Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
bisec_tree.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
module A = MyArray module L = List (* Functorial interface *) module type Point = sig type t (* dist _must_ be a metric *) val dist: t -> t -> float end (* Apparently, bisector trees where first describbed in "A Data Structure and an Algorithm for the Nearest Point Problem"; Iraj Kalaranti and Gerard McDonald. ieeexplore.ieee.org/iel5/32/35936/01703102.pdf *) type quality = (* | Best (\* we use brute force to find the diameter of the point set; * of course, this will not scale in case you have many points *\) *) | Good of int (* we use a heuristic to find good vp candidates *) type direction = Left | Right module type Config = sig (* The data structure is parametrized by k: if there are n <= k points left, we put them all in the same bucket. Else, we continue constructing the tree recursively. This should save storage space and accelerate queries. The best value for k is probably dataset and application dependent. k = 0 => the tree is not bucketized *) val k: int (* bucket size *) val q: quality end module Make = functor (P: Point) (C: Config) -> struct type bucket = { vp: P.t; (* vantage point *) sup: float; (* max dist to vp among bucket points *) points: P.t array } (* remaining points (vp excluded) *) type node = { (* left half-space *) l_vp: P.t; (* left vantage point *) l_sup: float; (* max dist to l_vp among points in same half-space *) (* right half-space *) r_vp: P.t; (* right vantage point *) r_sup: float; (* max dist to r_vp among points in same half-space *) (* sub-trees *) left: t; right: t } and t = Empty | Node of node | Bucket of bucket let rng = Random.State.make_self_init () (* n must be > 0 *) let rand_int n = Random.State.int rng n let fcmp (x: float) (y: float): int = if x < y then -1 else if x > y then 1 else 0 (* x = y *) let fmax (x: float) (y: float): float = if x > y then x else y (* point indexed by one vantage point *) type point1 = { p: P.t; d1: float } let point1_cmp (x: point1) (y: point1): int = fcmp x.d1 y.d1 (* enrich p by distance to vp *) let enr (vp: P.t) (p: P.t): point1 = { p; d1 = P.dist vp p } (* point indexed by two vantage points *) type point2 = { p: P.t; d1: float; d2: float } let enr2 (vp: P.t) (p: point1): point2 = { p = p.p; d1 = p.d1; d2 = P.dist vp p.p } let strip2 (points: point2 array): P.t array = A.map (fun x -> x.p) points (* return max dist to vp1 *) let max1 (points: point2 array): float = let maxi = ref 0.0 in (* a distance is always >= 0.0 *) A.iter (fun x -> maxi := fmax !maxi x.d1 ) points; !maxi (* return max dist to vp2 *) let max2 (points: point2 array): float = let maxi = ref 0.0 in (* a distance is always >= 0.0 *) A.iter (fun x -> maxi := fmax !maxi x.d2 ) points; !maxi (* stuff that will be promoted to bucket *) type pre_bucket = { vp: P.t; points: point2 array } (* stuff that will be promoted to node *) type pre_node = { l_vp: P.t; points: point2 array; r_vp: P.t } type pre = Pre_bucket of pre_bucket | Pre_node of pre_node | Pre_empty (* select first vp randomly, then enrich points by their distance to it; output is ordered by incr. dist. to this rand vp *) let rand_vp (points: P.t array): point1 array = let n = Array.length points in assert(n > 0); if n = 1 then [|{ p = points.(0); d1 = 0.0 }|] else let i = rand_int n in let vp = points.(i) in let enr_points = Array.map (enr vp) points in Array.sort point1_cmp enr_points; enr_points (* heuristics for choosing a good pair of vp points are inspired by section 4.2 'Selecting Split Points' in "Near Neighbor Search in Large Metric Spaces", Sergey Brin, VLDB 1995. *) (* choose one vp randomly, the furthest point from it is the other vp *) let one_band (points: P.t array) = let n = Array.length points in if n = 0 then Pre_empty else if n = 1 then Pre_bucket { vp = points.(0); points = [||] } else if n = 2 then Pre_node { l_vp = points.