Source file dependency.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
(** Scope dependencies computations using {{:http://ocamlgraph.lri.fr/} OCamlgraph} *)
module Pos = Utils.Pos
module Errors = Utils.Errors
(** {1 Graph declaration} *)
(** Vertices: scope variables or subscopes.
The vertices of the scope dependency graph are either :
- the variables of the scope ;
- the subscopes of the scope.
Indeed, during interpretation, subscopes are executed atomically. *)
module Vertex = struct
type t = Var of Scopelang.Ast.ScopeVar.t | SubScope of Scopelang.Ast.SubScopeName.t
let hash x =
match x with
| Var x -> Scopelang.Ast.ScopeVar.hash x
| SubScope x -> Scopelang.Ast.SubScopeName.hash x
let compare = compare
let equal x y =
match (x, y) with
| Var x, Var y -> Scopelang.Ast.ScopeVar.compare x y = 0
| SubScope x, SubScope y -> Scopelang.Ast.SubScopeName.compare x y = 0
| _ -> false
let format_t (fmt : Format.formatter) (x : t) : unit =
match x with
| Var v -> Scopelang.Ast.ScopeVar.format_t fmt v
| SubScope v -> Scopelang.Ast.SubScopeName.format_t fmt v
end
(** On the edges, the label is the position of the expression responsible for the use of the
variable. In the graph, [x -> y] if [x] is used in the definition of [y].*)
module Edge = struct
type t = Pos.t
let compare = compare
let default = Pos.no_pos
end
module ScopeDependencies = Graph.Persistent.Digraph.ConcreteBidirectionalLabeled (Vertex) (Edge)
(** Module of the graph, provided by OCamlGraph *)
module TopologicalTraversal = Graph.Topological.Make (ScopeDependencies)
(** Module of the topological traversal of the graph, provided by OCamlGraph *)
module SCC = Graph.Components.Make (ScopeDependencies)
(** Tarjan's stongly connected components algorithm, provided by OCamlGraph *)
(** {1 Graph computations} *)
(** Returns an ordering of the scope variables and subscope compatible with the dependencies of the
computation *)
let correct_computation_ordering (g : ScopeDependencies.t) : Vertex.t list =
List.rev (TopologicalTraversal.fold (fun sd acc -> sd :: acc) g [])
(** Outputs an error in case of cycles. *)
let check_for_cycle (scope : Ast.scope) (g : ScopeDependencies.t) : unit =
let sccs = SCC.scc_list g in
if List.length sccs < ScopeDependencies.nb_vertex g then
let scc = List.find (fun scc -> List.length scc > 1) sccs in
Errors.raise_multispanned_error
(Format.asprintf "Cyclic dependency detected between variables of scope %a!"
Scopelang.Ast.ScopeName.format_t scope.scope_uid)
(List.flatten
(List.map
(fun v ->
let var_str, var_info =
match v with
| Vertex.Var v ->
( Format.asprintf "%a" Scopelang.Ast.ScopeVar.format_t v,
Scopelang.Ast.ScopeVar.get_info v )
| Vertex.SubScope v ->
( Format.asprintf "%a" Scopelang.Ast.SubScopeName.format_t v,
Scopelang.Ast.SubScopeName.get_info v )
in
let succs = ScopeDependencies.succ_e g v in
let _, edge_pos, succ = List.find (fun (_, _, succ) -> List.mem succ scc) succs in
let succ_str =
match succ with
| Vertex.Var v -> Format.asprintf "%a" Scopelang.Ast.ScopeVar.format_t v
| Vertex.SubScope v -> Format.asprintf "%a" Scopelang.Ast.SubScopeName.format_t v
in
[
(Some ("Cycle variable " ^ var_str ^ ", declared:"), Pos.get_position var_info);
( Some ("Used here in the definition of another cycle variable " ^ succ_str ^ ":"),
edge_pos );
])
scc))
(** Builds the dependency graph of a particular scope *)
let build_scope_dependencies (scope : Ast.scope) : ScopeDependencies.t =
let g = ScopeDependencies.empty in
let g =
Scopelang.Ast.ScopeVarSet.fold
(fun (v : Scopelang.Ast.ScopeVar.t) g -> ScopeDependencies.add_vertex g (Vertex.Var v))
scope.scope_vars g
in
let g =
Scopelang.Ast.SubScopeMap.fold
(fun (v : Scopelang.Ast.SubScopeName.t) _ g ->
ScopeDependencies.add_vertex g (Vertex.SubScope v))
scope.scope_sub_scopes g
in
let g =
Ast.ScopeDefMap.fold
(fun def_key (def, _) g ->
let fv = Ast.free_variables def in
Ast.ScopeDefMap.fold
(fun fv_def fv_def_pos g ->
match (def_key, fv_def) with
| Ast.ScopeDef.Var defined, Ast.ScopeDef.Var used ->
if used = defined then
Errors.raise_spanned_error
(Format.asprintf
"The variable %a is used in one of its definitions, but recursion is \
forbidden in Catala"
Scopelang.Ast.ScopeVar.format_t defined)
fv_def_pos
else
let edge =
ScopeDependencies.E.create (Vertex.Var used) fv_def_pos (Vertex.Var defined)
in
ScopeDependencies.add_edge_e g edge
| Ast.ScopeDef.SubScopeVar (defined, _), Ast.ScopeDef.Var used ->
let edge =
ScopeDependencies.E.create (Vertex.Var used) fv_def_pos (Vertex.SubScope defined)
in
ScopeDependencies.add_edge_e g edge
| Ast.ScopeDef.SubScopeVar (defined, _), Ast.ScopeDef.SubScopeVar (used, _) ->
if used = defined then
Errors.raise_spanned_error
(Format.asprintf
"The subscope %a is used when defining one of its inputs, but recursion is \
forbidden in Catala"
Scopelang.Ast.SubScopeName.format_t defined)
fv_def_pos
else
let edge =
ScopeDependencies.E.create (Vertex.SubScope used) fv_def_pos
(Vertex.SubScope defined)
in
ScopeDependencies.add_edge_e g edge
| Ast.ScopeDef.Var defined, Ast.ScopeDef.SubScopeVar (used, _) ->
let edge =
ScopeDependencies.E.create (Vertex.SubScope used) fv_def_pos (Vertex.Var defined)
in
ScopeDependencies.add_edge_e g edge)
fv g)
scope.scope_defs g
in
g