package caisar
A platform for characterizing the safety and robustness of artificial intelligence based software
Install
Dune Dependency
Authors
Maintainers
Sources
caisar-2.0.tbz
sha256=3d24d2940eed0921acba158a8970687743c401c6a99d0aac8ed6dcfedca1429c
sha512=0b4484c0e080b8ba22722fe9d5665f9015ebf1648ac89c566a978dd54e3e061acb63edd92e078eed310e26f3e8ad2c48f3682a24af2acb1f0633da12f7966a38
doc/src/caisar.onnx/writer.ml.html
Source file writer.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
(**************************************************************************) (* *) (* This file is part of CAISAR. *) (* *) (* Copyright (C) 2024 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* You can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Base module Format = Stdlib.Format module Fun = Stdlib.Fun module Oproto = Onnx_protoc (* Autogenerated during compilation *) module Oprotom = Oproto.Onnx.ModelProto let value_info_from_tensor_shape ~name ~shape = let open Oproto.Onnx in let dim = List.map (Nir.Shape.to_list shape) ~f:(fun i -> TensorShapeProto.Dimension.make ~value:(`Dim_value (Int64.of_int i)) ()) in let shape = TensorShapeProto.make ~dim () in let value = `Tensor_type (TypeProto.Tensor.make ~elem_type:AttributeProto.AttributeType.(to_int FLOAT) ~shape ()) in let type' = TypeProto.make ~value () in let value_info = ValueInfoProto.make ~name ~type' () in value_info let convert_into_tensor ?name (t : Nir.Gentensor.t) = let mk data_type = Oproto.Onnx.TensorProto.make ~data_type:Oproto.Onnx.TensorProto.DataType.(to_int data_type) ~dims: (List.map ~f:Int64.of_int @@ Nir.Shape.to_list @@ Nir.Gentensor.shape t) ?name in match t with | Float t -> mk FLOAT ~float_data:(Nir.Tensor.flatten t) () | Int64 t -> mk INT64 ~int64_data:(Nir.Tensor.flatten t) () let default_opset_import = let open Oproto.Onnx in let onnx_domain = "" in OperatorSetIdProto.make ~domain:onnx_domain ~version:13L () let nir_to_onnx_protoc (nir : Nir.Ngraph.t) = let open Oproto.Onnx in let get_name (v : Nir.Node.t) = Int.to_string v.id in let protocs, (input, input_shape) = let acc = Queue.create () in let g_input = ref None in let vertex_to_protoc (v : Nir.Node.t) = let name = get_name v in let input = List.map ~f:get_name (Nir.Node.preds v) in let output = [ name ] in let make op_type attribute = Queue.enqueue acc (Oproto.Onnx.NodeProto.make ~input ~output ~name ~op_type ~attribute ~doc_string:"" ()) in let mk_int name i = AttributeProto.make ~name ~type':INT ~i:(Int64.of_int i) () in let mk_ints name ints = AttributeProto.make ~name ~type':INTS ~ints:(List.map ~f:Int64.of_int ints) () in let mk_float name f = AttributeProto.make ~name ~type':FLOAT ~f () in let mk_tensor name t = AttributeProto.make ~name ~type':TENSOR ~t () in match v.descr with | LogSoftmax | Transpose _ | Squeeze _ | MaxPool | Conv | Identity _ | RW_Linearized_ReLu | GatherND _ | ReduceSum _ -> Caisar_logging.Logging.not_implemented_yet (fun m -> m "Operator %a not implemented yet." Nir.Node.pp_descr v.descr) | Reshape _ -> make "Reshape" [] | Flatten { axis; _ } -> make "Flatten" [ mk_int "axis" axis ] | Constant { data } -> let data = convert_into_tensor data in make "Constant" [ mk_tensor "value" data ] | Add _ -> make "Add" [] | Sub _ -> make "Sub" [] | Mul _ -> make "Mul" [] | Div _ -> make "Div" [] | Matmul _ -> make "MatMul" [] | ReLu _ -> make "Relu" [] | Input { shape } -> g_input := Some (v, shape) | Concat { axis; _ } -> make "Concat" [ mk_int "axis" axis ] | Gather { axis; _ } -> make "Gather" [ mk_int "axis" axis ] | Abs _ -> make "Abs" [] | Log _ -> make "Log" [] | RandomNormal { dtype; mean; scale; seed; shape } -> make "RandomNormal" [ mk_int "dtype" dtype; mk_float "mean" mean; mk_float "scale" scale; mk_float "seed" seed; mk_ints "shape" (Array.to_list shape); ] | Gemm { alpha; beta; transA; transB; _ } -> make "Gemm" [ mk_float "alpha" alpha; mk_float "beta" beta; mk_int "transA" transA; mk_int "transB" transB; ] in Nir.Ngraph.iter_vertex vertex_to_protoc nir; (Queue.to_list acc, Option.value_exn !g_input) in let docstr = "This ONNX model was generated from the Neural Intermediate Representation \ of CAISAR" in let input = [ value_info_from_tensor_shape ~name:(get_name input) ~shape:input_shape ] in let output = let output = Nir.Ngraph.output nir in [ value_info_from_tensor_shape ~name:(get_name output) ~shape:(Nir.Node.compute_shape output); ] in let protog = GraphProto.make ~name:"ONNX CAISAR Export" ~node:protocs ~initializer':[] ~sparse_initializer:[] ~doc_string:"ONNX graph generated from CAISAR NIR" ~input ~output ~value_info:[] ~quantization_annotation:[] () in let protom = Oproto.Onnx.ModelProto.make ~ir_version:8L ~opset_import:[ default_opset_import ] ~producer_name:"CAISAR" ~producer_version:"1.0" ~domain:"" ~model_version:(-1L) ~doc_string:docstr ~graph:protog ~metadata_props:[] ~training_info:[] ~functions:[] () in let writer = Oprotom.to_proto protom in Ocaml_protoc_plugin.Writer.contents writer let write_to_onnx nir out_channel = let onnx = nir_to_onnx_protoc nir in Stdio.Out_channel.output_string out_channel onnx let to_file nir filename = let out_chan = Stdlib.open_out filename in write_to_onnx nir out_chan; Stdlib.close_out out_chan
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>