package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.7.0.tar.gz
md5=6dbbc2f50c23693f26ab6f048e78172f
sha512=a5701e14932d8a866e2aa3731f76df85ff2a68b4fa943fd510c535913573274d66eaec1ae6fcae17f20b475876048a9ab196ef6d8c23d4ea6b90b986aa0a6daa
doc/src/catala.dcalc/typing.ml.html
Source file typing.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** Typing for the default calculus. Because of the error terms, we perform type inference using the classical W algorithm with union-find unification. *) open Utils module A = Ast open A.Infer (** {1 Types and unification} *) let typ_needs_parens (t : typ Marked.pos UnionFind.elem) : bool = let t = UnionFind.get (UnionFind.find t) in match Marked.unmark t with TArrow _ | TArray _ -> true | _ -> false let rec format_typ (ctx : Ast.decl_ctx) (fmt : Format.formatter) (typ : typ Marked.pos UnionFind.elem) : unit = let format_typ = format_typ ctx in let format_typ_with_parens (fmt : Format.formatter) (t : typ Marked.pos UnionFind.elem) = if typ_needs_parens t then Format.fprintf fmt "(%a)" format_typ t else Format.fprintf fmt "%a" format_typ t in let typ = UnionFind.get (UnionFind.find typ) in match Marked.unmark typ with | TLit l -> Format.fprintf fmt "%a" Print.format_tlit l | TTuple (ts, None) -> Format.fprintf fmt "@[<hov 2>(%a)]" (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt "@ *@ ") (fun fmt t -> Format.fprintf fmt "%a" format_typ t)) ts | TTuple (_ts, Some s) -> Format.fprintf fmt "%a" Ast.StructName.format_t s | TEnum (_ts, e) -> Format.fprintf fmt "%a" Ast.EnumName.format_t e | TArrow (t1, t2) -> Format.fprintf fmt "@[<hov 2>%a →@ %a@]" format_typ_with_parens t1 format_typ t2 | TArray t1 -> Format.fprintf fmt "@[%a@ array@]" format_typ t1 | TAny d -> Format.fprintf fmt "any[%d]" (Any.hash d) exception Type_error of A.untyped A.marked_expr * typ Marked.pos UnionFind.elem * typ Marked.pos UnionFind.elem (** Raises an error if unification cannot be performed *) let rec unify (ctx : Ast.decl_ctx) (e : 'm A.marked_expr) (* used for error context *) (t1 : typ Marked.pos UnionFind.elem) (t2 : typ Marked.pos UnionFind.elem) : unit = let unify = unify ctx in (* Cli.debug_format "Unifying %a and %a" (format_typ ctx) t1 (format_typ ctx) t2; *) let t1_repr = UnionFind.get (UnionFind.find t1) in let t2_repr = UnionFind.get (UnionFind.find t2) in let raise_type_error () = raise (Type_error (Bindlib.unbox (A.untype_expr e), t1, t2)) in let repr = match Marked.unmark t1_repr, Marked.unmark t2_repr with | TLit tl1, TLit tl2 when tl1 = tl2 -> None | TArrow (t11, t12), TArrow (t21, t22) -> unify e t11 t21; unify e t12 t22; None | TTuple (ts1, s1), TTuple (ts2, s2) -> if s1 = s2 && List.length ts1 = List.length ts2 then begin List.iter2 (unify e) ts1 ts2; None end else raise_type_error () | TEnum (ts1, e1), TEnum (ts2, e2) -> if e1 = e2 && List.length ts1 = List.length ts2 then begin List.iter2 (unify e) ts1 ts2; None end else raise_type_error () | TArray t1', TArray t2' -> unify e t1' t2'; None | TAny _, TAny _ -> None | TAny _, _ -> Some t2_repr | _, TAny _ -> Some t1_repr | _ -> raise_type_error () in let t_union = UnionFind.union t1 t2 in match repr with None -> () | Some t_repr -> UnionFind.set t_union t_repr let handle_type_error ctx e t1 t2 = (* TODO: if we get weird error messages, then it means that we should use the persistent version of the union-find data structure. *) let t1_repr = UnionFind.get (UnionFind.find t1) in let t2_repr = UnionFind.get (UnionFind.find t2) in let t1_pos = Marked.get_mark t1_repr in let t2_pos = Marked.get_mark t2_repr in let unformat_typ typ = let buf = Buffer.create 59 in let ppf = Format.formatter_of_buffer buf in (* set infinite width to disable line cuts *) Format.pp_set_margin ppf max_int; format_typ ctx ppf typ; Format.pp_print_flush ppf (); Buffer.contents buf in let t1_s fmt () = Cli.format_with_style [ANSITerminal.yellow] fmt (unformat_typ t1) in let t2_s fmt () = Cli.format_with_style [ANSITerminal.yellow] fmt (unformat_typ t2) in Errors.raise_multispanned_error [ ( Some (Format.asprintf "Error coming from typechecking the following expression:"), A.pos e ); Some (Format.asprintf "Type %a coming from expression:" t1_s ()), t1_pos; Some (Format.asprintf "Type %a coming from expression:" t2_s ()), t2_pos; ] "Error during typechecking, incompatible types:\n%a %a\n%a %a" (Cli.format_with_style [ANSITerminal.blue; ANSITerminal.Bold]) "-->" t1_s () (Cli.format_with_style [ANSITerminal.blue; ANSITerminal.Bold]) "-->" t2_s () (** Operators have a single type, instead of being polymorphic with constraints. This allows us to have a simpler type system, while we argue the syntactic burden of operator annotations helps the programmer visualize the type flow in the code. *) let op_type (op : A.operator Marked.pos) : typ Marked.pos UnionFind.elem = let pos = Marked.get_mark op in let bt = UnionFind.make (TLit TBool, pos) in let it = UnionFind.make (TLit TInt, pos) in let rt = UnionFind.make (TLit TRat, pos) in let mt = UnionFind.make (TLit TMoney, pos) in let dut = UnionFind.make (TLit TDuration, pos) in let dat = UnionFind.make (TLit TDate, pos) in let any = UnionFind.make (TAny (Any.fresh ()), pos) in let array_any = UnionFind.make (TArray any, pos) in let any2 = UnionFind.make (TAny (Any.fresh ()), pos) in let array_any2 = UnionFind.make (TArray any2, pos) in let arr x y = UnionFind.make (TArrow (x, y), pos) in match Marked.unmark op with | A.Ternop A.Fold -> arr (arr any2 (arr any any2)) (arr any2 (arr array_any any2)) | A.Binop (A.And | A.Or | A.Xor) -> arr bt (arr bt bt) | A.Binop (A.Add KInt | A.Sub KInt | A.Mult KInt | A.Div KInt) -> arr it (arr it it) | A.Binop (A.Add KRat | A.Sub KRat | A.Mult KRat | A.Div KRat) -> arr rt (arr rt rt) | A.Binop (A.Add KMoney | A.Sub KMoney) -> arr mt (arr mt mt) | A.Binop (A.Add KDuration | A.Sub KDuration) -> arr dut (arr dut dut) | A.Binop (A.Sub KDate) -> arr dat (arr dat dut) | A.Binop (A.Add KDate) -> arr dat (arr dut dat) | A.Binop (A.Div KDuration) -> arr dut (arr dut rt) | A.Binop (A.Mult KDuration) -> arr dut (arr it dut) | A.Binop (A.Div KMoney) -> arr mt (arr mt rt) | A.Binop (A.Mult KMoney) -> arr mt (arr rt mt) | A.Binop (A.Lt KInt | A.Lte KInt | A.Gt KInt | A.Gte KInt) -> arr it (arr it bt) | A.Binop (A.Lt KRat | A.Lte KRat | A.Gt KRat | A.Gte KRat) -> arr rt (arr rt bt) | A.Binop (A.Lt KMoney | A.Lte KMoney | A.Gt KMoney | A.Gte KMoney) -> arr mt (arr mt bt) | A.Binop (A.Lt KDate | A.Lte KDate | A.Gt KDate | A.Gte KDate) -> arr dat (arr dat bt) | A.Binop (A.Lt KDuration | A.Lte KDuration | A.Gt KDuration | A.Gte KDuration) -> arr dut (arr dut bt) | A.Binop (A.Eq | A.Neq) -> arr any (arr any bt) | A.Binop A.Map -> arr (arr any any2) (arr array_any array_any2) | A.Binop A.Filter -> arr (arr any bt) (arr array_any array_any) | A.Binop A.Concat -> arr array_any (arr array_any array_any) | A.Unop (A.Minus KInt) -> arr it it | A.Unop (A.Minus KRat) -> arr rt rt | A.Unop (A.Minus KMoney) -> arr mt mt | A.Unop (A.Minus KDuration) -> arr dut dut | A.Unop A.Not -> arr bt bt | A.Unop (A.Log (A.PosRecordIfTrueBool, _)) -> arr bt bt | A.Unop (A.Log _) -> arr any any | A.Unop A.Length -> arr array_any it | A.Unop A.GetDay -> arr dat it | A.Unop A.GetMonth -> arr dat it | A.Unop A.GetYear -> arr dat it | A.Unop A.FirstDayOfMonth -> arr dat dat | A.Unop A.LastDayOfMonth -> arr dat dat | A.Unop A.RoundMoney -> arr mt mt | A.Unop A.RoundDecimal -> arr rt rt | A.Unop A.IntToRat -> arr it rt | A.Unop A.MoneyToRat -> arr mt rt | A.Unop A.RatToMoney -> arr rt mt | Binop (Mult KDate) | Binop (Div KDate) | Unop (Minus KDate) -> Errors.raise_spanned_error pos "This operator is not available!" (** {1 Double-directed typing} *) type env = typ Marked.pos UnionFind.elem A.VarMap.t let translate_var v = Bindlib.copy_var v (fun x -> A.EVar x) (Bindlib.name_of v) let add_pos e ty = Marked.mark (A.pos e) ty let ty (_, A.Inferring { A.uf; _ }) = uf let ( let+ ) x f = Bindlib.box_apply f x let ( and+ ) x1 x2 = Bindlib.box_pair x1 x2 (* Maps a boxing function on a list, returning a boxed list *) let bmap (f : 'a -> 'b Bindlib.box) (es : 'a list) : 'b list Bindlib.box = List.fold_right (fun e acc -> let+ e' = f e and+ acc in e' :: acc) es (Bindlib.box []) (* Likewise, but with a function of two arguments on two lists of identical lengths *) let bmap2 (f : 'a -> 'b -> 'c Bindlib.box) (es : 'a list) (xs : 'b list) : 'c list Bindlib.box = List.fold_right2 (fun e x acc -> let+ e' = f e x and+ acc in e' :: acc) es xs (Bindlib.box []) let box_ty e = Bindlib.unbox (Bindlib.box_apply ty e) (** Infers the most permissive type from an expression *) let rec typecheck_expr_bottom_up (ctx : Ast.decl_ctx) (env : env) (e : 'm A.marked_expr) : A.inferring A.marked_expr Bindlib.box = (* Cli.debug_format "Looking for type of %a" (Print.format_expr ~debug:true ctx) e; *) let pos_e = A.pos e in let mark (e : A.inferring A.expr) uf = Marked.mark (A.Inferring { A.uf; pos = pos_e }) e in let unionfind_make ?(pos = e) t = UnionFind.make (add_pos pos t) in let mark_with_uf e1 ?pos ty = mark e1 (unionfind_make ?pos ty) in match Marked.unmark e with | A.EVar v -> begin match A.VarMap.find_opt (A.Var.t v) env with | Some t -> let+ v' = Bindlib.box_var (translate_var v) in mark v' t | None -> Errors.raise_spanned_error (A.pos e) "Variable %s not found in the current context." (Bindlib.name_of v) end | A.ELit (LBool _) as e1 -> Bindlib.box @@ mark_with_uf e1 (TLit TBool) | A.ELit (LInt _) as e1 -> Bindlib.box @@ mark_with_uf e1 (TLit TInt) | A.ELit (LRat _) as e1 -> Bindlib.box @@ mark_with_uf e1 (TLit TRat) | A.ELit (LMoney _) as e1 -> Bindlib.box @@ mark_with_uf e1 (TLit TMoney) | A.ELit (LDate _) as e1 -> Bindlib.box @@ mark_with_uf e1 (TLit TDate) | A.ELit (LDuration _) as e1 -> Bindlib.box @@ mark_with_uf e1 (TLit TDuration) | A.ELit LUnit as e1 -> Bindlib.box @@ mark_with_uf e1 (TLit TUnit) | A.ELit LEmptyError as e1 -> Bindlib.box @@ mark_with_uf e1 (TAny (Any.fresh ())) | A.ETuple (es, s) -> let+ es = bmap (typecheck_expr_bottom_up ctx env) es in mark_with_uf (ETuple (es, s)) (TTuple (List.map ty es, s)) | A.ETupleAccess (e1, n, s, typs) -> begin let utyps = List.map ast_to_typ typs in let+ e1 = typecheck_expr_top_down ctx env (unionfind_make (TTuple (utyps, s))) e1 in match List.nth_opt utyps n with | Some t' -> mark (ETupleAccess (e1, n, s, typs)) t' | None -> Errors.raise_spanned_error (A.pos e1) "Expression should have a tuple type with at least %d elements but \ only has %d" n (List.length typs) end | A.EInj (e1, n, e_name, ts) -> let ts' = List.map ast_to_typ ts in let ts_n = match List.nth_opt ts' n with | Some ts_n -> ts_n | None -> Errors.raise_spanned_error (A.pos e) "Expression should have a sum type with at least %d cases but only \ has %d" n (List.length ts') in let+ e1' = typecheck_expr_top_down ctx env ts_n e1 in mark_with_uf (A.EInj (e1', n, e_name, ts)) (TEnum (ts', e_name)) | A.EMatch (e1, es, e_name) -> let enum_cases = List.map (fun e' -> unionfind_make ~pos:e' (TAny (Any.fresh ()))) es in let t_e1 = UnionFind.make (add_pos e1 (TEnum (enum_cases, e_name))) in let t_ret = unionfind_make ~pos:e (TAny (Any.fresh ())) in let+ e1' = typecheck_expr_top_down ctx env t_e1 e1 and+ es' = bmap2 (fun es' enum_t -> typecheck_expr_top_down ctx env (unionfind_make ~pos:es' (TArrow (enum_t, t_ret))) es') es enum_cases in mark (EMatch (e1', es', e_name)) t_ret | A.EAbs (binder, taus) -> if Bindlib.mbinder_arity binder <> List.length taus then Errors.raise_spanned_error (A.pos e) "function has %d variables but was supplied %d types" (Bindlib.mbinder_arity binder) (List.length taus) else let xs, body = Bindlib.unmbind binder in let xs' = Array.map translate_var xs in let xstaus = List.mapi (fun i tau -> xs'.(i), ast_to_typ tau) taus in let env = List.fold_left (fun env (x, tau) -> A.VarMap.add (A.Var.t x) tau env) env xstaus in let body' = typecheck_expr_bottom_up ctx env body in let t_func = List.fold_right (fun (_, t_arg) acc -> unionfind_make (TArrow (t_arg, acc))) xstaus (box_ty body') in let+ binder' = Bindlib.bind_mvar xs' body' in mark (EAbs (binder', taus)) t_func | A.EApp (e1, args) -> let args' = bmap (typecheck_expr_bottom_up ctx env) args in let t_ret = unionfind_make (TAny (Any.fresh ())) in let t_func = List.fold_right (fun ty_arg acc -> unionfind_make (TArrow (ty_arg, acc))) (Bindlib.unbox (Bindlib.box_apply (List.map ty) args')) t_ret in let+ e1' = typecheck_expr_bottom_up ctx env e1 and+ args' in unify ctx e (ty e1') t_func; mark (EApp (e1', args')) t_ret | A.EOp op as e1 -> Bindlib.box @@ mark e1 (op_type (Marked.mark pos_e op)) | A.EDefault (excepts, just, cons) -> let just' = typecheck_expr_top_down ctx env (unionfind_make ~pos:just (TLit TBool)) just in let cons' = typecheck_expr_bottom_up ctx env cons in let tau = box_ty cons' in let+ just' and+ cons' and+ excepts' = bmap (fun except -> typecheck_expr_top_down ctx env tau except) excepts in mark (A.EDefault (excepts', just', cons')) tau | A.EIfThenElse (cond, et, ef) -> let cond' = typecheck_expr_top_down ctx