package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.7.0.tar.gz
md5=6dbbc2f50c23693f26ab6f048e78172f
sha512=a5701e14932d8a866e2aa3731f76df85ff2a68b4fa943fd510c535913573274d66eaec1ae6fcae17f20b475876048a9ab196ef6d8c23d4ea6b90b986aa0a6daa
doc/src/catala.lcalc/ast.ml.html
Source file ast.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Utils module Runtime = Runtime_ocaml.Runtime module D = Dcalc.Ast type lit = | LBool of bool | LInt of Runtime.integer | LRat of Runtime.decimal | LMoney of Runtime.money | LUnit | LDate of Runtime.date | LDuration of Runtime.duration type except = ConflictError | EmptyError | NoValueProvided | Crash type 'm mark = 'm D.mark type 'm marked_expr = ('m expr, 'm) D.marked and 'm expr = | EVar of 'm expr Bindlib.var | ETuple of 'm marked_expr list * D.StructName.t option (** The [MarkedString.info] is the former struct field name*) | ETupleAccess of 'm marked_expr * int * D.StructName.t option * D.typ Marked.pos list (** The [MarkedString.info] is the former struct field name *) | EInj of 'm marked_expr * int * D.EnumName.t * D.typ Marked.pos list (** The [MarkedString.info] is the former enum case name *) | EMatch of 'm marked_expr * 'm marked_expr list * D.EnumName.t (** The [MarkedString.info] is the former enum case name *) | EArray of 'm marked_expr list | ELit of lit | EAbs of ('m expr, 'm marked_expr) Bindlib.mbinder * D.typ Marked.pos list | EApp of 'm marked_expr * 'm marked_expr list | EAssert of 'm marked_expr | EOp of D.operator | EIfThenElse of 'm marked_expr * 'm marked_expr * 'm marked_expr | ERaise of except | ECatch of 'm marked_expr * except * 'm marked_expr type 'm program = ('m expr, 'm) Dcalc.Ast.program_generic (* <copy-paste from dcalc/ast.ml> *) let evar v mark = Bindlib.box_apply (Marked.mark mark) (Bindlib.box_var v) let etuple args s mark = Bindlib.box_apply (fun args -> ETuple (args, s), mark) (Bindlib.box_list args) let etupleaccess e1 i s typs mark = Bindlib.box_apply (fun e1 -> ETupleAccess (e1, i, s, typs), mark) e1 let einj e1 i e_name typs mark = Bindlib.box_apply (fun e1 -> EInj (e1, i, e_name, typs), mark) e1 let ematch arg arms e_name mark = Bindlib.box_apply2 (fun arg arms -> EMatch (arg, arms, e_name), mark) arg (Bindlib.box_list arms) let earray args mark = Bindlib.box_apply (fun args -> EArray args, mark) (Bindlib.box_list args) let elit l mark = Bindlib.box (ELit l, mark) let eabs binder typs mark = Bindlib.box_apply (fun binder -> EAbs (binder, typs), mark) binder let eapp e1 args mark = Bindlib.box_apply2 (fun e1 args -> EApp (e1, args), mark) e1 (Bindlib.box_list args) let eassert e1 mark = Bindlib.box_apply (fun e1 -> EAssert e1, mark) e1 let eop op mark = Bindlib.box (EOp op, mark) let eifthenelse e1 e2 e3 pos = Bindlib.box_apply3 (fun e1 e2 e3 -> EIfThenElse (e1, e2, e3), pos) e1 e2 e3 type 'm var = 'm expr Bindlib.var type 'm vars = 'm expr Bindlib.mvar let new_var s = Bindlib.new_var (fun x -> EVar x) s module Var = struct type t = V : 'a var -> t (* See Dcalc.Ast.var *) let t v = V v let get (V v) = Bindlib.copy_var v (fun x -> EVar x) (Bindlib.name_of v) let compare (V x) (V y) = Bindlib.compare_vars x y end module VarSet = Set.Make (Var) module VarMap = Map.Make (Var) (* </copy-paste> *) let eraise e1 pos = Bindlib.box (ERaise e1, pos) let ecatch e1 exn e2 pos = Bindlib.box_apply2 (fun e1 e2 -> ECatch (e1, exn, e2), pos) e1 e2 let translate_var v = Bindlib.copy_var v (fun x -> EVar x) (Bindlib.name_of v) let map_expr ctx ~f e = let m = Marked.get_mark e in match Marked.unmark e with | EVar v -> evar (translate_var v) (Marked.get_mark e) | EApp (e1, args) -> eapp (f ctx e1) (List.map (f ctx) args) (Marked.get_mark e) | EAbs (binder, typs) -> let vars, body = Bindlib.unmbind binder in eabs (Bindlib.bind_mvar (Array.map translate_var vars) (f ctx body)) typs m | ETuple (args, s) -> etuple (List.map (f ctx) args) s (Marked.get_mark e) | ETupleAccess (e1, n, s_name, typs) -> etupleaccess ((f ctx) e1) n s_name typs (Marked.get_mark e) | EInj (e1, i, e_name, typs) -> einj ((f ctx) e1) i e_name typs (Marked.get_mark e) | EMatch (arg, arms, e_name) -> ematch ((f ctx) arg) (List.map (f ctx) arms) e_name (Marked.get_mark e) | EArray args -> earray (List.map (f ctx) args) (Marked.get_mark e) | ELit l -> elit l (Marked.get_mark e) | EAssert e1 -> eassert ((f ctx) e1) (Marked.get_mark e) | EOp op -> Bindlib.box (EOp op, Marked.get_mark e) | ERaise exn -> eraise exn (Marked.get_mark e) | EIfThenElse (e1, e2, e3) -> eifthenelse ((f ctx) e1) ((f ctx) e2) ((f ctx) e3) (Marked.get_mark e) | ECatch (e1, exn, e2) -> ecatch (f ctx e1) exn (f ctx e2) (Marked.get_mark e) let rec map_expr_top_down ~f e = map_expr () ~f:(fun () -> map_expr_top_down ~f) (f e) let map_expr_marks ~f e = map_expr_top_down ~f:(fun e -> Marked.