package caisar
A platform for characterizing the safety and robustness of artificial intelligence based software
Install
Dune Dependency
Authors
Maintainers
Sources
caisar-2.0.tbz
sha256=3d24d2940eed0921acba158a8970687743c401c6a99d0aac8ed6dcfedca1429c
sha512=0b4484c0e080b8ba22722fe9d5665f9015ebf1648ac89c566a978dd54e3e061acb63edd92e078eed310e26f3e8ad2c48f3682a24af2acb1f0633da12f7966a38
doc/src/caisar.nir/node.ml.html
Source file node.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
(**************************************************************************) (* *) (* This file is part of CAISAR. *) (* *) (* Copyright (C) 2024 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* You can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Base type ty = | Float | Int64 [@@deriving show] (** TODO: add the information needed to compute the shape *) type descr = | Constant of { data : Gentensor.t } | Add of { input1 : t; input2 : t; } | Sub of { input1 : t; input2 : t; } | Mul of { input1 : t; input2 : t; } | Div of { input1 : t; input2 : t; } | Matmul of { input1 : t; input2 : t; } | Gemm of { inputA : t; inputB : t; inputC : t option; alpha : float; beta : float; transA : int; transB : int; } | LogSoftmax | ReLu of { input : t } | Transpose of { input : t; (* called "data" in ONNX documentation : https://onnx.ai/onnx/operators/onnx__Transpose.html*) perm : int list; } | Squeeze of { data : t; axes : t option; (* data int64 *) } | MaxPool | Conv | Reshape of { input : t; shape : t; (* data int64 *) } | Flatten of { input : t; axis : int; } | Identity of { input : t } | Input of { shape : Shape.t } | RW_Linearized_ReLu | Concat of { inputs : t list; axis : int; } | Gather of { input : t; indices : t; axis : int; } | ReduceSum of { input : t; axes : t option; keepdims : int; noop_with_empty_axes : int; } | GatherND of { data : t; indices : t; batch_dims : int; } | RandomNormal of { dtype : int; mean : float; scale : float; seed : float; shape : int array; } | Abs of { input : t } | Log of { input : t } and t = { id : int; descr : descr; [@printer fun fmt d -> pp_descr fmt d] shape : Shape.t; ty : ty; } let pp_descr fmt p = match p with | Input { shape } -> Fmt.pf fmt "Input: %a" Shape.pp shape | Transpose { perm; _ } -> Fmt.pf fmt "Transpose: [%a]" Fmt.(list ~sep:semi int) perm | Constant { data = Int64 b } when Shape.size (Tensor.shape b) < 3 -> Fmt.pf fmt "Constant[%a]" Fmt.(list ~sep:comma int64) (Tensor.flatten b) | Constant _ -> Fmt.pf fmt "Constant" | Add _ -> Fmt.pf fmt "Add" | Sub _ -> Fmt.pf fmt "Sub" | Mul _ -> Fmt.pf fmt "Mul" | Div _ -> Fmt.pf fmt "Div" | Matmul _ -> Fmt.pf fmt "Matmul" | Gemm _ -> Fmt.pf fmt "Gemm" | LogSoftmax -> Fmt.pf fmt "LogSoftmax" | ReLu _ -> Fmt.pf fmt "ReLu" | Squeeze _ -> Fmt.pf fmt "Squeeze" | MaxPool -> Fmt.pf fmt "MaxPool" | Conv -> Fmt.pf fmt "Conv" | Reshape _ -> Fmt.pf fmt "Reshape" | Flatten _ -> Fmt.pf fmt "Flatten" | Identity _ -> Fmt.pf fmt "Identity" | RW_Linearized_ReLu -> Fmt.pf fmt "RW_Linearized_ReLu" | Concat { axis; _ } -> Fmt.pf fmt "Concat[%i]" axis | Gather _ -> Fmt.pf fmt "Gather" | ReduceSum _ -> Fmt.pf fmt "ReduceSum" | GatherND _ -> Fmt.pf fmt "GatherND" | RandomNormal _ -> Fmt.pf fmt "RandomNormal" | Abs _ -> Fmt.pf fmt "Abs" | Log _ -> Fmt.pf fmt "Log" let show_descr t = Fmt.str "%a" pp_descr t let compare { id = id1; _ } { id = id2; _ } = Int.compare id1 id2 let equal { id = id1; _ } { id = id2; _ } = Int.equal id1 id2 let hash { id; _ } = id let sexp_of_t node = Base.Int.sexp_of_t node.id let pp fmt n = Fmt.pf fmt "@[%i: %a@]" n.id pp_descr n.descr let show n = Fmt.str "%a" pp n include Base.Comparator.Make (struct type nonrec t = t let compare = compare let sexp_of_t = sexp_of_t end) let rec compute_shape n = n.shape and compute_shape_descr = function | Add { input1; _ } | Div { input1; _ } | Mul { input1; _ } | Sub { input1; _ } -> compute_shape input1 | Flatten { input; axis } -> (* (d_0 X d_1 … d_(axis-1), d_axis X d_(axis+1) … X dn). *) let shape = compute_shape input in let d1 = ref 1 in let d2 = ref 1 in for i = 0 to axis - 1 do d1 := !d1 * Shape.get shape i done; for i = axis to Shape.rank shape - 1 do d2 := !d2 * Shape.get shape i done; Shape.of_list [ !d1; !d2 ] | Input { shape } -> shape | ReLu { input } -> compute_shape input | Transpose { input; perm = [] } -> compute_shape input |> Shape.to_list |> List.rev |> Shape.of_list | Transpose { input; perm } -> let shape = compute_shape input in let rank = Shape.rank shape in assert (Int.equal rank (List.length perm)); let shape' = Array.create ~len:rank 0 in let shape = Shape.to_array shape in Base.List.iteri perm ~f:(fun i j -> Array.set shape' i (Array.get shape j)); Shape.of_array shape' | Constant { data } -> Gentensor.shape data | Concat { inputs; axis } -> let shapes = List.map ~f:compute_shape inputs in let shape = List.hd_exn shapes in let axis = if axis < 0 then Shape.rank shape + axis else axis in let l = List.map ~f:(fun s -> Shape.get s axis) shapes in let i = List.reduce_exn ~f:( + ) l in Shape.set shape axis i | Gather { input; indices; axis } -> ( let input_shape = compute_shape input in let indices_shape = compute_shape indices in let axis = if axis < 0 then Shape.rank input_shape + axis else axis in match List.split_n (Shape.to_list input_shape) axis with | _, [] -> failwith "axis is bigger than shape rank" | before, _ :: after -> Shape.of_list (before @ Shape.to_list indices_shape @ after)) | Matmul { input1; input2 } -> let pad_left = function | [] -> failwith "Impossible to pad empty shape" | [ a ] -> [ 1; a ] | x -> x in let pad_right = function | [] -> failwith "Impossible to pad empty shape" | [ a ] -> [ a; 1 ] | x -> x in let rec one_padding l i = if i <= 0 then l else one_padding (1 :: l) (i - 1) in (* Expected semantic: * Matrix multiplication C = AB * A (shape [n;m]); B (shape [m;p]); C (shape [n;p]) * shape of b: b_sh * shape of a: a_sh * shape of c: c_sh *) let check_matmul_size_ab ~a_sh ~b_sh = let adim2 = pad_left a_sh in let bdim2 = pad_right b_sh in let adim = one_padding adim2 (List.length bdim2 - List.length adim2) in let bdim = one_padding bdim2 (List.length adim2 - List.length bdim2) in let rec infer_csize acc ad bd = match (ad, bd) with | [ m; n ], [ nn; p ] -> if nn = n then List.rev_append acc [ m; p ] else failwith "size of matrices not adequate" | a :: la, b :: lb -> if a = b then infer_csize (a :: acc) la lb else if a = 1 then infer_csize (b :: acc) la lb else if b = 1 then infer_csize (a :: acc) la lb else failwith "Checking matmul_size failed: one discordance" | _, _ -> failwith "Checking matmul_size failed" in infer_csize [] adim bdim in (* TODO: in case of pad_left and pad_right remove the added dimension. But it is not clear what must be done when broadcasting is done *) Shape.of_list (check_matmul_size_ab ~a_sh:(Shape.to_list (compute_shape input1)) ~b_sh:(Shape.to_list (compute_shape input2))) | Reshape { input; shape; _ } -> let shape = match shape.descr with | Constant { data = Int64 a } -> List.map ~f:Int64.to_int_exn (Tensor.flatten a) | _ -> (* Some constant propagation could be useful in some cases eg. patch-1 VNNcomp *) failwith "non-constant shape in reshape not supported" in List.iter shape ~f:(function | -1 | 0 -> failwith "not implemented 0 -1 in shape for reshape" | _ -> ()); let out = Shape.of_list shape in if Shape.size out <> Shape.size input.shape then failwith "Reshape: shape of input and shape given have not the same number of \ elements"; out | Gemm { inputA; inputB; inputC = _; alpha = _; beta = _; transA; transB } -> let rank2 i = match Shape.to_array_unsafe i.shape with | [| k; n |] -> (k, n) | _ -> failwith "Gemm input must be of size 2" in let tr trans (k, n) = if trans = 1 then (n, k) else (k, n) in let a1, a2 = tr transA @@ rank2 inputA in let b1, b2 = tr transB @@ rank2 inputB in if not (Int.equal a2 b1) then Fmt.failwith "Gemm (M:%i,K:%i) (K:%i,N:%i) -> (M:%i,N:%i)" a1 a2 b1 b2 a1 b2; Shape.of_array [| a1; b2 |] | ( LogSoftmax | Squeeze _ | MaxPool | Conv | Identity _ | RW_Linearized_ReLu | ReduceSum _ | GatherND _ | RandomNormal _ | Abs _ | Log _ ) as n -> failwith (Fmt.str "todo compute shape : %a" pp_descr n) let compute_ty : _ -> ty = function | Constant { data = Float _ } -> Float | Constant { data = Int64 _ } -> Int64 | _ -> Float let create = let c = ref (-1) in fun descr -> Int.incr c; { id = !c; descr; shape = compute_shape_descr descr; ty = compute_ty descr } let constant_int_array a = create (Constant { data = Gentensor.of_int64_array a }) let reshape shape node = if Shape.equal node.shape shape then node else create (Reshape { input = node; shape = constant_int_array (Array.map ~f:Int64.of_int @@ Shape.to_array shape); }) let gather_int_as_matmul input i = let input1 = reshape (Shape.of_array [| 1; Shape.size input.shape |]) input in let selector = Array.create ~len:(Shape.size input1.shape) Float.zero in Array.set selector i Float.one; let selector = Gentensor.Float (Tensor.of_array1 (Shape.of_array [| Array.length selector; 1 |]) (Bigarray.Array1.of_array Float64 C_layout selector)) in let input2 = create (Constant { data = selector }) in let result = create (Matmul { input1; input2 }) in reshape (Shape.of_array [| 1 |]) result let gather_int ?(encode = true) input i = if encode then gather_int_as_matmul input i else let indices = create (Constant { data = Gentensor.create_1_int64 (Int64.of_int i) }) in create (Gather { input; indices; axis = 0 }) let mul_float input f = let input1 = reshape (Shape.of_array [| 1; 1 |]) input in let f = Array.create ~len:1 f in let f = Gentensor.Float (Tensor.of_array1 (Shape.of_array [| Array.length f; 1 |]) (Bigarray.Array1.of_array Float64 C_layout f)) in let input2 = create (Constant { data = f }) in let result = create (Matmul { input1; input2 }) in reshape (Shape.of_array [| 1 |]) result let div_float ?(encode = true) input f = if encode then let f = Float.one /. f in mul_float input f else let input1 = reshape (Shape.of_array [| 1; 1 |]) input in let f = Array.create ~len:1 f in let f = Gentensor.Float (Tensor.of_array1 (Shape.of_array [| Array.length f; 1 |]) (Bigarray.Array1.of_array Float64 C_layout f)) in let input2 = create (Constant { data = f }) in let result = create (Div { input1; input2 }) in reshape (Shape.of_array [| 1 |]) result let concat_0 = function | [ n ] -> n | [] -> failwith "empty concat" | inputs -> create (Concat { inputs; axis = 0 }) let preds node = match node.descr with | Constant _ | Input _ -> [] | Add { input1; input2 } | Sub { input1; input2 } | Mul { input1; input2 } | Div { input1; input2 } | Matmul { input1; input2 } -> [ input1; input2 ] | Gather { input; indices; axis = _ } -> [ input; indices ] | GatherND { data; indices; batch_dims = _ } -> [ data; indices ] | ReLu { input } | Abs { input } | Log { input } -> [ input ] | Concat { inputs; axis = _ } -> inputs | ReduceSum { input; axes = Some x; _ } -> [ input; x ] | ReduceSum { input; axes = None; _ } -> [ input ] | RandomNormal _ -> [] | Transpose { input; _ } -> [ input ] | Flatten { input; _ } -> [ input ] | Identity { input } -> [ input ] | Gemm { inputA; inputB; inputC = Some x; _ } -> [ inputA; inputB; x ] | Gemm { inputA; inputB; inputC = None; _ } -> [ inputA; inputB ] | Squeeze { data; _ } -> [ data ] | Reshape { input; shape; _ } -> [ input; shape ] | LogSoftmax | MaxPool | Conv | RW_Linearized_ReLu -> [] let map f n = match n.descr with | Constant _ | Input _ -> n | Add { input1; input2 } -> create (Add { input1 = f input1; input2 = f input2 }) | Sub { input1; input2 } -> create (Sub { input1 = f input1; input2 = f input2 }) | Mul { input1; input2 } -> create (Mul { input1 = f input1; input2 = f input2 }) | Div { input1; input2 } -> create (Div { input1 = f input1; input2 = f input2 }) | Matmul { input1; input2 } -> create (Matmul { input1 = f input1; input2 = f input2 }) | ReLu { input } -> create (ReLu { input = f input }) | Abs { input } -> create (Abs { input = f input }) | Log { input } -> create (Log { input = f input }) | RandomNormal _ as descr -> create descr | ReduceSum { input; axes; keepdims; noop_with_empty_axes } -> create (ReduceSum { input = f input; axes; keepdims; noop_with_empty_axes }) | Gather { input; indices; axis } -> create (Gather { input = f input; indices = f indices; axis }) | GatherND { data; indices; batch_dims } -> create (GatherND { data = f data; indices = f indices; batch_dims }) | Transpose t -> create (Transpose { t with input = f t.input }) | Flatten t -> create (Flatten { t with input = f t.input }) | Identity { input } -> create (Identity { input = f input }) | Concat { inputs; axis } -> create (Concat { inputs = List.map ~f inputs; axis }) | Gemm t -> create (Gemm { t with inputA = f t.inputA; inputB = f t.inputB; inputC = Base.Option.map t.inputC ~f; }) | Squeeze t -> create (Squeeze { t with data = f t.data }) | Reshape t -> create (Reshape { t with input = f t.input }) | LogSoftmax | MaxPool | Conv | RW_Linearized_ReLu -> n (* todo *) (* let map_rec f node = let h = Base.Hashtbl.create (module Base.Int) in let rec aux n = Base.Hashtbl.find_or_add h n.id ~default:(fun () -> f (map aux n)) in aux node *) let replace_input f node = let h = Base.Hashtbl.create (module Base.Int) in let rec aux n = Base.Hashtbl.find_or_add h n.id ~default:(fun () -> match n.descr with Input _ -> f () | _ -> map aux n) in aux node (* iter on the nodes accessible from [node] ([node] comprised) without repetition *) let map_rec f node = let h = Base.Hashtbl.create (module Base.Int) in let rec aux n = Base.Hashtbl.find_or_add h n.id ~default:(fun () -> f (map aux n)) in aux node let iter_rec f node = let h = Base.Hashtbl.create (module Base.Int) in let rec aux n = Base.Hashtbl.find_or_add h n.id ~default:(fun () -> List.iter ~f:aux (preds n); f n) in aux node
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>