env (unionfind_make ~pos:cond (TLit TBool)) cond in let et' = typecheck_expr_bottom_up ctx env et in let tau = box_ty et' in let+ cond' and+ et' and+ ef' = typecheck_expr_top_down ctx env tau ef in mark (A.EIfThenElse (cond', et', ef')) tau | A.EAssert e1 -> let+ e1' = typecheck_expr_top_down ctx env (unionfind_make ~pos:e1 (TLit TBool)) e1 in mark_with_uf (A.EAssert e1') ~pos:e1 (TLit TUnit) | A.ErrorOnEmpty e1 -> let+ e1' = typecheck_expr_bottom_up ctx env e1 in mark (A.ErrorOnEmpty e1') (ty e1') | A.EArray es -> let cell_type = unionfind_make (TAny (Any.fresh ())) in let+ es' = bmap (fun e1 -> let e1' = typecheck_expr_bottom_up ctx env e1 in unify ctx e1 cell_type (box_ty e1'); e1') es in mark_with_uf (A.EArray es') (TArray cell_type) (** Checks whether the expression can be typed with the provided type *) and typecheck_expr_top_down (ctx : Ast.decl_ctx) (env : env) (tau : typ Marked.pos UnionFind.elem) (e : 'm A.marked_expr) : A.inferring A.marked_expr Bindlib.box = (* Cli.debug_format "Propagating type %a for expr %a" (format_typ ctx) tau (Print.format_expr ctx) e; *) let pos_e = A.pos e in let mark e = Marked.mark (A.Inferring { uf = tau; pos = pos_e }) e in let unify_and_mark (e : A.inferring A.expr) tau' = let e = Marked.mark (A.Inferring { uf = tau'; pos = pos_e }) e in unify ctx (Bindlib.unbox (A.untype_expr e)) tau tau'; e in let unionfind_make ?(pos = e) t = UnionFind.make (add_pos pos t) in match Marked.unmark e with | A.EVar v -> begin match A.VarMap.find_opt (A.Var.t v) env with | Some tau' -> let+ v' = Bindlib.box_var (translate_var v) in unify_and_mark v' tau' | None -> Errors.raise_spanned_error (A.pos e) "Variable %s not found in the current context" (Bindlib.name_of v) end | A.ELit (LBool _) as e1 -> Bindlib.box @@ unify_and_mark e1 (unionfind_make (TLit TBool)) | A.ELit (LInt _) as e1 -> Bindlib.box @@ unify_and_mark e1 (unionfind_make (TLit TInt)) | A.ELit (LRat _) as e1 -> Bindlib.box @@ unify_and_mark e1 (unionfind_make (TLit TRat)) | A.ELit (LMoney _) as e1 -> Bindlib.box @@ unify_and_mark e1 (unionfind_make (TLit TMoney)) | A.ELit (LDate _) as e1 -> Bindlib.box @@ unify_and_mark e1 (unionfind_make (TLit TDate)) | A.ELit (LDuration _) as e1 -> Bindlib.box @@ unify_and_mark e1 (unionfind_make (TLit TDuration)) | A.ELit LUnit as e1 -> Bindlib.box @@ unify_and_mark e1 (unionfind_make (TLit TUnit)) | A.ELit LEmptyError as e1 -> Bindlib.box @@ unify_and_mark e1 (unionfind_make (TAny (Any.fresh ()))) | A.ETuple (es, s) -> let+ es' = bmap (typecheck_expr_bottom_up ctx env) es in unify_and_mark (A.ETuple (es', s)) (unionfind_make (TTuple (List.map ty es', s))) | A.ETupleAccess (e1, n, s, typs) -> begin let typs' = List.map ast_to_typ typs in let+ e1' = typecheck_expr_top_down ctx env (unionfind_make (TTuple (typs', s))) e1 in match List.nth_opt typs' n with | Some t1n -> unify_and_mark (A.ETupleAccess (e1', n, s, typs)) t1n | None -> Errors.raise_spanned_error (Ast.pos e1) "Expression should have a tuple type with at least %d elements but \ only has %d" n (List.length typs) end | A.EInj (e1, n, e_name, ts) -> let ts' = List.map ast_to_typ ts in let ts_n = match List.nth_opt ts' n with | Some ts_n -> ts_n | None -> Errors.raise_spanned_error (A.pos e) "Expression should have