(0); points = [||]; r_vp = points.(1) } else (* n > 2 *) let enr_points = rand_vp points in let vp1 = enr_points.(0).p in let vp2 = enr_points.(n - 1).p in (* we bucketize because there are not enough points left, or because * it is not possible to bisect space further *) if n <= C.k || P.dist vp1 vp2 = 0.0 then (* we use vp2 to index the bucket: vp2 is supposed to be good while vp1 is random *) let enr_rem = A.sub enr_points 0 (n - 1) in let rem = Array.map (enr2 vp2) enr_rem in Pre_bucket { vp = vp2; points = rem } else (* remove selected vps from point array and enrich points by their dist to vp2 *) let enr_rem = A.sub enr_points 1 (n - 2) in let rem = Array.map (enr2 vp2) enr_rem in Pre_node { l_vp = vp1; points = rem; r_vp = vp2 } let two_bands (points: P.t array) = let n = Array.length points in if n = 0 then Pre_empty else if n = 1 then Pre_bucket { vp = points.(0); points = [||] } else if n = 2 then Pre_node { l_vp = points.(0); points = [||]; r_vp = points.(1) } else (* n > 2 *) let enr_points = rand_vp points in (* furthest from random vp *) let vp = enr_points.(n - 1).p in let enr_points1 = Array.map (enr vp) points in Array.sort point1_cmp enr_points1; let vp1 = enr_points1.(0).p in let vp2 = enr_points1.(n - 1).p in (* we bucketize because there are not enough points left, or because * it is not possible to bisect space further *) if n <= C.k || P.dist vp1 vp2 = 0.0 then (* we use vp2 to index the bucket *) let enr_rem = A.sub enr_points1 0 (n - 1) in let rem = Array.map (enr2 vp2) enr_rem in Pre_bucket { vp = vp2; points = rem } else (* remove selected vps from points array and enrich points by their distance to vp2 *) let enr_rem = A.sub enr_points1 1 (n - 2) in let rem = Array.map (enr2 vp2) enr_rem in Pre_node { l_vp = vp1; points = rem; r_vp = vp2 } let heuristic = match C.q with | Good 1 -> one_band | Good 2 -> two_bands | Good n -> failwith (Printf.sprintf "heuristic: not implemented yet: Good %d" n) (* | Best -> failwith "heuristic: not implemented yet: Best" *) (* sample distances between all distinct points in a sample. The result is sorted. *) let sample_distances (sample_size: int) (points: P.t array): float array = let n = A.length points in assert(n > 0); (* draw with replacement *) let sample = A.init sample_size (fun _ -> let rand = rand_int n in points.(rand)) in let distances = A.make (sample_size * (sample_size - 1) / 2) 0.0 in let k = ref 0 in for i = 0 to sample_size - 2 do for j = i + 1 to sample_size - 1 do distances.(!k) <- P.dist sample.(i) sample.(j); incr k done; done; A.sort fcmp distances; distances let rec create (points: P.t array): t = match heuristic points with | Pre_empty -> Empty | Pre_bucket b -> Bucket { vp = b.vp; sup = max2 b.points; points = strip2 b.points } | Pre_node pn -> (* points to the left are strictly closer to l_vp than points to the right *) let lpoints, rpoints = A.partition (fun p -> p.d1 < p.d2) pn.points in Node { l_vp = pn.l_vp; l_sup = max1 lpoints; r_vp = pn.r_vp; r_sup = max2 rpoints; left = create (strip2 lpoints); right = create (strip2 rpoints) } (* to_list with an acc *) let rec to_list_loop acc = function | Empty -> acc | Node n -> let acc' = to_list_loop acc n.right in to_list_loop (n.l_vp :: n.r_vp :: acc') n.left | Bucket b -> A.fold_left (fun acc' x -> x :: acc' ) (b.vp :: acc) b.points let to_list t = to_list_loop [] t (* dive in the tree until [max_depth] is reached (or you cannot go further down) then dump all points along with the descent path that was followed to reach them *) let dump max_depth t = let rec loop acc path curr_depth = function | Empty -> acc | Bucket b -> let points = to_list (Bucket b) in (L.rev path, points) :: acc | Node n -> if curr_depth = max_depth then let l_points = n.l_vp :: to_list n.left in let l_path = Left :: path in let r_points = n.r_vp :: to_list n.right in let r_path = Right :: path in (L.rev l_path, l_points) :: (L.rev r_path, r_points) :: acc