(mark (f (get_mark e)) (unmark e))) e let untype_expr e = map_expr_marks ~f:(fun m -> Untyped { pos = D.mark_pos m }) e let untype_program prg = { prg with D.scopes = Bindlib.unbox (D.map_exprs_in_scopes ~f:(fun e -> untype_expr e) ~varf:translate_var prg.D.scopes); } (** See [Bindlib.box_term] documentation for why we are doing that. *) let box_expr (e : 'm marked_expr) : 'm marked_expr Bindlib.box = let rec id_t () e = map_expr () ~f:id_t e in id_t () e let make_var (x, mark) = Bindlib.box_apply (fun x -> x, mark) (Bindlib.box_var x) let make_abs xs e taus mark = Bindlib.box_apply (fun b -> EAbs (b, taus), mark) (Bindlib.bind_mvar xs e) let make_app e u mark = Bindlib.box_apply2 (fun e u -> EApp (e, u), mark) e (Bindlib.box_list u) let make_let_in x tau e1 e2 pos = let m_e1 = Marked.get_mark (Bindlib.unbox e1) in let m_e2 = Marked.get_mark (Bindlib.unbox e2) in let m_abs = D.map_mark2 (fun _ _ -> pos) (fun m1 m2 -> TArrow (m1.ty, m2.ty), m1.pos) m_e1 m_e2 in make_app (make_abs [| x |] e2 [tau] m_abs) [e1] m_e2 let make_multiple_let_in xs taus e1s e2 pos = (* let m_e1s = List.map (fun e -> Marked.get_mark (Bindlib.unbox e)) e1s in *) let m_e1s = D.fold_marks List.hd (fun tys -> D.TTuple (List.map (fun t -> t.D.ty) tys, None), (List.hd tys).D.pos) (List.map (fun e -> Marked.get_mark (Bindlib.unbox e)) e1s) in let m_e2 = Marked.get_mark (Bindlib.unbox e2) in let m_abs = D.map_mark2 (fun _ _ -> pos) (fun m1 m2 -> Marked.mark pos (D.TArrow (m1.ty, m2.ty))) m_e1s m_e2 in make_app (make_abs xs e2 taus m_abs) e1s m_e2 let ( let+ ) x f = Bindlib.box_apply f x let ( and+ ) x y = Bindlib.box_pair x y let option_enum : D.EnumName.t = D.EnumName.fresh ("eoption", Pos.no_pos) let none_constr : D.EnumConstructor.t = D.EnumConstructor.fresh ("ENone", Pos.no_pos) let some_constr : D.EnumConstructor.t = D.EnumConstructor.fresh ("ESome", Pos.no_pos) let option_enum_config : (D.EnumConstructor.t * D.typ Marked.pos) list = [none_constr, (D.TLit D.TUnit, Pos.no_pos); some_constr, (D.TAny, Pos.no_pos)] (* FIXME: proper typing in all the constructors below *) let make_none m = let mark = Marked.mark m in let tunit = D.TLit D.TUnit, D.mark_pos m in Bindlib.box @@ mark @@ EInj ( Marked.mark (D.map_mark (fun pos -> pos) (fun _ -> tunit) m) (ELit LUnit), 0, option_enum, [D.TLit D.TUnit, Pos.no_pos; D.TAny, Pos.no_pos] ) let make_some e = let m = Marked.get_mark @@ Bindlib.unbox e in let mark = Marked.mark m in let+ e in mark @@ EInj (e, 1, option_enum, [D.TLit D.TUnit, D.mark_pos m; D.TAny, D.mark_pos m]) (** [make_matchopt_with_abs_arms arg e_none e_some] build an expression [match arg with |None -> e_none | Some -> e_some] and requires e_some and e_none to be in the form [EAbs ...].*) let make_matchopt_with_abs_arms arg e_none e_some = let m = Marked.get_mark @@ Bindlib.unbox arg in let mark = Marked.mark m in let+ arg and+ e_none and+ e_some in mark @@ EMatch (arg, [e_none; e_some], option_enum) (** [make_matchopt pos v tau arg e_none e_some] builds an expression [match arg with | None () -> e_none | Some v -> e_some]. It binds v to e_some, permitting it to be used inside the expression. There is no requirements on the form of both e_some and e_none. *) let make_matchopt m v tau arg e_none e_some = let x = new_var "_" in make_matchopt_with_abs_arms arg (make_abs (Array.of_list [x]) e_none [D.TLit D.TUnit, D.mark_pos m] m) (make_abs (Array.of_list [v]) e_some [tau] m) let handle_default = Var.t (new_var "handle_default") let handle_default_opt = Var.t (new_var "handle_default_opt") type 'm binder = ('m expr, 'm marked_expr) Bindlib.binder
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>