Source file desugared_to_scope.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
(** Translation from {!module: Desugared.Ast} to {!module: Scopelang.Ast} *)
open Utils
(** {1 Rule tree construction} *)
type rule_tree = Leaf of Ast.rule | Node of rule_tree list * Ast.rule
(** Transforms a flat list of rules into a tree, taking into account the priorities declared between
rules *)
let def_map_to_tree (def_info : Ast.ScopeDef.t) (def : Ast.rule Ast.RuleMap.t) : rule_tree list =
let exc_graph = Dependency.build_exceptions_graph def def_info in
Dependency.check_for_exception_cycle exc_graph;
let base_cases =
Dependency.ExceptionsDependencies.fold_vertex
(fun v base_cases ->
if Dependency.ExceptionsDependencies.out_degree exc_graph v = 0 then v :: base_cases
else base_cases)
exc_graph []
in
let rec build_tree (base_case : Ast.RuleName.t) : rule_tree =
let exceptions = Dependency.ExceptionsDependencies.pred exc_graph base_case in
match exceptions with
| [] -> Leaf (Ast.RuleMap.find base_case def)
| _ -> Node (List.map build_tree exceptions, Ast.RuleMap.find base_case def)
in
List.map build_tree base_cases
(** From the {!type: rule_tree}, builds an {!constructor: Dcalc.Ast.EDefault} expression in the
scope language. The [~toplevel] parameter is used to know when to place the toplevel binding in
the case of functions. *)
let rec rule_tree_to_expr ~(toplevel : bool) (def_pos : Pos.t)
(is_func : Scopelang.Ast.Var.t option) (tree : rule_tree) :
Scopelang.Ast.expr Pos.marked Bindlib.box =
let exceptions, rule =
match tree with Leaf r -> ([], r) | Node (exceptions, r) -> (exceptions, r)
in
let substitute_parameter (e : Scopelang.Ast.expr Pos.marked Bindlib.box) :
Scopelang.Ast.expr Pos.marked Bindlib.box =
match (is_func, rule.parameter) with
| Some new_param, Some (old_param, _) ->
let binder = Bindlib.bind_var old_param e in
Bindlib.box_apply2
(fun binder new_param -> Bindlib.subst binder new_param)
binder (Bindlib.box_var new_param)
| None, None -> e
| _ -> assert false
in
let just = substitute_parameter rule.Ast.just in
let cons = substitute_parameter rule.Ast.cons in
let exceptions =
Bindlib.box_list (List.map (rule_tree_to_expr ~toplevel:false def_pos is_func) exceptions)
in
let default =
Bindlib.box_apply3
(fun exceptions just cons ->
(Scopelang.Ast.EDefault (exceptions, just, cons), Pos.get_position just))
exceptions just cons
in
match (is_func, rule.parameter) with
| None, None -> default
| Some new_param, Some (_, typ) ->
if toplevel then
let default =
Bindlib.box_apply
(fun (default : Scopelang.Ast.expr * Pos.t) ->
( Scopelang.Ast.EApp
((Scopelang.Ast.EOp (Dcalc.Ast.Unop Dcalc.Ast.ErrorOnEmpty), def_pos), [ default ]),
def_pos ))
default
in
Scopelang.Ast.make_abs (Array.of_list [ new_param ]) default def_pos [ typ ] def_pos
else default
| _ -> assert false
(** {1 AST translation} *)
(** Translates a definition inside a scope, the resulting expression should be an {!constructor:
Dcalc.Ast.EDefault} *)
let translate_def (def_info : Ast.ScopeDef.t) (def : Ast.rule Ast.RuleMap.t)
(typ : Scopelang.Ast.typ Pos.marked) (is_cond : bool) : Scopelang.Ast.expr Pos.marked =
let is_func _ (r : Ast.rule) : bool = Option.is_some r.Ast.parameter in
let all_rules_func = Ast.RuleMap.for_all is_func def in
let all_rules_not_func = Ast.RuleMap.for_all (fun n r -> not (is_func n r)) def in
let is_def_func : Scopelang.Ast.typ Pos.marked option =
if all_rules_func && Ast.RuleMap.cardinal def > 0 then
match Pos.unmark typ with
| Scopelang.Ast.TArrow (t_param, _) -> Some t_param
| _ ->
Errors.raise_spanned_error
(Format.asprintf
"The definitions of %a are function but its type, %a, is not a function type"