a sum type with at least %d cases but only \ has %d" n (List.length ts) in let+ e1' = typecheck_expr_top_down ctx env ts_n e1 in unify_and_mark (A.EInj (e1', n, e_name, ts)) (unionfind_make (TEnum (ts', e_name))) | A.EMatch (e1, es, e_name) -> let enum_cases = List.map (fun e' -> unionfind_make ~pos:e' (TAny (Any.fresh ()))) es in let e1' = typecheck_expr_top_down ctx env (unionfind_make ~pos:e1 (TEnum (enum_cases, e_name))) e1 in let t_ret = unionfind_make ~pos:e (TAny (Any.fresh ())) in let+ e1' and+ es' = bmap2 (fun es' enum_t -> typecheck_expr_top_down ctx env (unionfind_make ~pos:es' (TArrow (enum_t, t_ret))) es') es enum_cases in unify_and_mark (EMatch (e1', es', e_name)) t_ret | A.EAbs (binder, t_args) -> if Bindlib.mbinder_arity binder <> List.length t_args then Errors.raise_spanned_error (A.pos e) "function has %d variables but was supplied %d types" (Bindlib.mbinder_arity binder) (List.length t_args) else let xs, body = Bindlib.unmbind binder in let xs' = Array.map translate_var xs in let xstaus = List.map2 (fun x t_arg -> x, ast_to_typ t_arg) (Array.to_list xs) t_args in let env = List.fold_left (fun env (x, t_arg) -> A.VarMap.add (A.Var.t x) t_arg env) env xstaus in let body' = typecheck_expr_bottom_up ctx env body in let t_func = List.fold_right (fun (_, t_arg) acc -> unionfind_make (TArrow (t_arg, acc))) xstaus (box_ty body') in let+ binder' = Bindlib.bind_mvar xs' body' in unify_and_mark (EAbs (binder', t_args)) t_func | A.EApp (e1, args) -> let+ args' = bmap (typecheck_expr_bottom_up ctx env) args and+ e1' = typecheck_expr_bottom_up ctx env e1 in let t_func = List.fold_right (fun arg acc -> unionfind_make (TArrow (ty arg, acc))) args' tau in unify ctx e (ty e1') t_func; unify_and_mark (EApp (e1', args')) tau | A.EOp op as e1 -> let op_typ = op_type (add_pos e op) in Bindlib.box (unify_and_mark e1 op_typ) | A.EDefault (excepts, just, cons) -> let+ just' = typecheck_expr_top_down ctx env (unionfind_make ~pos:just (TLit TBool)) just and+ cons' = typecheck_expr_top_down ctx env tau cons and+ excepts' = bmap (typecheck_expr_top_down ctx env tau) excepts in mark (A.EDefault (excepts', just', cons')) | A.EIfThenElse (cond, et, ef) -> let+ cond' = typecheck_expr_top_down ctx env (unionfind_make ~pos:cond (TLit TBool)) cond and+ et' = typecheck_expr_top_down ctx env tau et and+ ef' = typecheck_expr_top_down ctx env tau ef in mark (A.EIfThenElse (cond', et', ef')) | A.EAssert e1 -> let+ e1' = typecheck_expr_top_down ctx env (unionfind_make ~pos:e1 (TLit TBool)) e1 in unify_and_mark (EAssert e1') (unionfind_make ~pos:e1 (TLit TUnit)) | A.ErrorOnEmpty e1 -> let+ e1' = typecheck_expr_top_down ctx env tau e1 in mark (A.ErrorOnEmpty e1') | A.EArray es -> let cell_type = unionfind_make (TAny (Any.fresh ())) in let+ es' = bmap (fun e1 -> let e1' = typecheck_expr_bottom_up ctx env e1 in unify ctx e cell_type (box_ty e1'); e1') es in unify_and_mark (A.EArray es') (unionfind_make (TArray cell_type)) let wrap ctx f e = try f e with Type_error (e, ty1, ty2) -> ( let bt = Printexc.get_raw_backtrace () in try handle_type_error ctx e ty1 ty2 with e -> Printexc.raise_with_backtrace e bt) (** {1 API} *) let get_ty_mark (A.Inferring { uf; pos }) = A.Typed { ty = A.Infer.typ_to_ast uf; pos } (* Infer the