaked to never fail on equal dates. Comparing the difference to duration_0 is not a good idea because we still want to fail on [1 month, 30 days] rather than return [false] *) let equal_periods (p1 : duration) (p2 : duration) : bool = try Dates_calc.Dates.period_to_days (Dates_calc.Dates.sub_periods p1 p2) = 0 with Dates_calc.Dates.AmbiguousComputation -> raise UncomparableDurations module Oper = struct let o_not = Stdlib.not let o_length a = Z.of_int (Array.length a) let o_torat_int = decimal_of_integer let o_torat_mon = decimal_of_money let o_tomoney_rat = money_of_decimal let o_getDay = day_of_month_of_date let o_getMonth = month_number_of_date let o_getYear = year_of_date let o_firstDayOfMonth = first_day_of_month let o_lastDayOfMonth = last_day_of_month let o_round_mon = money_round let o_round_rat = decimal_round let o_minus_int i1 = Z.sub Z.zero i1 let o_minus_rat i1 = Q.sub Q.zero i1 let o_minus_mon m1 = Z.sub Z.zero m1 let o_minus_dur = Dates_calc.Dates.neg_period let o_and = ( && ) let o_or = ( || ) let o_xor : bool -> bool -> bool = ( <> ) let o_eq = ( = ) let o_map = Array.map let o_reduce f dft a = let len = Array.length a in if len = 0 then dft else let r = ref a.(0) in for i = 1 to len - 1 do r := f !r a.(i) done; !r let o_concat = Array.append let o_filter f a = Array.of_list (List.filter f (Array.to_list a)) let o_add_int_int i1 i2 = Z.add i1 i2 let o_add_rat_rat i1 i2 = Q.add i1 i2 let o_add_mon_mon m1 m2 = Z.add m1 m2 let o_add_dat_dur r da du = Dates_calc.Dates.add_dates ~round:r da du let o_add_dur_dur = Dates_calc.Dates.add_periods let o_sub_int_int i1 i2 = Z.sub i1 i2 let o_sub_rat_rat i1 i2 = Q.sub i1 i2 let o_sub_mon_mon m1 m2 = Z.sub m1 m2 let o_sub_dat_dat = Dates_calc.Dates.sub_dates let o_sub_dat_dur dat dur = Dates_calc.Dates.(add_dates dat (neg_period dur)) let o_sub_dur_dur = Dates_calc.Dates.sub_periods let o_mult_int_int i1 i2 = Z.mul i1 i2 let o_mult_rat_rat i1 i2 = Q.mul i1 i2 let o_mult_mon_rat i1 i2 = (* Multiply then round to nearest cent *) let rat_result = Q.mul (Q.of_bigint i1) i2 in round rat_result let o_mult_dur_int d m = Dates_calc.Dates.mul_period d (Z.to_int m) let o_div_int_int i1 i2 = (* It's not on the ocamldoc, but Q.div likely already raises this ? *) if Z.zero = i2 then raise Division_by_zero else Q.div (Q.of_bigint i1) (Q.of_bigint i2) let o_div_rat_rat i1 i2 = if Q.zero = i2 then raise Division_by_zero else Q.div i1 i2 let o_div_mon_mon m1 m2 = if Z.zero = m2 then raise Division_by_zero else Q.div (Q.of_bigint m1) (Q.of_bigint m2) let o_div_mon_rat m1 r1 = if Q.zero = r1 then raise Division_by_zero else o_mult_mon_rat m1 (Q.inv r1) let o_div_dur_dur d1 d2 = let i1, i2 = try ( integer_of_int (Dates_calc.Dates.period_to_days d1), integer_of_int (Dates_calc.Dates.period_to_days d2) ) with Dates_calc.Dates.AmbiguousComputation -> raise IndivisibleDurations in o_div_int_int i1 i2 let o_lt_int_int i1 i2 = Z.compare i1 i2 < 0 let o_lt_rat_rat i1 i2 = Q.compare i1 i2 < 0 let o_lt_mon_mon m1 m2 = Z.compare m1 m2 < 0 let o_lt_dur_dur d1 d2 = compare_periods d1 d2 < 0 let o_lt_dat_dat d1 d2 = Dates_calc.Dates.compare_dates d1 d2 < 0 let o_lte_int_int i1 i2 = Z.compare i1 i2 <= 0 let o_lte_rat_rat i1 i2 = Q.compare i1 i2 <= 0 let o_lte_mon_mon m1 m2 = Z.compare m1 m2 <= 0 let o_lte_dur_dur d1 d2 = compare_periods d1 d2 <= 0 let o_lte_dat_dat d1 d2 = Dates_calc.Dates.compare_dates d1 d2 <= 0 let o_gt_int_int i1 i2 = Z.compare i1 i2 > 0 let o_gt_rat_rat i1 i2 = Q.compare i1 i2 > 0 let o_gt_mon_mon m1 m2 = Z.compare m1 m2 > 0 let o_gt_dur_dur d1 d2 = compare_periods d1 d2 > 0 let o_gt_dat_dat d1 d2 = Dates_calc.Dates.compare_dates d1 d2 > 0 let o_gte_int_int i1 i2 = Z.compare i1 i2 >= 0 let o_gte_rat_rat i1 i2 = Q.compare i1 i2 >= 0 let o_gte_mon_mon m1 m2 = Z.compare m1 m2 >= 0 let o_gte_dur_dur d1 d2 = compare_periods d1 d2 >= 0 let o_gte_dat_dat d1 d2 = Dates_calc.Dates.compare_dates d1 d2 >= 0 let o_eq_int_int i1 i2 = Z.equal i1 i2 let o_eq_rat_rat i1 i2 = Q.equal i1 i2 let o_eq_mon_mon m1 m2 = Z.equal m1 m2 let o_eq_dur_dur d1 d2 = equal_periods d1 d2 let o_eq_dat_dat d1 d2 = Dates_calc.Dates.compare_dates d1 d2 = 0 let o_fold = Array.fold_left end include Oper type hash = string let modules_table : (string, hash) Hashtbl.t = Hashtbl.create 13 let values_table : (string list * string, Obj.t) Hashtbl.t = Hashtbl.create 13 let register_module modname values hash = Hashtbl.add modules_table modname hash; List.iter (fun (id, v) -> Hashtbl.add values_table ([modname], id) v) values let check_module m h = String.equal (Hashtbl.find modules_table m) h let lookup_value qid = try Hashtbl.find values_table qid with Not_found -> failwith ("Could not resolve reference to " ^ String.concat "." (fst qid) ^ "." ^ snd qid)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>