Ast.ScopeDef.format_t def_info Scopelang.Print.format_typ typ)
(Pos.get_position typ)
else if all_rules_not_func then None
else
Errors.raise_multispanned_error
"some definitions of the same variable are functions while others aren't"
( List.map
(fun (_, r) ->
(Some "This definition is a function:", Pos.get_position (Bindlib.unbox r.Ast.cons)))
(Ast.RuleMap.bindings (Ast.RuleMap.filter is_func def))
@ List.map
(fun (_, r) ->
( Some "This definition is not a function:",
Pos.get_position (Bindlib.unbox r.Ast.cons) ))
(Ast.RuleMap.bindings (Ast.RuleMap.filter (fun n r -> not (is_func n r)) def)) )
in
let top_list = def_map_to_tree def_info def in
let top_value =
(if is_cond then Ast.always_false_rule else Ast.empty_rule) Pos.no_pos is_def_func
in
Bindlib.unbox
(rule_tree_to_expr ~toplevel:true
(Ast.ScopeDef.get_position def_info)
(Option.map (fun _ -> Scopelang.Ast.Var.make ("param", Pos.no_pos)) is_def_func)
( match top_list with
| [] ->
Leaf top_value
| _ -> Node (top_list, top_value) ))
(** Translates a scope *)
let translate_scope (scope : Ast.scope) : Scopelang.Ast.scope_decl =
let scope_dependencies = Dependency.build_scope_dependencies scope in
Dependency.check_for_cycle scope scope_dependencies;
let scope_ordering = Dependency.correct_computation_ordering scope_dependencies in
let scope_decl_rules =
List.flatten
(List.map
(fun vertex ->
match vertex with
| Dependency.Vertex.Var (var : Scopelang.Ast.ScopeVar.t) ->
let var_def, var_typ, is_cond =
Ast.ScopeDefMap.find (Ast.ScopeDef.Var var) scope.scope_defs
in
let expr_def = translate_def (Ast.ScopeDef.Var var) var_def var_typ is_cond in
[
Scopelang.Ast.Definition
( ( Scopelang.Ast.ScopeVar
(var, Pos.get_position (Scopelang.Ast.ScopeVar.get_info var)),
Pos.get_position (Scopelang.Ast.ScopeVar.get_info var) ),
var_typ,
expr_def );
]
| Dependency.Vertex.SubScope sub_scope_index ->
let sub_scope =
Scopelang.Ast.SubScopeMap.find sub_scope_index scope.scope_sub_scopes
in
let sub_scope_vars_redefs =
Ast.ScopeDefMap.mapi
(fun def_key (def, def_typ, is_cond) ->
match def_key with
| Ast.ScopeDef.Var _ -> assert false
| Ast.ScopeDef.SubScopeVar (_, sub_scope_var) ->
let expr_def = translate_def def_key def def_typ is_cond in
let subscop_real_name =
Scopelang.Ast.SubScopeMap.find sub_scope_index scope.scope_sub_scopes
in
let var_pos =
Pos.get_position (Scopelang.Ast.ScopeVar.get_info sub_scope_var)
in
Scopelang.Ast.Definition
( ( Scopelang.Ast.SubScopeVar
( subscop_real_name,
(sub_scope_index, var_pos),
(sub_scope_var, var_pos) ),
var_pos ),
def_typ,
expr_def ))
(Ast.ScopeDefMap.filter
(fun def_key _def ->
match def_key with
| Ast.ScopeDef.Var _ -> false
| Ast.ScopeDef.SubScopeVar (sub_scope_index', _) ->
sub_scope_index = sub_scope_index')
scope.scope_defs)
in
let sub_scope_vars_redefs =
List.map snd (Ast.ScopeDefMap.bindings sub_scope_vars_redefs)
in
sub_scope_vars_redefs @ [ Scopelang.Ast.Call (sub_scope, sub_scope_index) ])
scope_ordering)
in
let scope_decl_rules =
scope_decl_rules
@ List.map (fun e -> Scopelang.Ast.Assertion (Bindlib.unbox e)) scope.Ast.scope_assertions
in
let scope_sig =
Scopelang.Ast.ScopeVarSet.fold
(fun var acc ->
let _, typ, _ = Ast.ScopeDefMap.find (Ast.ScopeDef.Var var) scope.scope_defs in
Scopelang.Ast.ScopeVarMap.add var typ acc)
scope.scope_vars Scopelang.Ast.ScopeVarMap.empty
in
{
Scopelang.Ast.scope_decl_name = scope.scope_uid;
Scopelang.Ast.scope_decl_rules;
Scopelang.Ast.scope_sig;
}
(** {1 API} *)
let translate_program (pgrm : Ast.program) : Scopelang.Ast.program =
{
Scopelang.Ast.program_scopes = Scopelang.Ast.ScopeMap.map translate_scope pgrm.program_scopes;
Scopelang.Ast.program_structs = pgrm.program_structs;
Scopelang.Ast.program_enums = pgrm.program_enums;
}