type of an expression *) let infer_types (ctx : Ast.decl_ctx) (e : 'm A.marked_expr) : Ast.typed Ast.marked_expr Bindlib.box = A.map_expr_marks ~f:get_ty_mark @@ Bindlib.unbox @@ wrap ctx (typecheck_expr_bottom_up ctx A.VarMap.empty) e let infer_type (type m) ctx (e : m A.marked_expr) = match Marked.get_mark e with | A.Typed { ty; _ } -> ty | A.Inferring { uf; _ } -> typ_to_ast uf | A.Untyped _ -> A.ty (Bindlib.unbox (infer_types ctx e)) (** Typechecks an expression given an expected type *) let check_type (ctx : Ast.decl_ctx) (e : 'm A.marked_expr) (tau : A.typ Marked.pos) = (* todo: consider using the already inferred type if ['m] = [typed] *) ignore @@ wrap ctx (typecheck_expr_top_down ctx A.VarMap.empty (ast_to_typ tau)) e let infer_types_program prg = let ctx = prg.A.decl_ctx in let rec process_scopes env = function | A.Nil -> Bindlib.box A.Nil | A.ScopeDef { scope_next; scope_name; scope_body = { scope_body_input_struct = s_in; scope_body_output_struct = s_out; scope_body_expr = body; }; } -> let scope_pos = Marked.get_mark (A.ScopeName.get_info scope_name) in let struct_ty struct_name = let struc = A.StructMap.find struct_name ctx.A.ctx_structs in ast_to_typ (Marked.mark scope_pos (A.TTuple (List.map snd struc, Some struct_name))) in let ty_in = struct_ty s_in in let ty_out = struct_ty s_out in let ty_scope = UnionFind.make (Marked.mark scope_pos (TArrow (ty_in, ty_out))) in let rec process_scope_body_expr env = function | A.Result e -> let e' = typecheck_expr_bottom_up ctx env e in Bindlib.box_apply (fun e -> unify ctx e (ty e) ty_out; A.Result e) e' | A.ScopeLet { scope_let_kind; scope_let_typ; scope_let_expr = e; scope_let_next; scope_let_pos; } -> let ty_e = ast_to_typ scope_let_typ in let e = typecheck_expr_bottom_up ctx env e in let var, next = Bindlib.unbind scope_let_next in let env = A.VarMap.add (A.Var.t var) ty_e env in let next = process_scope_body_expr env next in let scope_let_next = Bindlib.bind_var (translate_var var) next in Bindlib.box_apply2 (fun scope_let_expr scope_let_next -> unify ctx scope_let_expr (ty scope_let_expr) ty_e; A.ScopeLet { scope_let_kind; scope_let_typ; scope_let_expr; scope_let_next; scope_let_pos; }) e scope_let_next in let scope_body_expr = let var, e = Bindlib.unbind body in let env = A.VarMap.add (A.Var.t var) ty_in env in let e' = process_scope_body_expr env e in let e' = Bindlib.box_apply (fun e -> Bindlib.unbox @@ A.map_exprs_in_scope_lets ~varf:translate_var ~f: (A.map_expr_top_down ~f:(fun e -> Marked.(mark (get_ty_mark (get_mark e)) (unmark e)))) e) e' in Bindlib.bind_var (translate_var var) e' in let scope_next = let scope_var, next = Bindlib.unbind scope_next in let env = A.VarMap.add (A.Var.t scope_var) ty_scope env in let next' = process_scopes env next in Bindlib.bind_var (translate_var scope_var) next' in Bindlib.box_apply2 (fun scope_body_expr scope_next -> A.ScopeDef { scope_next; scope_name; scope_body = { scope_body_input_struct = s_in; scope_body_output_struct = s_out; scope_body_expr; }; }) scope_body_expr scope_next in let scopes = wrap ctx (process_scopes A.VarMap.empty) prg.scopes in Bindlib.box_apply (fun scopes -> { A.decl_ctx = ctx; scopes }) scopes |> Bindlib.unbox
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>