else let depth' = curr_depth + 1 in let l_path = Left :: path in let r_path = Right :: path in let acc' = (L.rev l_path, [n.l_vp]) :: acc in let acc'' = loop acc' l_path depth' n.left in let acc''' = (L.rev r_path, [n.r_vp]) :: acc'' in loop acc''' r_path depth' n.right in loop [] [] 1 t let is_empty = function | Empty -> true | _ -> false (* the root is the first point in the vp that we find (either a bucket's vp or a node's left vp); not sure it is very useful, but at least it allows to get one point from the tree if it is not empty *) let root = function | Empty -> raise Not_found | Node n -> n.l_vp | Bucket b -> b.vp (* nearest point to query point *) let nearest_neighbor query tree = let rec loop ((x, d) as acc) = function | Empty -> acc | Bucket b -> let b_d = P.dist query b.vp in let x', d' = if b_d < d then (b.vp, b_d) else acc in (* should we inspect bucket points? *) if b_d -. b.sup >= d' then (x', d') (* no *) else (* yes *) A.fold_left (fun (nearest_p, nearest_d) y -> let y_d = P.dist query y in if y_d < nearest_d then (y, y_d) else (nearest_p, nearest_d) ) (x', d') b.points | Node n -> let l_d = P.dist query n.l_vp in let x', d' = if l_d < d then (n.l_vp, l_d) else acc in (* should we dive left? *) let x'', d'' = if l_d -. n.l_sup >= d' then (x', d') (* no *) else loop (x', d') n.left (* yes *) in (* should we dive right? *) let r_d = P.dist query n.r_vp in let x''', d''' = if r_d < d'' then (n.r_vp, r_d) else (x'', d'') in if r_d -. n.r_sup >= d''' then (x''', d''') (* no *) else loop (x''', d''') n.right (* yes *) in match tree with | Empty -> raise Not_found | not_empty -> let x = root not_empty in loop (x, P.dist query x) not_empty (* all points [x] such that [P.dist query x <= tol] *) let neighbors query tol tree = let rec loop acc = function | Empty -> acc | Bucket b -> let b_d = P.dist query b.vp in let acc' = if b_d <= tol then b.vp :: acc else acc in (* should we inspect bucket points? *) if b_d -. b.sup > tol then acc' (* no *) else if b_d +. b.sup <= tol then (* all remaining points are OK *) A.fold_left (fun accu x -> x :: accu ) acc' b.points else (* we need to inspect the bucket *) A.fold_left (fun acc'' y -> let y_d = P.dist query y in if y_d <= tol then y :: acc'' else acc'' ) acc' b.points | Node n -> let l_d = P.dist query n.l_vp in let acc' = if l_d <= tol then n.l_vp :: acc else acc in (* should we dive left? *) let acc'' = if l_d -. n.l_sup > tol then acc' (* no *) else if l_d +. n.l_sup <= tol then (* all remaining points are OK *) to_list_loop acc' n.left else (* need to inspect further *) loop acc' n.left in (* should we dive right? *) let r_d = P.dist query n.r_vp in let acc''' = if r_d <= tol then n.r_vp :: acc'' else acc'' in if r_d -. n.r_sup > tol then acc''' (* no *) else if r_d +. n.r_sup <= tol then (* all remaining points are OK *) to_list_loop acc''' n.right else (* need to inspect further *) loop acc''' n.right in loop [] tree (* test if the tree invariant holds. If it doesn't, we are in trouble... *) let rec check = function | Empty -> true | Bucket b -> (* check bounds *) A.for_all (fun x -> let d = P.dist b.vp x in d <= b.sup ) b.points | Node n -> (* check bounds *) L.for_all (fun x -> (* lbounds *) let d = P.dist n.l_vp x in d <= n.l_sup ) (to_list n.left) && L.for_all (fun x -> (* rbounds *) let d = P.dist n.r_vp x in d <= n.r_sup ) (to_list n.right) && (* check left then right *) check n.left && check n.right (* extract vp points from the tree *) let inspect tree = let rec loop acc = function | Empty -> acc | Bucket b -> b.vp :: acc | Node n -> let acc' = n.l_vp :: n.r_vp :: acc in let acc'' = loop acc' n.left in loop acc'' n.right in loop [] tree let find query tree = let nearest_p, nearest_d = nearest_neighbor query tree in (* Log.warn "nearest_d: %f" nearest_d; *) if nearest_d = 0.0 then nearest_p else raise Not_found let mem query tree = try let _ = find query tree in true with Not_found -> false end