package camomile

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file iMap.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# 1 "Camomile/internal/iMap.ml"
(** mappings from integer to arbitrary types *)
(* Copyright (C) 2003 Yamagata Yoriyuki. distributed with LGPL *)

(* This library is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2 of *)
(* the License, or (at your option) any later version. *)

(* As a special exception to the GNU Library General Public License, you *)
(* may link, statically or dynamically, a "work that uses this library" *)
(* with a publicly distributed version of this library to produce an *)
(* executable file containing portions of this library, and distribute *)
(* that executable file under terms of your choice, without any of the *)
(* additional requirements listed in clause 6 of the GNU Library General *)
(* Public License. By "a publicly distributed version of this library", *)
(* we mean either the unmodified Library as distributed by the authors, *)
(* or a modified version of this library that is distributed under the *)
(* conditions defined in clause 3 of the GNU Library General Public *)
(* License. This exception does not however invalidate any other reasons *)
(* why the executable file might be covered by the GNU Library General *)
(* Public License . *)

(* This library is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU *)
(* Lesser General Public License for more details. *)

(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this library; if not, write to the Free Software *)
(* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *)
(* USA *)

(* You can contact the authour by sending email to *)
(* yoriyuki.y@gmail.com *)


let compare_uint n1 n2 =
  let sgn1 = (n1 lsr 24) - (n2 lsr 24) in
  if sgn1 = 0 then (n1 land 0xffffff) - (n2 land 0xffffff) else sgn1

let (>) n1 n2 = compare_uint n1 n2 > 0
let (<) n1 n2 = compare_uint n1 n2 < 0
let (<=) n1 n2 = compare_uint n1 n2 <= 0

let max_int = ~-1
let min_int = 0

type 'a t = (int * int * 'a) AvlTree.tree

type key = int

include AvlTree

let make ?(eq = (=)) l (n1, n2, v) r =
  let n1, l =
    if is_empty l || n1 = min_int then n1, empty else
      let (k1, k2, v0), l' = split_rightmost l in
      if k2 + 1 = n1 && eq v v0 then k1, l' else n1, l in
  let n2, r =
    if is_empty r || n2 = max_int then n2, empty else
      let (k1, k2, v0), r' = split_leftmost r in
      if n2 + 1 = k1 && eq v v0 then k2, r' else n2, r in
  make_tree l (n1, n2, v) r

let rec from n s =
  if is_empty s then empty else
    let (n1, n2, v) as x = root s in
    let s0 = left_branch s in
    let s1 = right_branch s in
    if n < n1 then make_tree (from n s0) x s1 else
    if n > n2 then from n s1 else
      make_tree empty (n, n2, v)  s1

let after n s = if n = max_int then empty else from (n + 1) s

let rec until n s =
  if is_empty s then empty else
    let (n1, n2, v) as x = root s in
    let s0 = left_branch s in
    let s1 = right_branch s in
    if n > n2 then make_tree s0 x (until n s1) else
    if n < n1 then until n s0 else
      make_tree s0 (n1, n, v) empty

let before n s = if n = min_int then empty else until (n - 1) s

let add_range ?eq n1 n2 v s =
  if n1 > n2 then invalid_arg "IMap.add_range" else
    make ?eq (before n1 s) (n1, n2, v) (after n2 s)

let add ?eq n v s = add_range ?eq n n v s

let rec find n m =
  if is_empty m then raise Not_found else
    let (n1, n2, v) = root m in
    if n < n1 then find n (left_branch m) else
    if n1 <= n && n <= n2 then v else
      find n (right_branch m)

let remove_range n1 n2 m =
  if n1 > n2 then invalid_arg "IMap.remove_range" else
    concat (before n1 m) (after n2 m)

let remove n m = remove_range n n m

let rec mem n m =
  if is_empty m then false else
    let (n1, n2, _) = root m in
    if n < n1 then mem n (left_branch m) else
    if n1 <= n && n <= n2 then true else
      mem n (right_branch m)

let iter_range proc m =
  AvlTree.iter (fun (n1, n2, v) -> proc n1 n2 v) m

let fold_range f m a =
  AvlTree.fold (fun (n1, n2, v) a -> f n1 n2 v a) m a

let fold f m a =
  let rec loop n1 n2 v a =
    let a = f n1 v a in
    if n1 = n2 then a else
      loop (n1 + 1) n2 v a in
  fold_range loop m a

let iter proc m =
  fold (fun n v () -> proc n v) m ()

let rec map ?eq f m =
  if is_empty m then empty else
    let n1, n2, v = root m in
    let l = map f (left_branch m) in
    let r = map f (right_branch m) in
    let v = f v in
    make ?eq l (n1, n2, v) r

let mapi ?eq f m = fold (fun n v a -> add ?eq n (f n v) a) m empty

let rec set_to_map s v =
  if is_empty s then empty else
    let (n1, n2) = root s in
    let l = left_branch s in
    let r = right_branch s in
    make_tree (set_to_map l v) (n1, n2, v) (set_to_map r v)

let domain m =
  let f n1 n2 _ s = ISet.add_range n1 n2 s in
  fold_range f m ISet.empty

let map_to_set p m =
  let f n1 n2 v s = if p v then ISet.add_range n1 n2 s else s in
  fold_range f m ISet.empty
OCaml

Innovation. Community. Security.